ICOT Technical Report: TR-521

TR-521

Language Tool Box (LTB) A Program
Library of NLP lools

by
K. Akasaka, Y. Kubo, F. Fukumoto,
H. Fukushima & K. Hagiwara

November, 1959

© 1989, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191~5

IG DT 4-28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Language Tool Box (LTB)
A Program Library of NLP Tools

Kouji AKASAKA | Yukihiro KUBO | Fumive FUKUMOTO
Hideaki FUKUSHIMA |, Kaoru HAGIWARA
Institute for New Generation Computer Technology (ICOT)

Abstract

LTB {Langnage Tool Rox) is a program library conlaining indispens-
able NLF tools which can be used as common building blocks in develap-
ing a variety of NLP systems, The LTH provides many NLP researchers
with good facilities such as efficient analysis and generation module, well-
designed and rich language data. or friendly wser interface to operate them.
The current system consists of a lexical analyeer, & syntax analyzer, a sen-
tence generator, dictionaries, a language for semantic description C[L, and
an LTE-Shell. Most of the software modules are written in ESP [object
arienled Prolog), and the rest of them in CIL {Prolog augmented by a
record-like data structure). This PAPET i8 an introdection to the [TH,
presenting its currently available sofiware facilities. A pumber of window
Ifllilﬁr.‘i ﬂ[sOome |.r:||:!|>. e [ﬁﬂiv‘lilml IIII. lﬁrfii‘.r tll F’I'I'F lll.i‘ rr_.u:ll.-':rs a rl"E.IiIIE
for our system. The fature research and development direclion are alzo

discuzsed .

1 Introduction

LTH {Language Tool Dox) 1s a pregram library contaming indispensable NLE
tosls whicl can be used as common bullding blocks m developing s variely of
NLP systes. The LTB, (the Language Tool Box). is inaplemented on PSITL]
a logie-programmmeg machine newly developed at [COT,

The UTHE = mtended to provide many NLF researchers ol NLS (Natorod
Language processing System) developers with good facilities. such as efficient
analvais and generation modules, a well-designed and rich data i dievionares,
sl e friendiy wser interfaee, Such Eaeilities can be wsed in NLSs s parts of the
svsbene aml also provide NLP researchers with oo workbeneh,

The LT H was arginated from our experimental implementation ol diseonrs:e
|r|r1|r'-r‘il,i|||||i||£"_-_ sh=loenn [r:ulu.r-d DUALS] [2]. rl-||.l'|'|ll;;|!l e il'|1|lh'll'||.*l1|}l!.inli ol
P ALS wer Keendy mealises] Gl nessd Far efficienl sofiware modubes that have w

basic NLP functions environment which eould support the development of so-
phisticated experimental NLSs. To meet this need, we started the development
of the LTB by extracting the modules of DUALS which had basic NLP functions
such as syntax analysis and sentence generation. Then we refined the modules
from the point of an efficiency and & madularity. After that, we equipped all of
them with some peripheral software tools, such as debugging tools or dedicated
editors. In addition, we are designing a shell to coordinate those madules in a
uniforrn manner so that the modules will form an integrated workbench. The
effectiveness of the LTB has been evaluated in the development of the latest
version of DUTALS.

Generally, a desirable environment for the development of NLSs provides
the following: 1) excellent description formats for linguistic data, 2} 10~
teractive facilities to support the user. Furthermore, it should have 3) high
modularity, and be 4) an integrated anvironment. As for 1), in the LTB,
each module has its own deseription format, suitable toits aspect of NLP, to en-
code linguistic information. However we [eel the need to improve the flexibility
and readability of theses formats. With regard to %), each module of the LTB is
equipped with various types of interactive facilities, such as debuggers or editors,
each of which fully takes advantage of a multi-window and graphic environment
provided by PSL In regard to 3) and 4), two Lypes of Prolog-based language, in
gither of which all the LTB modules were written, played importanl roles. One
is ESP[3] (Extended Self-contained Prolog), a sort of object- ariented Prolog.
which deserilies the underlying PSI/SIMPOS. Written in ESF, all modules have
high modularity and compatibility with each uther. The other is CIL[4], an ex-
tended Prolog with a record-like struciure, called PST (Partially Specified
Term). PST, used by every module, plays the role of & commeon data sboue-
ture for internal represcatations throughout the LTB's module: buth analysis
module and generation module.

The current, version of the LTB is composed of the following modules:

CIL: ‘The basic programming language of the the LTB. Every tool in the LTB
has aceess to CLL and ils programiniing ey ironments.

DataBase: The master dictionary and the thesaurus, both of which are
referred by both analysis wodules and the generation module,

LAX: The morphological and semantic analyzer.
SAX: The syatactic nnd semantic analyzer, The grammar is written in DUG.

Coeperator; Uhe Japaiese sentence genershor, whese input is a frame structure
wratten in €L, vutputs Japanese surface senbenccs.

Shell: The U1 H-shell rooedinates the aperating of every madule i a wmtorm
way. and i1 manages eomnmnications hetween any two modules

In the following sections, the details of the above modules except for DataBase

are described in that order.

PL—iE—F WCKET BMET FeaF bsFhiwFD Fo-% BAK MT

HEE | kishimsn X BF

LAY 2 sditer_naw|EF-k
WERTANDKE EXE T FLWMA £ Rl

WM = | © R = 1] miwes,

BFFTres_ming

PRE ° kishlmen
-

GARETE T

ift¥ N TG i

rEE:[]

THUaE [mEg] ¢

E] EEET] [} :
BErcrUoEn (2000) 4
EERAxTIN fzol 3

arFulxEER (1513

A AEATT 2ol :

Bl Lwrdan [224] 2

*edilkithimen, def L

W EL
Af WT oW AE FuieX¥ olalih R £=F
EG>input Inpput_chuukan 2im
|
n e Alwp
oL,
o— & Eignmp J-owp
LT . e ——
T LA mp Io:p Sieemp 3
"‘{-::I.F R 19 :nsun B:np Izip Brewmp
e Bimsun d:np 31
L% T
[l B - R T l3imeun
o
fL=Fe [l b} . AT] ™ LR
screen cusrriijilioon
USER : mhmsahn standard.iowindow 4
SIHPOS Wersion G. 12 Ie-Oct-89 Monday 18:58:37

Figure 1. LTB an PST nachine

2 CIL

[his seelion outlines the semantie processing langnage called CIL and its pro-

sranning environtent. Soe [3] Tor fucther inforistion
] -)
UL, engeloyed Byoevery ather moedule, plays the role ol the haswe prograc-

INENE [Hngisge el the LT

2.1 Outline of CIL

CIL was developed to make description of natural language processing systems
easy. It has two augmentations to Prolog. One s a record-like structure called
a partially specified term (P5T). The other is the freeze mechanism, orig-
inating in Prologll[6]. A PST is a set of attribute-value pairs in the form:

{a1/by. . an/ba}

where o
nz0, a#a (i#])

A PST can be seen as an abstraction of the following data structure: a
category of GPSG, a functional structure of LFG. and an assignment of
Situation Theory. A PST is a simple but expressive data structure to describe
various complicated objects, which appear in the NLP.

CIL provides various buoili-in-predicates and syntax-sugar to make the oper-

ation on PSTs casy.

2.2 Programming Environment

Figure 2 shows the configuration of the CIL system. The CIL programming
environment consists of the following submodules,

Command Interpreter: The top level user interface, from which the user
gives commands to other tools.

Compiler: The Compiler translates a given CIL program into an optimized
ESP cude which runs efficiently.

Interpreter: Witl the interpreter, users can tun their CIL program inimedi-
ately without having to wait for a long compile time.

il editor A text editor with a syntax-checker.
Inspector A utility for mspecting a nested PST,

Debug Ald A fullscresn source image tracer which enables users to debug
visually and interactively.

3 Lexical Analyzer/LAX

Iy this section, we lusteate o Jupanese lexical analyzer called LAY [Lexieal
Awtlvaer for Syatax and Semantics) and s software envireniwent called the
LN syafenn.

First we presepl an citline of this system, then deseribe the How of e
lexieal annivsis, which congists of two nodules: nocpliologieal analysis modile
ated semantie construction module. Finally, we explain the conligneation of the
LAX svsten sl ita useful develaginent toals

—_CIL GOAL

i

L CONSULT ™ Tnterpreter |
COMFILE -

Command —————+ _ Compiler |

interpreter __E!:‘;I_ﬂl."r.;—_‘\‘I

INSPECT

EDIT

-I

= CIL editor

= Inspector
INSFPECT

= Debugaid |+ -

Figure 2- Configuration of the CIL system and user interface

3.1 Outline of the LAX system

In processing a Japanese sentence, morphological analysis is niore important
than 15 the case in other languages. mainly due to the following two reasons:

+ Unlike Furopean]anguag::a such as English, Japanese senlences are ordi-
narily written in a way that the words in the sentences are not separated
by delimiters such ns blanks. So a Japaness sentence analyzer must rec-
ognize the words which compose Lhe septence,

The second reason arises from Kanji (Chinese characters). Kanji can farm
a comnpound word {Kanp compound word), which may be very comples,
Therefore, & Japanese seatence apalyzer pwst recognize the maorphenes
ma hanji compound word, and derive the meaning of the word feons the
meaning of cach morpheme of the word.

For the above reasons, we needs an efficient morphological analysis sysiem,
lor L processing of Japanese seatences. LAN was developed 1o satisly (s
deniand

The LAX Avalen LZ'J'D'-'i:l.‘I:‘:S- a aoftware environment for the .I:II[JH.[I':‘HP‘ lexaral
awalywer {LAN) which cosizt= of morplological analysis module and semantic
constrnctinn modoie,

b using the LAX svstem, the nser st develdops a morpholosical dictionary
citlled AN —diedionary, in which a movphologieal information (eeumeefive el 5)
s sepntde tnforiadion {seraantie consfeoection rales) are described Tor el

consbruc-

tion rules
input morphological sequence ! gemmantic consis words with
senlence analysis engine af words | muction engine T AT PEE

Figure 3: Flow of the Lexical Analysis in LAX

morpheme. Intuitively, connective rules indicate what kind of morphemes can be
concatenated with the described morpheme, and semantic construction rules in-
dicate what to do in order to construct meanings of words. Then LAX-dictionary
is translated into a lexical analyser LAX.

In arder to edit the LAX-dictionary, we can use a special tool called & Die-
tionary editor. The Inspector provides a debugging environment, which enables
us to check the result of morphological analysis and trace the semantic construc-
tion of each word. The ambiguities in the results of the morphological analysis
are displayed graphically by the tool called Pretty printer

LAX analyzes a sentence deterministically and outputs all possible inter-
pretations in parallel if there are ambiguities. LAX can analyze a sentence
consisting of 50 characters ! in less than 100msec, even though there are many
possible solutions. This result shows that LAX is efficient enough for practical
purposes. LAX ean also recognize unknown morphemes oceurring in the input
sentence.

The result of lexical analysis done by LAX can be used as the input for the
syntax and semantic analyzer SAX.

3.2 Flow of the Lexical Analysis in LAX

Figure 3 shows the flow of the lexical analysiz in LAX. The lexical analyzer
LAX consizta of two modules, each of which vonsiste of an eugine and rules.
The first. engine. called morphological analysis engine, translorins a Japanese
sentence as a surface string into a sequence of words thal consisis of several
morphemes referring conpective rules. The seeonid engine, called semantic con-
strnction engine, constricts each word's (ocaning referring construetion rules or
action rules. These two rules referred by eacl engine ave teansforned from the
LAX-dictionary in terns ol a translator.

gl corresponds bnoan I.':I:Ih"li.‘-ll argila e m:ns'l:;l.in& ol aulwern TR Bisl baers,

‘The morphological analysis mechanism emploved in the morphological anal-
ysis engine is based on the layered stream technique [7]. and can analysze all
the possible solutions in parallel, without backtracking. The connective rules
referred by this e.ngine. Are r,nmpi]ﬂ‘l into the TRIE structure Eﬂl with respect Lo
the headword for morphemes from the LAX-dictionary for quick retrieval. Am-
biguities are packed as a graph stack structure. The result of the morphological
analysis is sent to the next module, semantie construction engine.

For each word, the semantic construction engine builds up its meaning from
the semantic coustruction rule of each morpheme that constructs the word.
The engine applies the construction rule assigned the first morpheme of the
word, and sends the result to the next morpheme, and so forth, Finally, alter
applying the last construction rule, corresponding to the last morpheme, the
engine outputs the meaning for the word. In this way, the engine constructs the
meaning for every word, that is the output of LAX,

3.3 Syntax and Semantics of the LAX-dictionary

In this section, the deseription format and the semantics of the LAX-dictionary
are described. The grammar category defined in the LAX-dictionary belongs to
the regular grammar or type-3 grammar. This description format 5 designed
so that the Japanese morphological grammar i1s written easily. Specifically, this
format i aimed to implement Morioka's morphological grammiar [9].

The basie concept of the morphelogical analysis is to check whether a certain
sequence of morphemes can be acceptable as a word. So, the judging process
can he regard as a non-deterministic finite stale automaton (NFA}. The starting
and ending features of a word correspond to the initial and final siate of the
NFA. The LAX-dictionary is a definition of the state transition function of the
NFA. Namely, the surface string of the morpheme corresponds to the input
svmhbol, left — hand feature to the input state, right = hand feature to the
sel of states o which the NFA can fransit.

Figure 4 shows the syutax of the LAX-dictionary. The morphemes that
helong to the same norphalogical category are described together as shown by
the lines from | to 8 in Fignre 4. Each definition consists of three parts. The
first part specifies a surface string as a headword and a oken as a relurn value
described v hine 2,

The second part specifies, from lines 3 Lo 5, connective rales which cansist of
a left-hand feature which stands for the wlentifier of the deseribed morpheme,
and a right-hand feature which is a set ol ideatifiers of e morplemes that can
ferlloow the deseribed |'|'|ﬂr|1||+'|1w. E-.'vr:k conmeetive feature {{ _Jr} |'rH|I}I'Ig,S Lo a
certain state transition table (S0, and shonld be designated witl the name of
ther related state trangition tabde in the LA X-dicnonary, Sunilae atures can
b packed ke one groupy i Uie statbe bransition Lalde.

Tlhe last one. on hines G oaml 7, specilies a semante constencaon riles, 1las
part consiats of a declaration o vanabbes cacl of which oediates the conunn-

hegin{Category) (1)

Surface (Token) [2)

. St ((C 50,) ()

Bt St IS fan, .- b (4}

Sty ([fyrs -) {5

% [[deciaration of varizbles], (8]

semantic construction 'r'uf:'s]. f?]

end[Category] (8)

Figure 4: Svntax of the LAX-dictionary

nication between semantic construction engine and semantic construction rules
or action rules. The variables that can be used are shown in Table 1.

The special state transition table named end, for which the system provides,
indicates the end of word when the adjoining morphemes are connected by.a
eonneetive feature which belongs to end Sii.

Declaration | Infout | Meaning I

in{ln) in get the previous semantic struclure

ol Mol in get the word mumber

sur{Sark in get the surface string of the morphems

cal{Cat) m get the category of the morpheme

Lok Tak | in get the token of the morpheme

ant[The) anit il the semantics struciure to the nexe morphbisme

Tahle t: Declaration of Variables

3.4 Configuration of the LAX System

Figure 5 shows ihe configuration of the LAX development systen, The LAX-
dictinary writlen i the description farmal as shown o Figure 4 §s transformed
i the intermediate files by the translator, Mast of the tools provided by the
LAY svatemn aperate th'm:_gll these intermwdiate files.

The LA Xedictionary can be transformed Troin the itermediate files by roeverse-
tesmslavor ai any tine, The aim ol this funelion is o back g Uhe iterniediabe
filiws sonel eomfirm thee eurrent state of the morphological dictionary.

During te development of the morphological dictionary, tie analysis engine
avesses Wi interimediare liles by way ol an nerpreter. We can Uerefore check
e ellver ol mealifving the dictiomary innnediately, Tlos enalbies us 1o develop
e dactonary effectively, e takes abom ten tnnes longer 1o analyee a senlener

Bermrator

intere-
diate fles
{ \ analysis
dictionary ; H pretty
| editor inspector 'L printer

Figure 5. Developing Environment of LAX

using this interpreter with the built-in dictionary mentioned below. Howewver,
it iz useful to debug the dictionary because we can get Lhe result of the analysia
in a few seconds.

After developing the dictionary, we can get a buili-in dictionary and an
action programes from the intermediate files in termns of & generator. The built-
in dictionary is accessed by the analysis engine and an action program is called
by the semantic construction engine.

3.5 Development Tools

As development tools, we have a lop-level window, a dictionary editor, an in-
spector amd a pretty printer. Each of them is explained below.

3.5.1 Top-Level Window

When the LAX svstem s activated, the top-level window emerges firsl. Using
s window, we ean activate such lools as dictionary editor and inspector,
fransform the LAX-dictionary inte the intermediate files, generate a buili-in
dicttonary from the iierowdiate files, and so on.

Becanse Lhe LAY svstem can work with mnltiple morphological dictianar-
i, we sebeet the target dictionary o this window. We also designate what
sort of dictionnry (bytle-in ar ermediate files) we use in order o access the
target dhietionars, These two analvsis modes are called comprled soode and

f'lr.frljrr'- Fipe anaeale |

L dictiwnary edites

dieRionATY

& ommand

fimitial sSecTinEd

dictionaryi[]
St [Oma) - EENL
digi claasgas [1B] ¢
sntCiet [2oma) ¢ LLE]
Sur dength [R-3
Cat length [rzl
Fea isngth [14] * B
Feas St1 [22d] = : P p——
fadiETing Enapadtar
fep Ievel
Car EERE| mamsasmmammas
Sur NE ERELF R
o e e new
LFes:end [[22]) LU LTy
AFea:emd { [RE]). LLLLE s
BIF ¢ s, ik i) 1, BT
WEEE (RS, TR Rl), Trnlazae
HTER ({Ee) 0. s th=gaulfar
WEEL C(mEN]). miik=mang
MR [FRAT]) punh= el dar
B [L, =l b pog-ialder
ERul : mesph {Tok, Tat), EIET LY
gfeon (Mat, Faal._ alaar-dain
awt (S0], add

WW Bas besen regiztersd

Figure fi: Dictionary Editor

3.5.2 Dictionary Editor

The dictionary editor works with the intermediate files and provides the function
of adding, searching, revising and deleting for each entry. When we invoke the
dictionary editor as new use, the initial setting up window emerges, as shown
on the left of Figure B, in which we set a value for each entry: the dictionary
name, state transition table names, maximum number of characters in the lexical
entries, division number of the built-in dictionary, and so on.

In this mode, the intermediate files are created immediately by the dictionary
editor instead of being transformed from the LAX-dictionary. The entry not
assigned any value is assigned to a default value held by brackets, After setting
up the entries, we move to the edit window shown on the right of Figure § as
we do after invoking the dictionary editor as confinuous use.

There are twe ways Lo go to this edit window. One is, as mentioned above,
from the top-level window: the other is from the inspector. The latter will be
deseribed in the pext section,

Excepl in the case of going to the edit window from the inspector. there arne
no entries on the edit sereen at first. To add a new morpheme to the dictionary,
we simply il each colimn amd inveke an addition comiand,

In searching morphemes, we can vae lwo sorts of keys: the surface characters
of the |_;||u”;|'||_r,-||]l- anil the Il]ﬂll'riil.‘r]n;'l.;j{‘ill cabegory. ln hoth cases, the searched
.1.|-|r_ri.-_|; Are Hﬁ-‘ﬂ"tllhll‘l.‘] i|'| H qudr r Illill TR ﬁl‘.-_l.l F*rl|-r} m [-i'll.“ rﬂ]dff i.E disp]-“l}'{'d.
(iher entries can be inspected e order, amd for each of them we can apply
such eommnmnds as deletion and revision, Hrpla--mg the surface characters of a
searchod morphene enables ue to make easy registeation of another morpheme.

Tokys @ itte morau .
input sentence : BB o~ fioT 264 .
reault of analysis : WR-—~
to Tokye
HroTrbbda (fT2T
have (scmeocnal go £ and
LR IR
recaive (somathing)
interpretations c 1) MBS fFroTr b des
(3cmasna) has (anothar) go to Tokyo.

(2} HWE-~/ff+aT/ b5
(Spmannae} goes te Tokye and receives (somsthing).

Figure 7: The Morphelogical Analysis

3.5.3 Inspector

The inspector is called from both the top-level window and the dictionary edi-
tor, and has two internal modes called analysis moede and inspect mode. The
windows that correspond to each mode are shown in Figure 8. Note that these
two windows never emerge at the same time.

Imitially, the analysis mode is selected, in which we can get the result of
the morphological analysis and the analysis state (success/failure), nurmher of
possible interpretations, number of character of the input sentence and analysis
time. If analysis fails, we can also get information about the position and surface
character of some unknown or unconneetable morphemes,

The under window in Figure § shows the result of the morphological analysis
for the input sentence which is typed in the upper input window using the input
sentence command. As for the result, each line corresponds to ene word which
ronsists of several morphemes separated by dots, If there are some ambiguities,
alternatives are displayed on the same line, with each word separated by slashes
as shown in Figure 7.

In this case, there are twe interpretations for the npot sentence, The first
one consists of two words and the second cne has three words. Note Lhat the
iput sentence in Figure 7 is separated by blanks hecause of the explanation:
the actual mput senlence has no blanks.

Changing the display mode to detail or more detail, we can ge1 more detailed
information for each morpheme such as morphologieal calegory or connective
stale transition table and conpective feature.

IT wnalysis Fails, that is, if there are morphemes that can ol be concatenated
with any adjoining morphemes, the morpheme is marcked with an asterisk so that
we can see that it should be modified.

In arder Lo input a seutence to LAX, we can uge the sentenes select compand
that enable us 1o seleet the nput septence i a nwenn forne The seatences should
be writhen in a certam file in advanee.

In the under window shown in Figure 8, that is in the analysis mode, mouse
clicking on a certain character written in the upper input window changes the
made into the inspect mode,

The over window in Figure 8 shows the inspector in the inspect mode. In
this example, on the seventh character T# [in (WH~fT=2TH &%, | the
mouse was clicked. Then, possible morphological entries looked up from that
character are displayed in the middle right window_ In the middie left window,
morphological entries that precede the selected character are indicated. These
morphemes indicated in the middle left window can be concatenated with the
morphemes indicated in the middle right window.

In this state, clicking the left button of the mouse on a morpheme shows Lhe
description of selected morpheme, which is indicated in just the lower window.
Double keft mouse ¢lick on a morpheme shows the eandidates that can be con-
nected with the selected morpheme with their head numbering in some order.
Among the candidates, the definition of the morphemne with an asterisk mark is
displayed in the lower window. Using these functions, we can find the errors of
the morphological definition easily and quickly,

Moreover, a middle mouse click on a morpheme sends that morpheme’s
information to the folder of the dictionary editor. Double middle mouse click on
a morpheme also sends its information to the folder and activate the dictionary
editor continuously, Activated in this way, the dictionary editor displays the
first entry of the folder and awaits the command. We can therefore revise the
definition of necessary morphemes and return to the inspecior immediately to
confirm the result of the analysis.

3.5.4 Pretty Printer

The pretty printer analyzes an input sentence and shows the ambiguities of the
result of analysis clearly, The sentence is input to the pretty printer in the sae
way as to the inspector. When the result is forced out of Lhe window, we can
move it and look at any part of the resull freely.

3.6 Further Research

Currently, the debugging covirowment for the semantic construction module s
poor compared with that for the morphological analysis noalide, 5o an eflecLive
debhngging tool for the semantic construction madule shiould be developed.

Lopslementation of & lexical acquisilion tool such as VEX avalem [1U] is also
e consideration.

It addition to developing these Lools, we have heen developing a warpho-
logical dictionary consisting of aloal 2000 entries as part of the language ot
bage. W are planping to refine the deseription of the dicticaars Al prseis
the entries up to GO morplemes,

12

Lad IMEFPECTOR ididvisnafvIsiERnAp

aractar

Impuct ralagtg peimal detail merm-detall lagging iRl

[syooass] eharaebnr sl

- -
B sTodedon SHe oL
hob-,

LAN
gliehk

INSPELTIH
L L]]

|'||.'1|.:r|1ry:l.g_i-_.1:
EEATSETEN

R eFy e DAL,
imput walset retuim swil
£ 7 S X & |EIAE
T SRR F R A wred
T A A mup
T Rgae ERE T LR
AT D EARELTL I & RELUEEE
AT DERAEEIL LA
=T PRSI
[-0 TREFIALAT
T)
AT 1 R) R L34 1]
Liss: HESR (SCELsT and (kTEE)
EPwal and (RIEE) EF G
e CBILT. ik, e B B Bl BoE o NESE (754K ETEE FEUR. TES BEaR.
£ A, T) wry LN NS T T
AERL (AT, WFEE
N TAD

Figure 8: Inspector

4 Syntax Analyzer/SAX

In thizs section, we introduce the SAX (Sequential Analyzer for syntaX and
sernantics) system which 15 8 module of the Langnage Tool Hex {LTH) for syo-
tartic and semantic analysis. First we deseribe an ontline of the SAX juclueling
the parsing method and configuration of the avatem. Then we explain ita grai-
miar rules, and at the end of this section. we deseribe the debugging tools whicl
provide a developowan envircment for the user,

4.1 The SAX System

SAX s 8 svoraclie and 2emantic analvaer based on foge programaning. | nlike
the hottom-up, depth-firsi processing regime of the BEP parsing algoritlin,
SAX etnplove a ot tone e el breaadii-fersi pavrsing algor e [| |] SAN parser
was [irsl I”]|"|*'|l|"|'lr¢"'i.| M| I':IIZI:'HJ |:'I'|'||1:l;_', ald WOCYT o 1985 aned r"i||||:||I'|||-"I||r'|.I
on PS5l ': Personal F"'"l.qlll"lﬂiFll !|]ﬂ'r|'lli'|ﬂ !'i,|,|_||||||“-:| I-|||' (TR e F\'-||r|;-'4'1|||1'||ll_', -
SO0 kgt .;1-'-"|'.-Ir_l_-;_l_';ill;.', Liwils were <|r'-n.|~||,_||14'1| o = 1PPAX |!‘ari1||-*] .-"| I|.'i|:k'?.1'|' |.|||' :-:u'nl.‘::\;_

I3

and semantics), which is the parallel version of SAX, was also implemented on
M-PST {(Multi Personal Sequential Inference Machine). SAX system provides
with the user a facility to develop a grammar, and is composed of submodules,
translator, and debugging environment.

Figure § shows the configuration of the SAX system. Grammar rules are
translated into a parsing program written in ESP, The parsing program receives
the result of the LAX (lexical analyzer for syntactic and semantic) system [12]
or a sequence of words input from keyboard, and parses it at high speed. As
the result of parsing. we obtain the semantic representation as well as a parse
tree. If the result has some errors, we can use the debugging tools provided by
the SAX system, such as the grammar debugger, and graphic display utility,
and correct the grammar rules. :

Vieus] debagger

Tree browsasr

i
i
i
i
i
i
i
i CIL
]

Fignee 00 Configuration of the SAX svstem

4.2 Parsing Method

The SAX parsing algorithin is hottom-up parsing witl top-thowen peedietion. In
other worls, parsing proceeds by composing were parse trees hased on e al-
ready recogitiged trees by agrplving semmvnr eoles W chers aee sonwe appdiealis
ETATTGT rules, all of tleng are exevated al Une saoms G That s e mny, s
parsing algorithon was devised for parallel parsing, However, it alsa weorks offi-

clently o seguential inplementataon. The e aedvainage of onr svsiens is 1 lal

haad =+ body_1,{extra_1} {1}
st [pref_rulae_1}, (2}
La (3
bedy_n, {axtra_n} {45
c: {pref_rule_nk, {5)
t{delayed_sxtral, {6}
kk{pref_rola}, (71

Figure 10: SAX gramumar rules label'figure?’

the parsing process proceeds [rom the hottom up: therefore, the left-recursive
rules have no problems, and the parsing process does not involve backtracking,
which means that there is no redundant construction of syntactic siructures,

4.3 SAX Grammar Rules

The SAX grammar rule [13] is basically an extension of DUG (Definite Clause
Grammar) ? [14]) and is executed parsing bottom-up and breadth-first with some
restriction. By using these extensions, we can analyze more effectively.

In the above grammar, head in line {1) and body.i's in line (1) and (4)
represent grammatical categories and are represented in the form of Prolog
terms. extrai's in line (1) and (4) are extra conditions on the rule, expressed
as a Prolog goals. We can write the extra condition enclosed in * {" and '} °
after body .1,

1. Delayed Extra Condition

In our systeny, in addition to the extra conditions, a delayed extra con-
dition (line () can be specified. A delaved extra condilion is enclosed
m braces * {} " and prefixed by * & " as in the line (6). Basically, extra
conditions are used to restrict unsuitable parsing trees. but delayed exira
conditians are used o compose semantic structure. The Prolog goals in
the delayed extra conditions are evaluated aller parsing.

2. Prelerence Caleolation

Diesambiguation of sentence interpretations s one of the lardest prob-
fewne i matnreal tangnage processing. Therefore, nany approaches have
been vestigated, sueh as the solution of disamibignation using discaurse
sieneturs [15] The Preference rules i lines (20,05).0m] (7] enable s i
calenlate ane of the plausible cesilts using focal information of the parsilg
prucesss Preference rules are enclosed o braces {8 " and prefised by

TAw o [HG, el rules ool be weiiten e Lhe SAN graosar vl

&& "or ': : °. Moreover, our system supplies information related to the
calenlation of lexical preference as follows.

e In tofeprefixed prefeulea
Pref_cat - In prefruled, preference for body.i in the rule.

Pref - In pref_rule_ipreference for body.d in the rule which is
ealeulated in the tule whose head is body.

e In "feds-prefixed prefrule

pref.CAT - Preference for the head, It can give after successing
this rule.

prefs(i) -+ Preference in praf_ruled.

4.4 Debugging Environment

‘The SAX system provides grammar debugging tools in order o develop
gramunar effectively. The SAX system provides two types of debugging en-
vironments, the static debugging environment and the dynamic debugging
envirenment [16]. The dynamic debugging environment such as tracer is
used Lo locate the fail point of the parser during its execution. On the
other hand, in the static debugging environment, the visual debugger or
tree browser is used to find the fail points of extra conditions or the delayed
extra conditions after the parse has been done.

4.4.1 Tracer

‘I'he tracer, dynamic debugging environment, gives the information on the
parsing process, Figure 11 shows a display of the execution of tracer,
and '3 ' shows the parse puints currently being applied. As with the
Prolog tracer, the user can specify the behavior of the parsing process by
selecting commands such as 'step’, 'skip’, and 'leap’ from the menu. When
we evaluate extra conditions whick were written in CIL program, the CIL
debugger starts, and tracing is performed.

4.4.2 Visual Debugger

The visual debugger, static debugging envirenment, shows the information
on a partial parsing using the results of a parse. Figure 12is a display
of the visual debugger. After parsing a sentence, the user can inspect the
resulting parsing trees by using the visual debugger. The visual debugger
gives the user information on the partial parsing trees of the sub sequence
of the input sentence, which is specified by the user, In Figure 12, the start

16

tp¥ aTap Skip Recry Leap Iospeet Meds Ne_trace [0p Help

[Tormlowl Call] 2 saw >

[Call] 1 twerk >

(13} tve L P)=—=2ut_work (L P}, wap (AL B, o0 1) T

[Termlosl €ull]l 3 the >

[Call] 1 das >

(33 mnp (M, P, C)=—> (det: D), Sneun (M, ({ppieseen), np (M P, Q3D O3, (rl
elefGup) 10 7

[Terminal €ull)l & glrl > wi
[Cull] 1 oeun >

(3 mp N, Pa €2 ==> (deti 0}, neon (M}, ((ppizesnval,ap (L P C}) 0. (I
rale (Gap) : O3 .
(1) pp (L P.CY——=> (dat![0). neun O, ((ppieseen), np OL P. C1): O, (1]
vladGupd i0) 7

Call]l 2 ap > |I

Figuve 11: Tracer

point is 'saw’ and the end point is ‘'man’, the system loaks up lor the result
of parsing sequenee from 'saw’ to ‘'man’. If Lhe result of parsing succeeds,
the system displays the obtained root category of the resultant trees. In
Figure 12, the parsing suceeeds, and rool category tvp' is obtained. In
this way, the user constructs the parsing trees one after another. However
if the result of parsing fails, the user can narvew the candidates for being
an erropeous rule. The visual debugper can also display the semantic
information by clicking on a tree node, or display the part tree by chicking a
mouse on the 'sub_tree’ button in the windeow label. Figure 13 respectively.

andt paresatars
brask fram Wl
T3 T T

Figure 12: Visual debugger

4.4.3 Tree Drowser

The tree browser shows the results of syntactic analysis, the number of
trees constructed, time required for the parse, and the description of pref-

17

Tianal dw L3

Farme FEmatlen e “'";1-==-mn' el litatize urit .

=D CEEED BT e

Figure 13: Part tree in Visual debugger

B0 Tres Breendr

HEtree nrewssi

]

| o = (]
- L T = T
R TR e T Ter

o i a_
T T | Tt e
® o | L7] [
T Tl || T TR

belore scrotling alter serolling

Figure 14: Tree browser [menu window)

erence score. Tigure 14 shows the menu indication of the reduction of the
result of the parsing tree. The user select a parse tree from the menu and
select "Lree' or "part tree’ from the menu. In Figure 14, if "2" and "tree’ are
selected, the tree of 2 is displayed; as shown in Figure 15 I the bree is too
big to display al one time on the window, the user can shaft s viewpomt
by sclecting the scroll bar and can inspect or see the details of the parse
Lrase.

4.5 Future Research

We have describied the SAX system, its parsing method, the features of
the grammar miles and debugging environment. In the future, we plan to
improve the debugeing envirommnent, especially the tracer. We are to add
a [unction to display the parse tree as it is being constructed by the parser
Fur the translator, we must caonsider the problem of variable restrictions.
Another important aspect of future research is to design the Iigh-level
gramnar deseription. Basically, the SAX gramunar rule 15 an extension

18

EinamLaREE ma
. T
(LEEC TRl 1] [P EN LI 1!-.|1-|-
[T Tan T TTup
p T atiiees T T e
FEREFAaR ;....";'.':- FTuE
E | Illﬁ’”‘l‘hrll
b wim Ak i = e e ik -iEh e veredains
hefore scrolling after scrolling

Figure 15: Tree browser (indication of graphic scope)

of DCG and allows enly one head calegory to the left hand side of the
rules. But il is proved that the SAX allows some head category lo the
left hand side of the rules * [17]. Using this capabilily, we could represent
dependency grammar in addition to the plirase structure grammar, but
there are as vel no debugzing tools for this. We are to expand the SAX
system accordingly.

5 Sentence Generator

This section describe the sentence generator of the LTB and ils develop-
ment tools.

5.1 Outline of the Sentence Generator

The sentence generator provides a function for generating a sentence from
a given intermediate representation. The intermediate representation 15 a
kind of [rame structore writken in PST, which was deseribed in section 2

Oine af the most important features of the sentence generator s that the
major process of the sentence generation was implemented as a macro
expansion. Speaking more concretely, the sentence generator, according
to given expansion rules, expands each macro expression mcluded in
a miven intermediate representation. Through this macro expansion, the
input intermediate representation is rewritten into more specific structure
The reason why we adepted this method is that the sentence generator
should be flexible enough to accept a variety of structure as input. Con-
sidering thal the sentence generator is used in various applications, this
flexibility is important. Users can design the intermediate representation

lnlike X3 (Extraposition Giaiiinars]current axteosion does not allow any rule of the
form A Skip, B = C,..00." for any sequence of words Skip can be displaced.

18

iul!,r:rmcd:iah;' representa Lion

1

Macro Expander
- lexicon

| expansion rule
expansion rule
expansion rule |

syntactic structure (binery trec)

e

String Synthesizer| = marphological rules

oulpul scokence

Figure 16: Confizuration of generation engine

they want, by changing the expansion rules. The expansion rules can be
seen as encoded linguistic knowledge.

As for expansion rules, a prolotype of expansion rule set for Japanese,
called standard expansion rules is currently available as one of the
components of Uhe sentence generation module, which is intended to serve
as a basis for more improvements by each nser.

Like ather modules, scime development tools are prepared, in the sentence
genaration module. These toels are introduced in 5.3, with their windows.

5.2 Flow of the Sentence Generation/Generation En-
gine

Sentence generation is performed by generation engine, which consists
of two sub modoles: macre expander and string synthesizer. The
configuration of the generation engine is shown in Figure 16, Sentence
generation iz done in the following sequence:

(&) macro expansion

(b} syutactic structure genaration

(¢} morphelogical processing

2a. and 2b. are done by macro expander, and 2c. by string synthesizer.

20

PRELY { LEX'/ B3 (hit))},
ROLE’/ {"AGENT’/{*COMP’/{’LEX’ 5t (teacher) }},
'OBIECT /{'COMP'/{'LEX/ tgE (student] }}}}

A tencher hils o studend

Figure 17: Example of Intermediate Expression with Macro

{head {h'.xjn" [{ﬁtt}],
comp/{head/ [head/{lex/ % [case marker for abject]},
comp/{lex/ EFE (student]},
comp/{ head/{lex/ 2% (case marker for agent)},
comp/{head /{lex/ 5E4E (teacher) }}1}

A fencher hits a student.
Figure 18: Example of Primitive Expression

5.2.1 Macro Expunsion

Macro expander expands each maucro expression 1 & given intermediate
representation, according Lo the corresponding expansion rule.

Each expansion rule is written like a filler, a filter which receives an nter-
mediate representation, expands the macro expressioin which the rule takes
charge of, and sends the result of the expansions. Passing through the
filters, one after another, the given intermediate representation 15 trans-
formed, step hy step into more specific expression.

Let us give example of macro expansion based an the standard expan-
sivn rules, The example of an intermediate representation with macro
expression, and its fully expanded representation (called primitive ex-
pression - the result ef macro expansion- ate shown in Figures 17 and
14.

Tn the example of Figure 17, the expression

'AGENT'/{'COMP'/{'LEX"/ %t 1}
is & macro expression for

21

comp/{head/{lex/ #* },
comp/{head/{lex/ %t }})

in the Figure 1§,

The primilive expression, as is known from the Figure 15, 15 1 2 form of
binary tree of head and complement,

According to JPSG (Japanese Phrase Structure Grammar)[158] frame-
work, every Japanese sentence is essentially generated by only one phrase
structure rule, head-complement configuration. In other words, any
syntactic structure of Japanese sentenee can be represented as a binary
tree of head and complement We adopted this idea to represent a
primitive expression,

L1 Lhis expression, the values of lex, which are the leaves of the binary tree,
are the lexical entries of each word in the dictionary. The postpositions
and auxiliary verbs are designated explicitly with lex. The word order is
also specified explicitly in primitive expression, because a complement
immediately precedes its head, in Japanese.

5.2.2 Syntactic Structure Genevation

After completion of macro expansion, macre expander transforms the in-
termediate representation, {primitive expression) inte a structure of nested
list, called syntactic structure, which is similar to the intermediate rep-
resentation. Tach element of this list @ a pair of 2 port of speech and
lexical information of the word, which corresponds to the leaf of the tree
in the binary tree of the primitive expression. The lexical information is
taken from the lexicon (See Figure 16}, and is referred in the next stage,
morphological processing.

5.2.3 Morphological Processing

String Svnthesizer perform morphological processing to a syntactic strue-
ture, by referring to lexical information of words in the syntactic struc-
ture and morphological rules. Morpheological rules are described in the
form of two tables: connection table and inflection table.

The rules on connection table describe the inflection form of an inffec-
tional word which has some inflection type, when the directly modified
word by that word has some lexical data. The directly modified word can
be found from head-complement relations in that syntactic struc-
ture. The rules on inflection table describe the surface expressions of
inflection forms about every inflection type.

22

W

CouUAND ETE

o=
PP A
GUIDE [& ¥
EXPFAND 5 EgT
TO_ID GRETRS .
SHOW_ LD “fw
ID_TABLE e
CHECK A,
CLE AR FEn
FROM_BUF EECAR 1,
To_BUF a=FLs
IHFUT L=FEs eI VYT
WRITE
END

Figure 19 The edil-window for intermediate expression

5.3 Development Tools
Sentence generator provides the following development tocls,

Editors

Editor for intermediate representation The editor for interme-
dinte representation has some useful additional functions: la-
beling to PST-structure, guide and syntax check for macro ex-
pression, and so on. The PST-structure labeled by lnbeling
function, can be referred with this label in any intermediate
representation. That is, labeled PET-structures can be used
as common compouents of intermediate representation.

Editor for syntactic structure The editor for syntactic struc-
ture has graphic display [unclion as an additional function. The
edit-window lor Tnterinediate representation is shown in fig-
ure 14

Debugger Debugger of sentence generator is build on the CIL debugger.

Using the function provided by CIL debugger, the user can ronsilt

ar compile the generation rules, trace and control the execution of a

sentence generation. The delug window is shown In Figure 20.

. DBEBUG AIDEDECAMP macrpo_expand 4l

Cetimand * mrathar
SLEASH> (B1482) 3 BCALL> Jg_hmishuushoka { e ERWE, -4
brethar:CR |7 "85 .. JHLS .. B L. b e=FASIL=FS L, 11, A)]
. T brother
Ehild:SFC (B1462) 3 BEXIT> Je_hlshumshaku { 00 (ER-AE . o—d
FRISBLCP SRS L, CBAS L, RS L.), t=FAS le—FS L b, @RS
Watpiw WE-MEN, m~d WSS L BT L, B L.), fF (A KA
BE_Tracelm wa VED T brather
<COMTROL> (B1495) 3 BCALL> Je_hwnkal [OB LER-MA), o=A (48|
Eatiyld e oo HAS L LBERY L b, e-FASIL=KS L, MY A T T
Taibzf
qulting
LEDURCE™
up e
deviid
”!"' KNX sporatar difinivian NNX
sdit_snd I FABEVE_SPNFRTaT ()
dad_mhd i= wdd_spararer ({®), % FO0N.
<GOALZ> i- wdd_sperurer ({2}, =fx FOO0I.
inspact:i = wdd_wpermter ({2121, xiw 3005,
Ewtaif
$pFld KKK-X Xigvrofp M| 94ES+EIIL X-NXX
Je_mecre_wxpand (], X18) -

dlsriazy fe_ged (X1, X2}, xug
aCiL> Je_hlthuushaku (M2, 333, s
Edw ps LY
BT Je_hanal (M4 M5}, My ~cvd, s |
sthar:a BENERINE, DL 204K

le_rantal (X5 X6}, LF LT Y

le_welecw (KB, K73, L LI EFY

Je_wipent (X7, XB), Kra~sp

Figure 20: The debug window

5.4 Further Research

As a general purpose tool, it is desirable for LTB sentence generator to
allow users to modify these rules easily, to allow users to define the syntax
of intermediate representation as they want. For this purpese, we
have to define the declarative semantics on macro expansion rules.

6 LTB-Shell

LTB-shell is a new integrated uzer interface of the LTR. It is now under
development, so we will just give an outline of the LTB=shell i this

section.

6.1 Purpose of LTB—shell

Each LTD tool, that is LAX, SAX, Generator, CIL, and DataBase has it
own user interface, but it lacks an integrated vser interface, which gives the
user an integrated method to invoke each tool and a method to combine
a number of tools into one (Figure 21).

24

The user using enly one LT tool will not have much problem with the
current LTB user interface, But the user using several LTB tools at once
will Liave trouble using those tools together.

LTB—shell is a user interface aimed to help those users by an integrated
methaod of tool invocations and tool combinations

{Figure 22).

] SAN |

Figure 21: current user interface of LTE

6.2 User Interface of LTB—shell

LTB—shell provides two kinds of user interface. One 15 a command lan-
guage. With command language interface, the user gives conunands to the
shell by typing in the command language. The shell, in turn, calls upon
the LTB tools. The other is o graphical user interface, With this user
interface, the user gives commands by selecting icons or selecting menus
in shell window by a mouse.

Tn this paper we will describe some features of LTB—shells based on com-
mand language nser interface,

6.3 Features of LTB—shell

LTG—shell has the following features,

e Command invocation: Each LTB Lool is inveked 25 a single com-
mand followed by number of aptions. Options are used to specily de-
tail Lasks of each command, Each LTH tool is excouted as & process
different frem shell process. Comimauds invoked by the user which
correspond Lo the UTB tool donot always create a new process, as the
crealion of the process causes an overhead. Instead, comumands reuse
the corresponding process if there is one, ur create a corresponding
process if there is none.

LTB-shell :

I S I S b I

LAX SAX | GEN I CIL DIC

Figure 22: uszer interface nsing LTE —shel]

LTH= lax —g granunarl -input *.....

The above example shows a saniple session between user and LTE —shell.
“LTB> " is a prompt of LTB—shell. {ar 15 2 command name.
=y grommmarl s an aption and its argument. This input invekes
lexical analysis over input zentence “..." using a grammar object
grammarl. As desceibed earlier, this command execution creates
a new LAX process only if the process does not exist. A process
management, that is a creation, ternmnation, and registration of the
process, is done mostly by LTB—shell, though some methods for pro-
cess management are open Lo the user.

There may be some tasks Lhat cannot be expressed diveeily by the
command—options format. In such cases the user should invoke the
ordinary LTD tools from the LTB—shell, and indicate the tasks with
the tool user interface.

+ Redirection: The user can specily the input sources and output
destinations of a cormmand. The idea is called redirection and is
used in many shells of operating systems [18].

In LTB-shell, each command should take dala from standard-input
and send dala to standard-output, ecommand } filel implies that
any cutput of the command to the standard-output is sent to the file
filel. The user can specify an window or buffer instead of the file.
command { file2 implics that the command gets a data from file
file2, Tle user can also specily a window or buffer instead of the file.

LTEB> lax { filel } widowl
T this example an input to lax command comes from file flel, and
output from the command goes into window.
* Pipes: The LTB—shell will allow the user to send an output of one

command to an input of another command. This idea is called pipes.
Pipes are also nsed in many shells of operating svstems.

26

command] jcommand? implies that an output from the commandl
is sent to the command?. Pipes and redicections can be used in

combinalion.
LTE> lax { [flel | sax

Lo this example an inpul to lax command comes from filel, and out-
put from the command goes into the next sax commandl.

s Job control: A sequence of commands which makes up an input
to the LTE— shell is called, jobe. Each job is executed either as
foreground job or background job. Foreground job is a job running
on shell window which occupies the window. So the output to the
standard-oulput which is not redirected will be printed on the shell
window. On the other hand, background job cannet wrte to the
shell window, When any of the commands in the job tries to write
to the shell window it will be suspended
To run a command in backgeound, one put “&” at the tail of the job.
A munber of background jobs can be run in parallel, while cnly one
foreground job can exist, So users should run jobs in background il
they want to run them in parallel.

LIB> lax —g grammarl | sax } filel &
LTE> lax —g prammarl | sax &
LTB> lax —g grammarl | sax | filed
In the above example, the first two jobs are run in background jobs,
and the last job is run in foreground. The second job will suspend
when the second command sax tries to wrile it output to the shell
window. Shell commands for managing jobs, that is making jobs
fore(back)ground, killing jobs, and suspending jobs, are open to the
USEE.
« other features: LTB—shell will also support history feature and
alias feature.
he shell command is not restricted Lo LTB tool commands. Com-
mands usually used on SIMPOS shell will also be available on LTB—shell.

7 Conclusions

In this paper, we introduce LTE, mainly presenting cureently available
tools provided by it

The first version of LTH was only recently released with manuals. From
now on, we should improve it reflecting many nser's comments.

Finally, we hope many NLP applications will be built on LTB.

27

Acknowledgements

Many programmers cooperated with us in the desizn and coding of L1'B.
#Fiest of all, we would like to thank them for their efforts, We would alzo
like to thank Dr, Uchida, the chief of the second laboratory, and Tor. Yesh-
ioka, the sssistant chief of the second laboratory, for their encourazement
and support.

References

[1] H. Nishikawa et al. The personal inference machine {PS1): Its design
philosophy and machine architecture. Technical Report 13, 1007,
1983,

[7] B Sugimura et al. Natural Langnage Processing in the Experimental
Discourse Understanding Systern. ELLIS HORWOOL, 1089,

[4] 'I'. Chikayama, ESP reference manual. Technical Report 044, ICOT,
1084

[4] K. Mukai and H. Yasukawa. Complex indeterminates in Prolog and
its application to discourse models. New Generation Cempnling, 3,
1985,

[3] K. Mukai. A system of logic progeamming for linguistic analvais based
on situation sewantics. In werkehop on semantic t2sues in human and
compuder languages. CSLI, 1985

[6] A. Colmerauer. Prolog-1T: Reference manual and Lheorctical model.
Iniernatienal report, Gourp Intelligence Artificialle, Undversite d " 4iz-
Marsedle JI, 1084

[7) B.Sugimura, Y Kubo, and Y Matsumoto. Legec Based Lerical Ana-
Ipzer LAX. 1989

[8] A.V.Aho,].E.Hoperoft, and J.DUllman. Date Struclures and Algo-
rithms. Addison-Wesley Publishing Company, 1983,

9] K. Moricka. Got mo Kewsei (Formation of a vocebulary in Japanese),
volume 1 of Gendai-go Renkynu. Meiji Shoin, 1987.

[10] H.Alshawi, D.M.Carter, J.van Fijick, R.C.Moor, DB Morzan, and
5.G Pulman, Overview of the Core Language Engine. In Proceed-
mgs of The Tuternetional Conference of Fifth Generafion Computer
Systems, pages 1108~1115. ICOT, 19585,

Y. Matsumoto and . Sugimura. A parsing aystem bassd on logic
programming. In Proceedings of [JCAT 87, 1087,

(11

28

[12]

[13]

[14]

[15)

[17]

1]

R Sugimura, K. Akasaka. Y. Kubo, H Sano, and Y. Matsumweto
Ronri-gata keitaiso kalseki LAX {logic based lexical analyser lax
gapanese}. In Proceedmgs of the Logic Programming Cenference 58,
pages 21222 ICOT, 1058 English version will be appeared in The
Lecture Noles on Computer Scicnce.

v Matsumoto apd R Sugimura. Koubun kaiseki system SAX no
tamene bunpd kijutu gengo {srammar description langnage for the
cox parsing svstem s gapanese). In 5th Canference Proceedings
of Japun Seciely fer Software Science and Technology, pages TT-80,
Tokyo, LHEE.

PN, Pereira and D.H.D Warren, Definite clause granimars for
language analysis- a swrvey of the formalism and a companson with
augmented Lransition networks. Artificenl Intelligenee, 13, 1020

I Sugimura. Ronri-gata bunpo i oker setvaku kaischl [constraint
analysis on logic grammnrs) (s japanese). ln Proceedings of the
sud Annund Conference of Japanese socrely fur Aviificial Inielitgence,
pages 427130, Japanese socicty [or A rtificial Intelhgence, 1983 &
prises] paper,

R Sngimura, k. Hasida, K Alkasaka, Y. Rube, i Hatano, 'L (Ykun-
ishi. and 'L Takizuka A software enviromnent for research into dis-
course understanding systems, In FGOS'AS, pages 285 290, [T,
1988,

H. Sugimura. leyered stream we meluala nthouge katselrsyor
{Japanesc analysis based on lapercd stream } {in Japanese). 1COT
TROICOT, 1534

T Gunji. Jopanese Phrase Structere Granimar. e dpeschi TY, fetdel,
1957,

[19] SIMPOS user's manal. Techuieal report, 1007, 198,

29

