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Abstract

‘I'his paper presenis a gurbage collection (GO} method for parallel logic programming
languages. Parallel logic langusges require large amounts of data since logie variables can have

culy one value, Efficient memory management is important for an efficient language processor.

In the paralie] logic language Flat Guarded Horn Clauses (FGIIC), the amount of live data
is always small compared to the total ameunt of data allocated. These are two kinds of data:
shoet-term amd Jong-term.  We concluded that garbage collection using only 2 generations best

sitits this Kind of Laguagse,

We enll our garlage collection methad " 2-generation garbage collection”. Short-term data
i parbuge collected back into the Ist generation garbage collection and long-term data is col-
leeted inte the Zud generation garbage collection. This method is efficient independent of the
ratio of the amount of lve data to heap sise. When this ratio is high, our method is especially
sood, reducing the mwount of data copied by a factor of 10, compared Lo simple copyig garbage
collection.
l. Intreduction

This paper presents a garbage collection method for parallel programming languages. We
prud specinl attention to logic languages|1][2][3] because of their semantic clarity and the simpli-
city of their execution model. We have developed a language system for the parallel logic
linguage FGHC on a shared memory multiprocessor as part of the Japanese Lifth Generation

Computer Systems project, This language system is being used for designing a parallel inference

machine, PIM/p, whose aim is to achieve the high speed execution of a parallel logic languwage.

In parallel logic languages, many processes are produced which communicate with each
other using shared variables, Many variables must be allocated since each variable can have anly

one value. Because the order of execution changes dynamically, the lifetime af data can't be



determined beforehand. Efficient, automatic memory reclamation is needed. Using this system,
we evaluated the performance and the memery consumption of FGHO and designed a garbage
eollection (GC) system we call the 2-generation garbage collection. It is a variation of generation
{ype parbage collection optimized for this kind of language. It is efficient at any ratio of the

amount of live data to heap size.

2. The Parallel logic programming language FGHC

FGHC is a subset of the parallel logic programming language GHC. An FGHC program is
a finite set of guarded Horn clauses consisting of a head, guard goals, a commit operator (|}, and
body goals. In FGHO, guard goals are restricted to built-in goals in order to achieve higher effi-
cicney.

Head :- Guardl,Guard?, .. | Bodyl,Body2,... .
passive part active part

The combination of the head and guard goals represent the conditions under which the
body goals can be executed. During execution of these tests, no assignments to the caller goal
arguments can be made. The head and guard goals alse play a part in passing arguments. [If
there are clauses whose conditions are satisfied, the executlion of the caller goal is finished, one of
them is chosen randomly, and the body goals are executed in parallel. During execution of body
goals, assignment to caller goal arguments is allowed. I there is no clause that satisfies its condi-
tions because some arguments of the caller goal are not yet instantiated, exccution of the caller
goal is suspended until the conditions are satisfied by the exccution of other goals. Execuotion of

cne goal is called a reduction.
3. An FGHC processor on a shared memory multiprocessor

3.1, Structure

Figure 1 shows the structure of the FGHC processor we developed. The shared memory is
divided into three parts. The first part is used for storing the clause definitions and is called Lhe

code area. The second part is the heap area, used for allocation of data such as varialiles, lists,



veciors, atoms, ete. The last is a free area pointed to by a heap alloeation pointer, which is incre-
mented when allocating new data. Data is represented by a cell that consists of a value field, a
tag field for data typing, o garhage collection fieid. and a lock field for exclusive access. Data

cells are allocated dynamically during execution and this area is reclaimed by garbage collection .

Diecause the order of execution of FGHC goals is nondeterministic, a goal can't be managed
by the stack mechanism normaliv used in sequential languages. A goal is represented by a goal
record[4][5]. Arguments and corresponding clause deiinitions are referenced by the goal record.
These records are stored in the goal arsa. Many goals are created during execution|6}[7], but
.when execution of a goal is completed, the poal record can be reclaimed. This is done with a free

goal list, which is simply a linked list of currently unused goal records.

The free goal list and the heap are common resources. To avoid contention for access to
the free geoal list and heap allocation pointer, we assign a free goal list and a heap allocation
painter for each processor. That is, individual goal record areas and heap areas are distributed to
each processor prior to execution. These commeon rescurces are redistributed il they become

exhausted in a processor.

When a goal record is created, it is put into a scheduling quene, A processing element (PE)
reirieves the goal record from the scheduling gueue and tests the conditions of the corresponding

clanses against the goal’s argpuments. If all tests in a clause suseeed, its body goals are created
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and put into a scheduling queue. If the tests in all clauses fail. the goal fails. If a clause exists
with tests thal neither succeed nor fail because one or more of the goal's arguments are not yet
instantiated, the execution of the goal is suspended. The goal is bound to the uninstantiated
arguments to be able to resume when one of them is instantiated. A goal is resumed by re-

inserting it into the scheduling queue.

Like free goal lists. scheduling queues are distributed to each PE in order to reduce conten-
tion for rerrieving goals. Each PE has its own scheduling queue, called a local-queue, which only
it can access. For dynamic load balancing, there is an extra scheduling queue, which can be
accessed by all PEs. Usually, a PE retrieves from and puts goals into its local-quene. However, if
the local-queue hecomes too long or another PE's local-queue is empty, the PE takes goals [rom
its local-queue and puts them into the extra quene. A PE whase local-quene becomes empty will
try to retrieve a goal from the extra gueue. All PEs are informed by a flag in shared memory
when one of the PEs has an empty local-queue. This flag is set by a PE when the local-queue
and the extra queue are empty. Each PE checks it at the beginning of every goal execution, and

resets it if it puts goals into the extra queue.

2.2. Performance evaluation
We have evaluated the FGHC processor to determine the speedup per additional processar
used, and to investigate its memory consumption.

We used the following benchmark programs:

1) BUP

This is 2 bottom up parser which searches all alternatives of a parse tree.

2) DB1
This is an OR parallel meta-interpreter for searching a data base.
3) MAXF
This program finds the maximum flow in a given network; when the flow in each link is res-

tricted.



4) PRIME
This program generates a sequential list of numbers and searches it for primes.
5) QUEEN

This program searches for all solutions 1o the Eight Queent probiem.
Table 1 lists the reduction and data allocation characienstics of these benchmarks.

Table 2 gives the execution time for each benchmark using only one processor and ignoring
EEE.DEEE ED].':E‘ELiUIl b;'r' I.IIU"'ilj.i.l.lE il..i]'lPJ.E memaoary. Figur: 2 SIIDWE 1.!1':' r‘:J.EI.-LJI.L'lIIE].Li.P IJ‘ELWEE]:I. i]'ll:'
number of processors and the execution speed when more than one processor s used. We can
speed up the system by adding PEs. Idie time, when ne goal can be found in the local-queue or

extra queune, is very small (about 1% of total execution ctime) for this lvad balancing method.

Table 1. Keduction and data aliocation characteristics of benchmark programs

Benchmark | BUP | DBE1 | MAXF | PRIME | OUEEN |
MNumber of reductions a6K T2 | GOK | AR RT=1
Taotal allocated data (K words) 73 1700 1 266 | iz 40 |

Table 2, Execution time far 1 pProcessor

Benchmark [ BUF | DBET T MAXF | PRIME | QUEEN
Fxecution time {5} | 13.7 | 198 ;| 6421 | 10.6 | 13.3

Spesdup
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Figure 2. Executon Speed



Table 3. Suspension ratio

i Benchmark __ | BUP | DBl | MAXY | PRIME | QUEEN
LPE 1 11 42 0| 0

Suspension ratie {%) BPL Ak 26 42 4 | 1]
16PE 35 | 28 41 12 i 1

Table 3 shows how the ratio of the number of suspensions to the number of reductions
{suspension ratic) varies with the number of processors. In BUP and DBI, the suspension ratio
increases dramatically, resulting in 3 smaller increase in speed when adding processors. This indi-
cates that a significant overhead due to suspensions exists when executing FGHC in parallel.
Reducing the number of suspensions is difficult to do using only dynamic load balancing, To

achieve a substantial overall reduetion, static program analysis is needed.

4. M emory consumption

We have evaluated the memory consumption of FGHC using copying garbage collectioni8).
When one processor exhausts its heap area, it stops the other processors. After all processars
stop, they begin to collect garbage sequentially.

Table 4 shows the total amount of data allocated during execution along with the mean and
maximum amount of live data which is active at the time. This was measured by invoking gar-
bage collection after every 2K words of new data were allocated. A lot of data is allocated, but
the amount of live data is always small compared with the amount of data allocated. The distri-

bution of live data in the memory space would be quite sparse if data compaction was not done.

Compaction is needed to eliminate page faults and achieve high perfarmanee.

Table 4. Total allocated data and live data

Benchmark | BUP DB | MAXF | PRIME | QUEEN

Tortal allocated gata (K words) T3 | 1700 | 266 | 32 | 40

' IPE | 6.7 | 112 42.6 0.3 | 0.7
Mean live data (K words) | SPE 7.0 | 108 10.8 0.3 | 0.6
16PE | 1.0 11.0 118 0.3 1.0

1FE | 136 | 174 TB.2 5.0 1.4

Max live data (K werds) BPE | 13.7 | 1BE 17.0 0.7 1.3
16PE 13.4 | 1%.0 18.1 0.7 1.5
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Figure 3. Litetime of Data

We have also measured the lifetime of data. Figure 3 gives examples. Each line of the
eraph shows the percentage of data aliocated between the (N-1)th and the Nth garbage collection
that remains live as more data is allocated. Most data is thrown away quickly. This characteris-
tic comes from the fact that a jarge portion of the data is used only to pass information between
goals. But, data with Lfetimes longer than a certain period is generally alive until the program
ends. All benchmarks we tried have the same characteristics. The time is almost the same for all
generations in all benchmarks. Seo. daca can be divided clearly into two types. Data with short
lifetimes used mainiv to pass information between goals, and data with longer lifetimes. This
should be true for all paraliel logic languages and other paralle]l languages that create a lot of

processes which communicate with each other.



5. Garbage collection for parallel logic languages

We can use this lifetime characteristic to choose a suitable type of garbage collection for
parallel logic languages. A generation type garbage collection 2][10/{11][12] would suit them well.
This type of garbage collection compacts datz and expleits the lifetime characteristics to reclaim
garbage efficiently. Our observations show that two generations are enough. The 1st generation
is for claiming data with short lifetimes. The 2nd generation is for storing data with long life-
times. Each generation has its own heap area. More than two generations would be redundant
since there are only two types of data. The memory configuration is shown in Figure 4. In each
seneration, the heap ares is divided into two regions, the new space and the old space. Eack PE
has 2 GC stack in which it records polnters in the 2nd generation which point to data in the Ist
generation. When such a pointer is ereated during execution of a goal, its address is put inte a

GO stack by the PE that ereated it

Data allocation and generation garbage collection are done as follows.

1) The new space of the lst generation is distributed evenly among all PEs prior to execution.
Each PE has its own heap allocation pointer to avoid contention for data allecation. Each PE
allocates mew data from its Ist generation new space.

2) When a PE exhausts its 15 generation new space, it sets a flag in shared memory to notify the
other PEs. All PEs check this flag befare executing a goal. If the flag is set, execution stops until
all other PEs stop. When all PEs have stopped, the PE thar originally set the fiag, switches the
rofes of the new and the ald space. This is called a flip. All PEs then begin garbage collection
together.

3) 1st generation garbage collection scavenges only the 1st generation, so only the 1st generation

Mew Space O1d space
2nd Gen.
copy
GO stack e
= ol
LN | e
let Gen v ' (‘.::}

Figure 4. Structure of Two Generation GC(1)



is flipped. Al five daza in the lst generation can be traversed, starting (rom the goals in the
scheduling queues, GC stucks, and the registers of the PEs. Each PE performs garhage collectian
locally at the same time by following these pointers in its scheduling queue, GO stack, and regis-
ters to find live first generation data and copy them. The data in the 2nd generation is not
traversed at all. It then follows the pointers of goals in the extra queue which have not yet been
follewed by any PEs. If any of this data has been alive for a certain amount of time, t, it is
copied into the new space of the 2nd generation. If not, it is copied into the new space of the 1st
generation. If data copied to the 2nd generation points to data in the Lst generation, the address
of the 2nd generation data is put into the GC stack. This threshold time, t, is the lifetime of
short term data. The only exception te this occurs if the new space of the 2nd generation is
exhausted during garbage collection. In this case, all data which would have gone there is copied
to the new space of the lst generation.

4] The PE that originally exhausted its Ist generation space checks the Ind generation to see if it
is almost full when it performs the fip. "Almost” full is a tunable parameter. If 5o, then 2nd
generation garbage collection is done instead of the 1st generation garbage callection. In 2nd gen-
eration garbage collection, both the lst and 2nd generation are flipped, and all Live data is copied
to the appropriate new space. All live data in the 1st or 2Znd genera.tiu.n can be traversed from
the scheduling queues and the PE registers. The GC stack is redundant in this case. Each PE
traverses the pointers contained in the scheduling queue goals and in the PE registers, copying
data into the new space in the same way as for the lst generation garbage collection. Since the
15t and 2nd generation are being collected together, the 2nd generation fiiling up could actually
result in data from the 2nd generation being copied into the lst generation. But this would only

pecur shortly before running out of memoery, so it does not aflect normal operations.

The threshold time, t, is the minimum time a piece of data 15 guaranteed to be in the lst
generation. The passage of time is measured by the amount of data allocated. One way to do
this is to attach a generation field to each datum indicating how many times it has survived a
garbage collection. The amocunt of data allocated berwesn each garbage collection is also
recorded. With this information we can determine a lower boundary for how much data has been
allocated since the creation of the data in question. If the value of the generation field is N, then

the lower bound is the amount of data allocated since the Nth previous garbage collection. This



value is compared to t to determine whether a piece of data is short or long term. Short-term
data is garbage coliected hack into the 1st generation and long-term data is collected into the 2nd

seneration .

Another way to measure the passage of time is to divide the 1st generation memory into 3
areas as in Figure 5. Each area is equal to t. New data is allocated from the new space, and data
which has not yet encountered a garbage collection is copied into the old space. The intermediate
space is used for storing data which has survived one garbage collection. Garbage collection is
wvoked when the new space is exhausted. To collect parbape, a flip is done and the name of the
old and intermediate spaces are changed. the new space is not changed. The live data in the new
space, which has not yet encountered a garbage collection, is copied into the old space and the
live data in the intermediate space, which has survived one garbage eollection, is copied into the
Ind generation new space. Since the new space is empty immediately after garbage collection,
and the new space is the same size as t, invocation of garbage collection marks the passage of t.
The live data copied into the 2nd generation has been in the st generation for at least t. This

method requires more memory, but does not require a generation field in the data.

To execute a garbage collection in parallel, each PE traverses the live data from the goals in
its local queue and GC stack (if it is a ist generation garbage collection). When a PE is finished

processing all its own live data, it chooses an untraversed goals in the extra queue and tries to

0l space

Oid space \ Intermediate space
copy

MNew space

Figure 5. Structure of Two Gensration GC(2)
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traverse the live data atzached to it. Thus garbage collection and goal execution all use the exira

BE L

gueue for load balancing.

8. Evaluation of 2-generation garbage collection

We compared our 2-generation garbage collection with a simple copying garbage collection.
The heap size is the same for each appiication. In a simple copying garbage collection, it is
divided equally between the new and oid spaces. In our Z-generation garbage coilection, the 2nd
gemeration is twice the size of the maximum amount of live data observed in our tests {Tabie 4).
This is divided equally among the new and old spaces. Whatever remawms in the heap is allocated

evenly between the three areas of the 1st generation {Figure 5).

Figure & compares the total amount of data copied by each of the two methods. To evalu-
ate the performance, we measured the amount of data copied instead of the garbage collection
time because we cannot measure the 2-zeneration garbage coliection time exactly. The 1st gen-
eration garbage collection is less than 100 ms. Since the tota] garbage collection time is propor-
ticnal to the total amount of data copied, we can use this measure to estimate the efficiency ol a
garbage collection method. This alse eliminates effects due to paralielism. Figure 7 shows how
the garbage collections performed. All tests were run using & PEs. In 2-generation garbage col-
lection, execution of goals is about 5 % slower than in simple copring marbage collection because
?-generation garbage collection must record pointers fram the 2nd peneration te the lst genera-
tion.

When the heap is large, the efficiency of simpie copying garbage collection is about the same
as that of 2-generation parbage coliection because there are only a few garbage collections. When
the heap is small, there are a lot of garbage collections, and the efficiency of 2-generation garbage
collection is about 10 times that of simple copying garbage collection. In simpie copying garbage
collection, the amount of data copied depends on the size of the heap, but in 2nd generation gar-
bage collection it is independent. The shorter time required for each garbage collection and the
compaciness of live data within the memory space are other advantages of gencraiion type gar-
bage collection. We can conclude that 2-generation garbage coliection is an efficient method

independent of the ratio of the amount of live data to heap size.
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During any parallel gparbage collection, one of the PEs will copy the maximum amouent of
data, which 15 some percentage of the total amount of data copied. COne whole parbage collection
time is proportional to this percentage. From the average of this, we can calculate the increase in
speed that results from using parallelism in garbape collection. Figure B shows the relationship
between the number of processors and garbage collection speed. The speed increase of garbage
collection saturates at about 4 times, even if we use more than 4 PEs. This is because the
amount of data traversed from different goals varies greatly, If there is one goal from which a lot
of data can bhe traversed in the extra queue, garbage collection time is dominated by it. Te
improve the performance of parallel garbage collection, the unit size of execution must be made

smaller. This is where our research will focus next.

7. Conclusions

We evaluated the memory consumption of the paralle! logic language FGHC., The amount
of live data is always smaller than the total amount of data allocated. There are two kind of
data: short-term and long-term. They are clearly distinguishable. Sinece these results come from
the fact that a lot of processes are created and a large amount of data 15 consumed in passmg
information, these result shoold be wvalid for other similar parallel languapges, especially logic
languages.

The genersijon iype garbage collection seems to suit this kind of language well. Tsing only
2 renerations, we constructed an eflicient garbage collection method which is independent of the

ratie of the amount of live data to the size of the heap.

Acknowledgements

We would like to thank Manager Hiromu Hayashi and General Manager Junichi Tanahashi
for their encouragement. We also thank our colleagues at Fujitsu and the members of the fourth
research labaratery at [COT for their discussions, and especially Mark Feldman for helpful

sugpestions after reading draflt vession of this paper,



References

(2]

3]
[4]

[5]

[6]

[7]

i8]

9]

[10]

11]

[12]

K. Ueda, '"Guarded Horn Cleuses’ |, Technical Heport TH-103 ICOT,1985.

K. L. Clark and 8, Gregoery, ‘Farlog: Paraliel progremming tn logic®, ACM Trans. On Frog.
Lang. and Syst., 1986.

E. Shapiro, ‘Concurrent Prolog: A4 Progress Report' | [EEE Computer, August 1986,

Y. Kimura and T. Chikayama, 'An Abstract KLI] Machine and s Instruction Seé' |,

Froceedings of 1987 Sympasium on Logic Programming, 1987,

M. lchivoshi, T. Miyazaki, and K. Taki, ‘4 Distributed Implemeniation of Fiat GHC on the
Multi- PS5l | Froceeding of the Fourth International Conference on Logic Programming,
18987,

M. Sate and A. Goto, ‘Evaluciton of the KLI Parollel System on a Shared Memory Multzpro-
cessor’ | IFIP WG 10.3 Working Conference on Parallel Processing in Pisa, Iraly, 1988,

M. Sugie, M. Yoneyama, and A. Goto, ‘dAnelyses of Parallel Inference Machines fo Achieve
Dynamic Load Balenecng’ |, Proceeding of International Worksnop Artificial Inteligence for
Indusirial Applications, 1988,

H. G. Backer, 'List Processing in Heal Time on g Serial Computer’ | Comm. ACM, Val. 21,
No. 4, pp. 280-204, 1978,

H. Licberman and C. Hewitt, ‘A Real-Time Garbage Collector Based on the Lifetimes of
Objects ', Comm. of the ATM, Vol. 26, Neo.§, 1883,

5. Ballard and 5. Shirren, 'The Design and Implemmentation of VAX/Smalltalk-80' |
Smalltalk-80: Bits of History, Words of Advice, G. Krasner{editor), Addison Wesley, pp.
127.150, 1983,

D. Ungar, 'Generation Scavenging: A Non-disruptive High Performance Storage Reclamation
Algorithm ', Proceedings of the ACM SIGS0OFT/SIGPLAN Software Engineering Sympe-
sium on Practical Software Development Environments, pp. 157-167, 1984,

K. Naksjima. ‘Piling GC --- Effictent Guarbage Collectzon for AT Languages', Proceedings of

the [FIP WG 10.3 Working Conference on Parallel Processing, pp. 201-204, 1388,

14 —



