ICOT Technical Report: TR-511

TR-511

An Operational Semantics of
And-Or-Parallel Logic Programming
Language, ANDOR-II

by
A. Takeuchi & K. Takahashi (Mitsubishi)

Ocrober, 1959

® 1989, 1COT

Mita Kokusai Bldg 21F {03} 456=-3191-3

|GDT 4-28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tnk}'n 108 Japan

Institute for New Generation Computer Technology

An Operational Semantics of And- Or-Parallel Logic
Programming Language, ANDOR-IIT *

Akikazu Takeuchi, Kazuko Takahashi
Mitsubishi Electric Corp.
8-1-1, Tsukaguchi honmachi
Amagasaki, Hyogo 661
Japan

September 12, 1989

Abstract

An operational semantics of and- or-parallel logic programming langnage, ANDOR-II,
iz presented. ANDOR-II combines or-paralle]l compulation of Prolog and and-parallel com-
putation of committed choice logic programming langnages such as PARLOG, Concurrent
Prolog and Guarded Horn Clanses.

Starting from a naive semantics suitable for simulating in sequential machines, we develop
a new semantics with fine grain parallelism. The semantics is based on the coloring scheme
which paints variable substitutions made in each or parallel world by distinet colors,

1 Introduction

The target of ANDOR-IL project is 1) to design a language having both and-, or-parallelism
snitable for parallel problem solving and 2) to find a class of and-, or-parallelism which can
be translated into committed-choice languages such as GHC[Ueda] efficiently. The second is
worlh investigating since it might reveal the complexity of small grain parallel and distributed
implementation of and- or-parallel computation.

Design and implementation of a language ANDOR-II which meets two requirements above
was already finished and reported together with its application[Takeuchi]. ANDOR-II is now
implemented in such a way that an ANDOR-1I program is translated into a GITC program first
and then the translated program is executed by a GHC processor. In this paper am under-
lying operational semantics of ANDOR-IT computation which realizes fine grain parallelism is
presented.

The paper is viganized as follows. First, a more general and- or-parallel language than
ANDOR-1I is given in Section 2. Section 3 and 4 provide two sequential operational semantics
to that language, respectively. Section 3 presents a simple computation model which is relatively

*This research was done ay jrart of Lthe Fifth Geneealici C‘umpuh:r Project and Suppnﬂed b}' the Institute {or
New Generation Crmpuler Technobogy.

well known as branching world model and is suitable for intuitive understanding of and- vr-
parallel computation. 1t can be characterized by the term eager copying. The model is used in
many implementation of and-, or-parallel langnages because of its simplicity., Section 4 presents
a new compuiation model, called a vector model, which allows multiple bindings generated to
the same variables by independent or-parallel worlds. The model is regarded as lazy copying.
Section 5 discusses wbont the difference between the two models. Section & discusses about such
language estriction that simplifies the vector model. Section 7 handles the problems encountered
when parallelizing the vector model, Also the implementation in a Committed-Choice Language
(CCL), especially GHOC, 15 described.

Here is a listing of all symbols used in this paper.

Aloms ARG
Clauses i

Head of a clanse O head(C)
Body of a clanse € bady(C)
Programs Iy
Variahles b
Worlds w

Sets of worlds W
Colors a,
Colored atoms A B.G
Tnifiers f
Colored unifiers 5]
Conjuctions of eolored atoms W

All these symbaols above may be nsed wilh superscripts and for subscripts. The principle of
super{sub)scripting is as [llows:

I,{d{;junrli\'ﬂ numbering
{eonunctive number ngl

Therefore if I'is an atom, A" and A? arc in disjunctive relation, aud By and Hy are in conjunctive
relation. Also 8 and 82 indicate that they are logically independent and hence making their
composition is useless.

2 An and- or-parallel logic programming language

A predicate is classified into either an and-relation or an or-relation. A definition of an and-
relation consists of guarded clanses. A definition of an or-relation comsists of non-gnarded
clauses

A guarded clause is of the form:

GU:-le--uﬁnlﬂlrr--qu-

where (g and Gy,Gp and Bi,..., By sre called a head, a guard {part) and a body (part),
respectively. An atom in a guard part is restricted to simple built-in predicates such as compar-
ison. An atom in a body part can be an and-relation or an or-relation. A non-guarded clauses

is of the forn:

Go:—B...., Bm.
where Cig and Hy...., By are called a head and a body, respectively. An atom in a body part
can be an and-relation or an or-relation.

Informally speaking, & goal reduction with gnarded clauses is similar 1o that of GHC. A
goal reduction with non-gnarded clauses is similar to that of or-parallel Prolog except for that
a non-guarded cluuse which instantiates the goal in the head unification will suspend until the
goal is snfficiently instantiated.

3 Branching world model/Eager copying

A conjunction of atoms is called a world. Every atom A such that 4 = p(ty,. .., 15} and pis an
ar-relation is assoriated with a set D(A) of clanses defining p.

3.1 Non-lahelled

Definition 1 Let W be a set of worlds. Assume that w;(€ W;) = A':’l-, oo, A and Ai[l < k<a)
are chosen for reduction by computalion rule. Then derivation of Wiy, from Wi is defined as
Ferllerios:

Case 1 A} 12 o unificalion, X =1
Wi is defined as Wiy = (W = {w;}) U {u;'],
where w;' = (4], AL Al CALY [/
Case 2 .-’1.‘; 15 an end-relation: If the following conditions are salisfied,
103Gy - Gh,..., G| By, ... By osuch that Amgu 0 A’i =Gy 8,

200, ..., G,) - @ has guarded refutation and generates ¥,
then Wigy s defined as W = (W - {a;}) U {w.,-’},
where w;' = (A1, ..., AL, Bl,..., B, Afyyy. 0 AL) -0 8,

Case 3 .-1{ 15 an or-relation: If there erists a non-empty set of {Cy,...,Ce} € D{A‘i] such that
Jmgu # A = head{C)) - B0 =1,....1, respectively,
then Wiap 18 defined as

(W; = fw;}) U Ue=1,...,!{t‘f‘j‘} if D, =9

1‘1".,'+| =
(Wi —{u; U U;ﬂm_lt{mj-} otherwise
where
wh o= (4l Al bodv(€y), Ay, AT) 8, T= 1, 1, respectively,
At Al Al s Ltk copy of AL ALy Ay AL
H.E = [AJ" - 'Ai—l"’iilﬂﬂﬂi-ur-- -r-’ii]

A'I;Iu, is an atom with a new definition D,
ﬂ, = - U_jr - {Cl..-”c:}
My D{.—ii] is a sel of clauses which are not unifiable with A‘L

3.2 Labelled

Labelling each or-parallel world is considered. A label is either a distinct symbol or a concate-
nation of symhals, corresponding to a branch and history of hranching, respectively. A label is
denoted by &

When a world branches into several worlds, variables appearing in the original worll are
copied. History of variable copying is made explicit by the structure &, which has the form:

0= '[X,fl{-:flle,,,.-.,)!-,.lwn}, .o}

The form means that a variable X; is a copy of the variable X in the world labelled by wi.

Definition 2 (Labelled Branching World) let P be a program and let (W;, 0,) be a set of
worlds and history of variable copying. Assume that wi(€ W;) = A],..., A% and AJ(1 < k < a)
are chosen for reduction by computation rule. Then derivation u_.l‘l:WlH_. O) from (W, 0;) i
defined as follows.

Case 1 4] is a unification, X =1 :
I*'I;-,,“ ={W;— {113}] U {my'} Qe = @4,
where w;" = (A7, .. 41_1,.1!1“,.. JAL) (X[t}
Case 2 .4} is an and-relation: If the following conditions are satisfied,
I G - Gyeen. G| By, .., By such that 3mgu § AL = Gy -6,
2. (€. ... 6.} 0 has guarded refutation and gemerates 0,
then Wiy = (W, = {w;}) U {w;'}, Qi1 = 95
where wy' = (A7, ... AL By B,“.Ai_‘_.,... Aly-8-0.
Case 3 A}', is un vr-relation: If there exists a non-empty set {Cy, ..., G} C D(A‘i] such that
Imgu E*z‘ii — head(C)) - #,1=1,.. .1, respectively, then ©;4, = ©; UG,

(Wi = {w; DU UJ=[,...,r{w§} if Dy, =g

Wi, =
o (Wi = {w; U Uz, Jul} otherwise
where
wj- = {.«lf‘ k 1+ hody((), AHI' . A-”} S8, 1=1,...,1, respectively,
Al A* LA AT s bt copy of AL AL AL, A
vl = {A‘i....,.*i Pﬂﬂj}_,f‘lk“....,.ﬂ}

I Canonical form of ©, U © should be introduced, but not in this paper.

Alln, iz an atom with a new definition D,

D,=D—Dy={C,...,C}

e r’l'i.-lj:'j 15 1 sel of clauses which are wot unifialle with .ﬂ.i
@ = {A/N"L L X W

X appears in A7, ..., A‘i_“ A',';H, o AL

and XV is it L-th copy used in A] .., AL, r'-‘f_w LAY

where w' . &t are new distinet symbols.

4 Vector model/Lazy copying

Branching model is eager copyring scheme. Eager copying assumes that atoms belong to the
same worlds can be collected vasily. Under distributed execution environment, the assumption
is unacceptable hecanze atoms are distributed over multiple resonrces such as processors and
Memnorics,

Vector model is based on lazy copying scheme, where copy wotlds are created part by part
incremantally on demund. Vector model is considered to be extendable to distributed executlion
environment. ‘The extension is discussed later. In this section the vector model is described
under the assumplion that execntion is done in the sequential manner.

The model is described keeping the resemblance with the labelled branching world model.
We introduee a color and a vector which are similar te a label and history of variable copying
bui have slightly dilfcrent weanings.

4.1 Colors and vectors

Definition 3 A prinutive color s a pair (A, P) of two symbols, where P and A are called a
branching prnt and a branching are, respechively,

Two primitive colors are defined to be orthogonal iff they share the same branching point,
but have different branching ares. Two primitive colors are defined to be ndependent off they
hove differond branchong points.

Definition 4 A color s defined to be a sef of primitive colors, in which no clement 18 orthogonal
o other element. An emply set 12 vegarded as o color.

Two colors, o, 3. are defined to be orthognal iff Ip; € a,pz € 8, p1 and pz are orthogonal
Orthogonality of two colors, &, 7, 18 denoted by o L 3.

Proposition 1 lef o and 3 be colors such that o L A, Let o' be a color such hal & C o'
Then o' L 4.

In eager copying scheme, &t any moment, any world has its own label. In other words, labels
are identifiers of or-parallel worlds. On the contrary, in lazy copying scheme, a world is copied
patt by part incrementally. A color is used to identify a world, however, it is difficnit to think
about an independent world since at some moment Lwo worlds may still ghare some part which
will be copied later. In order to identily such ongoing copying, a color is attached to a term and
an atlum, while a lahel is attached to an independent world.

Definition 5 (A Vector) A vector is a term which 1s defined using the n-ary function (n > 0)
aymbol, (..., s follows,

I:ﬂllﬂ',...,ﬂ“l,ﬂ“}
where a* i3 a lerm and o s are orthogonal colors.

When a value of a variable X is considered, there are several possible values depending on
which warld is concerncd. A vector represents such possible values with eolors of its associated
world.

A term is called a colored term iff it is a vector or it has al least one vector in il. A unifier
i called & colored unifier i it has at least one vector in it.

Since in our model the distinction between a term and an atom is not essential, the concept
of a vector of terms can be naturally extended to u vector of atoms. Semantically a vector of
atoms, {A']a’,.. ... A™|a™), can be interpreted as disjunction of atoms associated with colors. ()
is u special case and is interpreted as failure.

Note that a term, an atom or a unifier not known to be colored has the possiblity to eventually
become colored.

Definition 6 Let t and ' be terms. Let & and © be a color and a colored unifier, respectively.
A function f(t,a) = (t',0) is defined as follows:

Case 1 1 is not a vector and includes at least one veclor v, v = {al|g, ..., a™|8"), and
a7 AT (e, o} © {1, n}) are not arthogonal ta o,

ft,a) = (P[vfa" ja U 87, .., ™[v/a"™]|a U §7"),0)
Case 2 1= {"[#1, ... " 37) and 47 ... 5™ are not orthogonal o o.
fltoo) = (" au 870 ™ e U A7) @)
Cage 3 1 18 nesther a vector nor melude a veclor.
fit o) = ({tla}, é)
where r‘[f;l.fq] denotes the i-th copy of t with the term v replaced by a, and O s a colored unifier
af the form
Q@ ={X/(X73",..... Yomigomy | X 44 any variable appearing m 1 except for in v and
X' ig the i-th copy of X'}
Definition 7 Let t and ' be terms, and let © be a unifier. A function flatten(t) = (1',©) is
defined as follows:
1. Let Fy be {(t,¢)} and Sy be ¢

2. Fupr = Upnayer, filt" o) and
Sna1 = Upnparer, folt" @)
where fi und fo are defined as fi(t,a) = ' and fa(t,a) = @ iff f(t,a) = (t'.8).

Since the number of vectors included in A ig finite and the application of f always decreases
that number by onc, there exists F and S for some N such that Fy = Fysyr=Fnyz=...=F,
S.ﬁ" = .':_r'_,'o,' 1= .".;‘N_{.j = ...= 5. Then

Natien(t) = (F,5)

Trivially # includes no vector iff fatten(t) = (1, 0). Let fatten(t, o) = (|8, ..., "|8").
Then 85 are vrthogonal and ° includes no vector.

Proposition 2 Supposc thal
A=Gl. =G #F=...=G"

wheve #'s are most generval unifiers and there is neither common variable between A and Gi{i =
1,....0) nor bedween G and G7 (1,7 =1,...,n and i &).
It can be proved that, fori=1....,n,

[=dlug, #nbh =g and

.8 = {r/t|1tis a non-variable lerm or a variable appearing in G'} and

i

7. 8, = {y/z | = is a varible appearing in A} and

+

. Jor Wy 2o, wef 2, if 2 = 2o then g = yo.
#i and 9, are called decomposition of ¢ with respect to A.
Definition 8 Let U and € be a set of unifiers and a set of colors, respectively.

compose: S € 2V*C 0O el

18 defined as follows:

Let § = {(#.0") | i=1,...,n} such that AP, A=C- =GP = =G0
and 0 's are most general unifiers and there is neither common variable between A and {7'{i =
1,...,n) nor between G and Y fi,j=1,....n and i # j). Let 8} and & be decomposition of
with respect to A.

5] B Uy, B NGy =g
&y, = rﬂ‘i--rﬁ'?

@, = {:/(p e, . W ed*) |V € Umngc{a;}j;‘l,...,J'N.yi*;z ed k=1,..,N}

1=l
6, and Oy are called input part and output part of ©, respectively.
Note that if a''s are orthgonal then vectors included in © are all orthogonal.

The function compose collects all substitutions a, with color o to the same variable, X,
and makes a veclor substitution, X /{aifa,...}.

4.2 Derivation

A colored world is a conjunction of colored atoms. Every colored atom A such that A =
piiy, tn) and pis an or-relation is associated with a set D{A) of clanses defining p. Let
flatten{ A) = ({Al]al, ..., A%|a™),®). Then the definition of A, D(A"), is defined Lo be equal
to DA, i=1,..., n.

Before derivation in the vector model is described, it is worth noting the following propesty,
which reflects that derivation i1s done sequentially; Every substitnfion made in the previous
derivations has heen already applied to all the constructs. Thus vectors recognized by the above
Aatlen are the only vectors in Lhe whole universe and there is no vector appearing in the future

in this stage.

Definition 9 Let W, be a conjunction of colored atoms. Let Ay € W, and flatten{Ay) =
({Ablet, Alla?), @) Assume that A is chosen for reduction by computation rule. Then
derivation af W,y from Wy is defined as follows:

Case 1 A is unification, X =1 -
Wisr = {(Aiy o Any Ak oo Aa) - B0 - { X1 Ax = (A]a)
{Note that in { X/} t 15 not colored since it is guaranteed that X appears only n lerms
with the color al.)
Case 2 A‘i 3 an and-relation: If the following conditions are satisfied,
1. 3Gy = Gy, Gy | By,.... By such that 3mgu 8, 4] = Gy -6,
2. (G, ... (iq) - ¢ has guarded refutation and generates §',
then Wist = ((Ar, oo Ay, Aigry oo Aa) - B0, (Bl ..oy Br)ed) - 8- 8, A — (Alo?)).

Case 3 A s un_m-ufuliﬂn: If there erists a non-empty act {C, ..., 4} C U{A‘i} such thatl
3mgu 0, AL = head(Cy) - 6.0 =1,... 1, respectively,
then

[{Ah“-rvAk-]:-Ak-lr]:“'lAﬂJ'E)_ﬂ'Bﬂ:l !}'ﬂ.=¢
({body(C1)|a",..., bodW(C)|a’*)) - Oy,

A — (A1)

Wi =+
(A, - PRI TR B P = P = P otherwise
{({body(Cy)|at, ..., bﬂd_]r’{_C;Hﬂ“}] N CIe

| (Alfa, AT e (A, e, A L Afle?)

wheore

. .-1:‘ t4 0 varmnt of Aj';_
o Ai|p, and .-1i|n_‘ are atoms with a definition [J, where D, = D{A‘;]-_D;—{Ci. . Cr)
and Dy C D(A]) is a set of cluuses which are not unifiable with Aj.

» O, and @y are mput and outpul parts of O, respectively,
@ = compose({{(#,a'} 11 =1,...,U'}) where of!, I = 1,...,1, are new colors such

that of © t‘r“’r,ﬁjr' L pdt if Iy # le.
¢ =11if D, = o, vtherwise t' =1+ 1.

01 is mgu such that A} = A4, - 0"+,

Example 1 Suppose that Wi = A; q(Y) where A; = p({1]o 2}, Y). Assume that p 13 an
and-relation and its definition 14

pl1, X} := true | r(X)
P2, X) - true | ra(X)
Then
B = [Y/{X]o!, Xala®))
Wipr = ril Ay) el Xa), g({ X iu1, }f;':r_r?}‘,l
Example 2 Suppose that Wo = n-merge{[a, b], V,V), where n-merge is an or-relation with the
followsng defivetion.
Oy ¢ onemerge([AM XY YY 2N =20 = [AYZ2 2], nomerge(XP Y, 227)
Cy o omemerge X2 (AL 2 =27 = [A%| 227, n-merge{ X*, V¥, 227
Oy ri-mergc{ﬂ_.?'a. .= =y
Cy o onemerge X424 -2 = X¢

Only ©) can have successful head unification.

by = {C:].},ﬂ,:{CZ,{-.-'.{}

0 = (Ao, XI/B)LY 2L 2LV
0, = {Al/a X}/Bl.Y}/Z)

0, = {V/{Zla',V'la%)

Then Wy aar

Wi = (2] = [alZ2}], n-merge([8), 2}, Z Z}))|a"), n-merge([a, b}, V', V")

o,
If a unification atom is reduced, then Wy sa:
Wy = (n-merge([t], [a|ZZ}), ZZ])|a'), n-merge{[a, 8], V' VD,
Suppose (hat the first atom is chosen for reduction. €, and 7y have successful fiead unification.
D.f = {[-..H'ME'.{}:DJ:‘P{'
' = {Aife, X3/0, Y] /0|2 2]), 23/Z 21}
0 = {3/, X3/BLYS/Z2)), 2312 20)
O, = {Ab/b,X1/0,Y2/(alZ2}), Ad/a, X3/ 18], Y5/ (2 Z1])
0, = {Zz}/{£;18", Z318)}

Wy 1a:

Wiy = n-merge{[a.b], V' . V')|p,.
(2} = (17 71), n-merge(l). [a| 2 21), ZZ3))|8"(Z3 = [a|Z Z3), n-merge([], [2Z1], Z Z3))1°).

After further reduction of unification atoms, V' becomes the followiny vector:

V = {[a'b!zz%”ﬂ] LI ﬂl)[ﬂlﬂlzzgnﬁﬂ I ﬂ.lrvalazp

5 Comparison

Branching world model is eager copying scheme. When an or-relation is reduced, copics of the
whole world are created at once, The overhead of handling or-relations is in making copies of a
world.

On the contrary, vector model is lazy copying scheme. When an or-relation is rednced using,
say n cluuses, only variables are copied into a vector of size n, which are propagaled to other
atoms sharing the same variables. Such a vector will invoke further copying hy flatten when an
atom including the vector is selected for reduction. In this way, copies of a world are created
part by part incrementally. In this model, the overhead is in flatten, that is, partial copying.

Another important difference is that the number of reductions in the vector maodel is less
than that in the branching model. It is explained using an example. Suppose that there are

three atoms,

p(X,Y halX), r(Y)
where p is an and-relation which suspends until its two arguments will be instantiated, and g
and 7 are or-relations. Suppose also that g and 7 have the following definilions.

gl X) =X =a.

glX) =X =a,

r(Y) =Y =b.

YY) =Y = bn.

In the branching world medel, if is executed first, r is executed n times. If r is executed first,
q is executed m times, However, in the vector model, ¢ and r are exeented once. Suppose that
¢ is executed first, g generates colored unifier {X/{a;jo’, ... az|a™}} and terminates. Thus the
goals become:
P({“llﬂ‘ls g la®), YY)

Since p waits for values at the second argument, r is the only atom that can be reduced next.
Making colored unifier {¥/{(b,}8",....bm]8™)}, the execution of r terminates. The goals be-
COMmes:

pl{a |']'11 vaay Hﬂla“}i {bli.ﬂl ERR -'5“‘|'3m”

10

The whole computation terminates after executing p = x m times. Clearly ¢ and r are exceuted
only once. 1This is because g and rinvoke copying of only relevant (sharing variables) goals. The
difference is apparent when goals are ¢(X), 7(Y). In the vector model, both gouls arc execnted
only onee, while in the branching world model ¢ is executed m times or 1 is executed 1 times,

The advaniage of the veetor mode]l with respect to the number of reductions comes from the
nature of the lazy copying. lu the lazy copying, copying is performed part by part incrementally.
Therefore resnlt of computation performed in a position which is not yet copied will be shared
later by its copics. The advantage of the vector model is amplified when number of goals are
large and there are many independent sources of or-parallel branching.

6 Optimizaticr/Parallalizing the vector model

In spite of the advantages of the vector model, its complexity of handling vectors can not he
ignorable. Two operations can he considered as sources of its complexity. One is flatten, und
the other is compose. Lot us consider them in detail.

Flattening of a colored atom is needed in order to avoid unification between a vector and
an ordinary term during head uoification. However fattening of & vector deeply embedded in a
term is not necessary i1t is not unified with an ordinary term. In fact a deeply embedded vector
does pot affect tesult of head nnification. Even if it is flattened and n atoms are generated, n
head unification do the same thing. Farthermore, a deeply embedded vector will be eventually
flattened when needed, Thus it is advantageous to avoid flattening and to share result of
computation. This is cqnivalent to that worlds embodied in a vector share the same result of
computation without itersting the same computation. This leads (o an idea of honnded depth
flattening

Another peint of fatten is construction of @5 When a colored atom is flattened with
respeet tn e wortor, vatiables outside the vector have to be collected together to make @y, The
complexity of this is proposional to the size of an atom. The bounded depth flattening never lielps
its reduction. However if & variable outside the vector is known nol to be instantiated during
the computation uf the atom”, it is not necessary to take the variable into account, since the
purpase of @ @: (o0 prepare for multiple assignment o a variable in a goal atom. Variahles taken
into account are these which are not known to be reference-only. Lhis optimization becomes
more feasible b the intioduction of mode declaration. For each and- and or-relation, one mode
is defined. A riede specifies, {or each argument, that it is referece-only (read} or not (write).
Note that an argument with “write” mode need not be instantiated to a non-variable term. In
vrder to enjuy full advantage of mode declaration, single producer constraint must be guranteed.
The single produces constraint means that al most one occurence of a variable can appear at
argument position with “write” mode. If this constraint is guaranteed, il is guaranteed that a
term appesting at an argument position with “write” mode is always an unbound variable or a
vectar of nnbound varisbivs, Owing to a mode declaration and the single producer constraint,
canstruction of ©; becomes statically predictable.

compuose is performed only in the reduction of an or-relation. Complexity ol compose is in
construetion of @5 The purpose of O is the preparation of multiple instantiation of a variable

TRy the tern “coneutation of an atom”, we mean the whole tree of computation initiated by that atorn.

11

in a goal atom by multiple clauses as in the case of Gy, In general, all the variables in a goal
atom must be collected to cunstruct ©g. The introduction of mode declaration and the single
producer constraint rednces the complexity also in this case. lUnder these restrictions, &3 can
be construcied from terms appearing in argument positions with “write” mode.

And-parallel computation and or-parallel computation of logic programs have been inves-
tigated indenpendently for many years. Experience for realizations of cach parallelism has
been accumulated by many researchers. Qutcomes of these researches are Or-parallel Prologs
and committed choice languages. Or-parallel Prologs exploit or-parallelism with and-sequential
computation, while committed choice languages exploit and-paralielism with or-sequential or
shallow or-parallel computation.

Recently mixing both parallelism takes much attention and is being investigated intensively
[Yangl, [Haridi], [Naish]. When combining them, the most important design issues are 1) to
cxploit both parallelism without restricting cither, and 2) to make the size of atomic operations
needed for combination as small as possible. The vector model, takes an approach characterized
as “cager hranching and lazy copying”. Eager branching implies that “branch whenever yon
can”, thus it exploits full or-parallelism. Lazy copying contributes to reduce the size of such
an atomic aperation as copying of @ world. In lazy copying scheme, computation of an atom
can proceed without waiting for copying of the whole world being completed, while in eager
copying scheme it must wait. In Section 4 the vector model was described assuming sequential
derivation. In other words, the entire derivation was assumed to he an atomic operation. The
reason why sequentiality is needed is to gnarantee that once a colored atom is flattened no vector
appears until next derivation, thus to aveid collision of & vector and an ordinary term during
head unification. However, as discussed above, head nnification only needs information within
buunded depth, therefore it is cnough to flatten & colored atom to that depth. Owing to thal, an
atomic operaticn is derived from the entire derivation into smaller operations such as bounded
depth flatten and compose. Again, as we discussed previonsly, atemicities of operations can
be reduced by two language restrictions, mode declaration and the single producer constraint.
Under these restrictions, the sizes of atomicity required by these operations becomes those
required by a unification operation.

7 CCL implementation

(yne of the main targets of ANDOR-IT project is to find a class of and- vr-parallel langnages that
can be cfficiently implemented in CCL. The language and its computation model explained so
far ate almost equivalent to actual ANDOR-11 and its model. In this section, we briefly explain
how it is implemented in GHC, one of CCL. For more detail, see other paper{Takahashi].

An ANDOR-II program is translated into a GHC program, which includes all codes realizing
such operations as flatten and compose. Current translation siraiegy is characterized by the
folluwings.

« Vector/scalar analysis of arguments: For each clause, vector/scalar analysis determines,
for each argnment of an atom in body part, that it is of a vector type or of a scalar type,
which means an ordinary term. The analysis is guided by modes of atoms and utilizing
the facts that an output of an or-relaticn is always of a vector iype, and that an output

12

type of an and-relation is of & scalar type if all input {ypes are of scalar, otherwise il is a
VeClorn.

Lifting a vector to an outermost level: A unnification atom is the only operation that has
the possibility to instantiate a variable to a term with a vector in it. In ANDOR-11/CCL
implementation, such unifications are delected statically and replaced by unifications that
lifts a vector to an outermost level as follows. First for each variable appearing in il, mode
and a lype (vector/scalar) are determined. When an unbound variable is to be instantiated
i @ term which includes a vanable with mode reference-only and a type vector, the term
is Mattened first wnd the resultant veclor of flatticned terms is assigned to the variable.
Note that it implies that a term is never shipped out uniil the vector arrives. This i+ not
ithe case of a term with 2 variable which is never instantiated, that is, has no producer.

¢ Special treatment of lists: A unification, X = [A|Y], is treated exceptionally if X's mode
is “write™, A% mode is “reference-only”, and mode and a type of ¥V is “reference-only™
and & vecior, respectively. In this case, as an exception to the above, a cons ccll is shipped
out withont flattening with respect to ¥ while 4 must be flattened if it is a vector. Such
an exrly ship out is needed o enable stream programming.

These three are conpled with each other. The followings are worth noting:

1. Since a vector is Bifted to an outermost level, flattening is enough to be done only in the
first level.

2. Since argument types are determined statically a code for flattening can be placed at an
approprigle position in a translated program,

In this strategy, vector/scalar analysis plays a central role. However, special treatment of
lists makes it troublesome. We are now trying to clarify it. Also we are now considering a new
translation strategy which does not depend on vector/scalar analysis,

References

[Maridi] 5. Haridi, P. Brand, ANDORRA Prolog - An Integration of Prolog and Committed
Choice Languages, Proc, of FGCS88, 1988, pp.745-754,

[Naish] .. Naish, Parallelizing NU-Prolog, Proc. of Int. Conf, Logic Programming, 1988,
pp.1546-1564.

[Takahashi] K. Takahashi, A, Takeuchi, T. Yasui, A Parallel Problem Solving Language
ANDOR-IT and its Implementation, to appear [COT TR.

[Takenchi] A. Takeuchi, K. Takahashi, H. Shimizu, A Parallel Problem Solving Language for
Concurrent Systems, ICOT TR-418, 1888, Also to appear in Concepts and Char-
acieristics of Knowledge-based Systems, M. Tokoro, Y. Anzai, A. Yonozawa (cds.),
North-Holiand.

13

[Uedal K. Ueda, Guarded Horn Clauses: A Parallel Logic Programming Language with the
Concept of & Guard, [COT TH-208, 1986,

[Yang] R. Yang, H. Aiso, P-Prolog: A Parallel Logic Language based on Exclusive Relation,
Prac, of 3rd Int. Conf. Logic Programming, 1986, pp.255-269.

14

