ICOT Technical Report: TR-509

TR-5049

An Overview of ExReps System

by
1. Tanaka, Y. Ohta & F. Matano (Fujitsu)

Seplember, 1989

© 1989, ICOT

Mita Kokusat Blde 21F (034) 456-3191—5

|I| D | 4-28 Mila 1-Chome Telex WCOT 132564
Minato-tu Tokve 108 Japan

Institute for New Generation Computer Technology

An Overview of ExReps System
Jiro Tanaka!, Yukiko Ohta and Fumio Matono?

tITIAS-SIS, FUJITSU LIMITED,
1-17-25 Shinkamata, Ota-ku, Tokyo 144, JAPAN

IFUJITSU SOCIAL SCIENCE LABORATORY LIMITED,
1-6-4 Osali, Shinagawa-ku, Tokyo 141, JAPAN

Abstract

An overview of an experimental reflective programming system (ExReps) is presented
in this paper. ExReps consists of two layers, i.e., abstract machine layer and executlon
system layer. Both layers are constructed based on enhenced metacall mechanism, Actual
program execution examples and reflective programming examples are also presented.

1. Introduction

Nowadays, various parallel logic languages, which are logic-based languages and can
still create concurrent processes dynamically, has been proposed. PARLOG [1], Concur-
rent Prolog [2] and GHC [3] are examples of such languages. Since these languages possess
the notion of processes and synchronization inside language, it is quite natural to try to
describe an operating system in these languages. In fact, various works has been done
for systems programming from the very beginning of parallel logic languages [4] [3]). PPS
(PARLOG Programming Systcm) [6] and Logix [7] are the examples of such systems.

ixReps, which stands for “Experimental Reflective Programming System,” has been
built up [8]. We try to describe the overview of ExReps in this paper. A programming
system can be defined as a small operating system where one can input programs and
execute goals. Our objective is not building up a practical programming system like Prrs
or Logix. Rather, our interest exists in expressing an elegan! programming system in more
systematic manner 9],

The arganization of this paper is as follows. Section 2 describes the overall structure
of FxReps. Section 3 describes metacalls which provide us Lhe bases for our programming
system. ExReps consists of two layers, i.e., the abstract machine layer and the execution
system layer. Respective layers are described in Section 4 and Section 3. The examples
of application program execution are shown in Section 6. The reflective programming
examples are shown in Section 7.

2. Overall structurc of ExReps
The overall structure of ExReps is shown in Figure 1. ExReps is implemented on

PSL.II Machine [10]. Since the current version of PSI-11 only understands ESP [11] which
is the objeci-oriented dialect of Prolog, we snstall GHC system first. This GHC system
is the slightly modified version of Ueda's GHC run-time system [12] and executes the

compiled GHC programs.

User Program

Execution System

"/‘\—""‘

Abstract Machines

/n_

GHC system

T

P51-11 machine

Figure 1 Overall structures of ExReps

Next layer is the abstract machine layer. Gince various kinds of multi-micre distributed
computers have become more popular, we expect ExReps should alse be adaptable to
distributed hardware. Our approach is constructing distributed abstract machine layer
[13] on top of GHC system.

The exccution system, which loads user programs and executes user jobs, is constructed
on top of the abstract machine layer.

3. Stepwise enhancement of metacalls

User programs can be executed on a programming system. However, the programming
system must not fail even if a user program fails. Metacall mechanism [4] works as a basic
unit of execulion control and protection in the programming system.

Various kinds of metacalls have already been discussed. Here, we briefly review how
they work. The simplest metacall is the following single argument metacall.

exec(G)

This metacall simply executes goal “G” and the result is exactly the same as the direct
execution of “G.” This form of metacall does not help much because the execution result
is always same to the direct execution.

The first extension is the following {hree-argument metacall [4].

exec(G,In,0ut)

Here, “In" is called input stream and “Out” is called output stream. (Goal execution
can be suspended, resumed, or aborted by sending appropriate messages from “In.” When
the execution of the metacall finishes successfully or failed, the metacall simply sends a
success or fail message from Out. This metacal itsell never fails, i.e., it has the capability
of failure prolection.

A goal “G" is executed in an interpreted manner in these metacalls. Therefore, we can
separate two levels here, le., meta-level, where the top-level program execution is per-
formed, and object-level, where the execution of programs is done inside a meta-interpreter.

Though this extension of the metacall alms at obtaining ebject-level information to
meta-level world, there exists the other direction for extending metacall. Tt is realizing
refiective capabilities [14] [15], where object-lerel program can obtain meta-level informa-
tion.

This extension depends on resonrces we want to coutrol. Since it is useful managing
processes dynamically, we introduce a scheduling queve explicitly mn our metacall. The
enhanced metacall becomes as follows.

axec(H,T,In,Dut)

The first two arguments express scheduling queuve in difference list form. The usc of
difference list for expressing scheduling quene was originally propesed by Shapire [2].

Next we introduce two more arguments, “MaxRC” and “RC.” to control reduction count
[16]. We assume that reduction count corresponds to the computation time in conventional
systems. “MaxRC" shows the limit of the reduction count allowed in “exec.” "RC” shows
the current reduction count.

exec(H,T,In,Uut,MaxRC, RC)

Implementing various reflective operations is not too difficult, once we get the en-
hanced metacalis. We consider lour kinds of reflective operations, “get_re,” “put_rc,”
“get_g” and “put_q,” of which ebject-level program can make use. Two kinds of meta-
information are reified here, i.e., scheduling queue and reduciion count. “get” operations
obtain meta-information for the object-level. On the other hand, “put” operations return
the information to the mela-level.

The meaning of each operalion is as [ullows: “get_rc {MaxRC,RC)}" gets “MaxRC”
and “RC” from the meta-level, “put_rc(MaxRC)" resets “MaxRC” to the given argument,
“get_q(H,T)" gets the current scheduling queue in difference list form, and “put_q(H,T)"
resets the current scheduling queue to the given arguments.

In the programming svstem, this enhianced metacall is nsed 10 two ways. Since this
metacall has i/o channels, a seheduling queue and a reduction counter, it can be considered
as an abstract GHC machine. Thercfore, it can he used for expressing an abstract machine.
The other way is using it for fask management. Since it provides us the unit of ereculion
control and protection, we can use it for expressing a user process.

4. Abstract machine layer
Tn this section, we describe the eonceptual image of the abstract machine layer first.

Then the actual implementation of the abstract machine layer will be described.

K1

4.1. Conceptual image of the abstract machine layer

We construct distributed abstract GHC machines on top of GHC system. On this
layer, abstract GHC machines are connected by network and each GHC machine executes
GHC goals.

For example, we can define the following ring-connected distributed computers by
using “exec” and “nm,” where each “exec” is the one described in the previous section,
and “nm” is the network manager.

d_machine:-truel
nn(Nm4 ,Nml1,Inl,0utl) ,exec(T1,T1,In1,0utl,_,0),
nm{Nmi,Nn2,In2,0ut2) ,exec{T2,T2,In2,0ut2,_,0),
nm(Nm?2,Nm3, In3,0ut3) ,exec (T3,T3,In3,0ut3,_,0),
nm(Nm3,Nm4, In4,0ut4) ,exec(T4,T4,In4,0utd,_,0).

Four “nm™ processes are connecled to the uni-directed ring, The output of one network
manager is connected to the input of the other network manager. Each “nm” is also
connected to a “exec.” The scheduling quene of “exec” is initially empty. User goals can
be entered in “exec” from the input stream.

Inside of each “exec,” the ordinary GHC program runs. However each “exec” can
throw goals which has pragma [17] to other “exec” through the output stream. Goal “A”
which has pragma “@P” is expressed as “A@P." The kind of pragma depends on the topology
of abstract machines. We assume that pragma “@forward” is used for uni-directed ring.

Each “nm” delivers the goal with pragma. If the goal has the pragma, “nn” simply
peels off the outermaost pragma and sends the remaining part to the nexl “nm.” The goal
which has no pragma is dropped to the “exec” connected to the “nm.” Therefore, goal
“pQforvard@forward” will be dropped to “exec” located ahead by two.

However, these distributed CHC machines are isolated from tLhe external world. The
program of distributed machines with i/o becomes as follows:

d_machine:-true|
window(0)},
keyboard(01,I),
nm{Nm4? ,Nmi,Inl,0ut1),exec(T1,T1,Inl’ ,Outl, 0},
nm(Nml,Nm2,In2,0ut2) ,exec(T2,T2,In2,0ut2,_,0),
nm{Nm2 ,Nm3, Tn3,0ut3) ,exec(13,T3,In3,0ut3,_,0),
no(Nm3 , Nmd, Ind,Outd) ,exec(T4,T4,Ind, 0utd, _ L0,
dist(Nnd,Nmd’,02),
merge(I,Inl,Int’),
merge(01,02,0).

The overall structure of Lhis distributed machine is shown in Figure 2. Comparing Lo
the previous program, a window and a keyboard controller are added for the interface to
the outer world. The window takes care of all inputs and outputs at the abstract machine
laver level. The keyboard controller is used to generate the read request so that we can
input goals from the window. Two “marge” processes are added to join “I" te “In,”
and %017 to “02” We assume that goal “A@io,” which is the i/o operation, simply passes
through “nm.” However these goals are captured by “dist” and sent to the window.

4

Figure 2 Distributed abstract machines

4.2. Actual implementation of abstract machine layer

In the actual system, we can build various distributed abstract machines, such as linear
array, ring, cube, square mesh, friangular mesh, heragonal mesh and tree. We can also
specify the size of network, i.e., the number of processors, we want to construct. There
exist different pragmas for different topologies. For example, “0forward” was used for
uni-directed ring. However, “@right.” *@left.” “Qup” and “@down”are used for square
mesh.

An example of the actual program execution on ExReps is shown in Figure 3. After
installing GHC system, we execute the absiract machine construction program which can
dynamically create the network of abstract GHC machines following the user input. This
program opens “VM_windew" in PSI-II display (the upper-left corner). We can specify the
topology and the size of the network from this “VM_window.”

Bk jtras. 3,
trualr ighiBiets,
i

AErwan
VSER : damo ad | tor huffar _window 8
SIMPCS Waraies 4,2 12-5ep-8¥ Tusaday 19 14:12

Figure 3 Absiract machine construction on ExRleps

In this case, we typed in “make(tree,3).” which dynamically created the tree network
of size 3. The structures of abstract machines will he displayed in “VM_area" window
(lower-left corner). This window is used for displaying the execution state of each abstract
machine. Each abstract machine, which is shown as a black square, is also a window and
the executing goals are displayed through these windows.

When the abstract machines are constructed, “VM_window” is connccted to the GHC
machine #1. We need to use pragmas to throw goals to other abstract machines. There-
fore, if “true@right@left” is typed in, where goal “true” corresponds to “nocp” in
conventional languages, that goal will be carried to the GHC machine #5 through net-
work managers. (Note that pragmas are peeled off from the oulermost level.)

5. Execution system layer

In this section, we first describe the structures of the execution system layer. Then
the shell which plays the central role in the execution system is shown. The actual
implementation of the execution system is also shown.

5.1. Structures of the execution system

It is possible to execute an application program directly on top of the abstract machine
layer. However, application program are usually executed on the operating system. The
execution system layer works such an operating system and provides the user the capability
of entering user progrmms and execution control. The structures of the execution system
can be be illustrated in Figure 4.

Figure 4 Execution system layer

The execntion system layer consists of a window, a keyboard controller, a shell, a
datubase server and a variable dictionary. The window is the system window of the
execution system, It takes care of all inputs and outputs of the system. The keyboard
controller always generates the read request to the system window. Therelore, we can
always input goals or commands from Lhe system window. The shell generates the user
processes depending on the inputs from the user. The shell will be explained in the
following section. The database server is the part which keeps the user program. We can
add, delete and check the user program definitions. The variable dictionary provides us
the facilities for defining macro. 1t can memorize the values of variables as its internal
state and replace the user's query by its value.

5.2. Shell

The shell creates the uscr task, accesses to the dutabase serveror sends messages Lo the
cariable dictionary, depending on messages from the user. The following 15 the program
for Lhe shell

shell([],val,Db,MaxRC,Dut):-true |
val=[},0b=[],0ut=[].
shell{[goal(Goal}|Tn],Val,Db,MaxRC, Out) :-truel
Val=[record_dict(Goal,NGoal) |valil,
windeow(Wlut},
lceybcard{ﬁﬂut,ﬁln} .
exec server(run,NGoal,EIn,EQut,I,0),
exec([NGaallT),T,1,0,MaxRC,0),
shell(In,Vall,Db,MaxRC,0ut),
merge (KOut,EOQut, Wout).
shell([dbo(Message) | In], Val Db,MaxRC,0ut):-truel
Dp=[Message|Dbl],

shell({In,Val,Dbl, MaxRC,Out).
shell([binding(Message) | In],Val,Db,MaxRC,Out) : ~true|

Val=[MessagelValll,

shell(In,Vali,Db,MaxRC,0ut).

The “shell” has five arguments; the first is the input stream, the second is the stream
to the variable dictionary, the third is the stream to the database server, the fourth is the
internal state which specifies the maximum reduction count allowed for the user process,
and the fifth is the output stream.

This program works as follows:

1. Tf the input stream of “shell” is “[],” it means the end of input. All streams will
be closed in this case.

2. If “goal(Goal)” is in the input stream, “Goal” is sent to the variable dictio-
nary. The variable dictionary checks the bindings of every variable in “Geoal”
and creates “NGeal” where every variable is bound to the current bindings. Then
“cxec_server” and “exec” are created. The “exec_server” works as a back-end
process of “exec.” It keeps the internal state and provides the user various kinds of
services. A user window and a user keyboard controller arc also created.

3. If “db(Message)” or “binding(Message)” is in the input stream, “Message” is sent
to the appropriate siream. Actually, an application program can be registered to
the database server by message “db(assert(Program)).” “binding(Message)” is
used for registering and checking the current bindings of variables.

Figure 5 shows the snapshot where processes arc created in accordance with the user
input. Each ezec has their own window and keyboard. Therefore, we can enter commands
from the user window. Once created they run independently from the shell.

database var_dict

t 1

shell

Figure 5 The creation of processes in shell

5.3. Actual implementation of the execution system layer

Iu the actual ExReps system, the exccution system will be created by typing in “ps”
from “VM_window.” When it is created, “PS_window” is also opened. We can input user
programs and goals from “PS_window.”

An actual program execution example is shown in Figure 6. In this case, we crealed
abstract machines of 2 by 2 mesh and installed primes program which computes the list

of prime numbers lower than the given number.

oo

s O el W= I
'-W’ﬁw:&‘i z\m»vﬂw S b

B wbar t
ressme Pl
wints @cral

WsuCcasn
poulapr s (20, 02,31
RN TRTR T

ertar Ealt sedsll

Wy jmesS] objuct
ba gramted ||

[_l
.

= serenn B g |

WEER ¢ d-llﬂ. wditor buffar. winde-r 58
SIMPTS Warsion 42 13- Sap= 8% T ey 13:3%:34

Figure f User program execution on ExReps

When we type in “primes(20,X)" from “PS_window,” user process “primes/2" will
be created. It has its own user window “primes/2" and we can “suspend,” “abort”
or “resume” the process dynamically by sending appropriate messages from the window.
We can execute other commands such as “halt,” “state” and “scrol.” “halt” is used
for closing the user window. “state” shows the current variable bindings of the input
goal. “scrol” is used for scrolling up/down the if/o window. The result of computation
is shown in the i/o sub-window of “primes/2" as the bindings of the input goal.

6. Application program execution on ExReps

In this section, we show two examples of application program execution. The first
is four queen problem. This example shows the distributed execution of a user program
on ahstract machines, The second is edd-number-learning example. This example is for
showing the interactive execution capabilities of LixReps.

6.1. Four queen program
As mentioned before, we can execute user program in a distributed manner by adding

pragmas to the application program. As an example, we chose the well-known n queen
problem. This problem is to find the solution of locating n queens in = by n grid non-
overlapping with vertical, horizontal and diagonal directions.

We tried to execute four gueen problem in a distributed manner.
generating 4 by 4 processes which correspond to 4 by 4 grid and solving the problem by
stream communications belween processes.

The actual program execution is shown in Figure 7.
grid abstract machines.

Our solution is

In this case we created 4 by 3

10

Fgus Lz
susp mbath
rasuma halt
sinta amerel

maich Gamh Gl B
(1]

Rl
o] =four Gusen (LY, 1
1ol 21,0 2:4:1.3101

eriar halt werell

o our Gusen'L b iecd
Lo grasted 11

BErRead 03 _Tanvas

] x
E1-4-0.60.0.0.
ST derwardif

wreen |

[21w0d5 Varsion 4,2 12-Sap-B9 Tussdey 10009222

Figure 7 Four queen program execution on ExHeps

The reason we created such 4 by 3 machines is for showing the folding capabilities of
abstract machines. Though this program creates 4 by 4 processes, they must be folded
to the 4 by 3 abstract machines. Folding is realized by extending the interpretation of
pragma to the opposite direction. In this case, pragma “@down” at the boltom row of the
grid is interpreted as up.

There are two solutions for four queen problem and the computation result is shown
in “fourQueen/1" window.

6.2. Odd-number-learning

The other application is odd-number-learning example. This program is made for
demonstrating the interactive program execution capabilities of ExReps.

As explained before, we can suspend, abort and resume the execution of user program
from user window. However, we sometimes nced more fine-grain execution control.

GHC program has the notion of processes and streams. (A process is considered as a
tail-recursive goal. A sircam is considered as a variable which is instantiated gradually.)
Therefore. we would like to control the exccution of each process or each stream.

Our approach is as follows. We declare processes and streams explicitly in the user
program to distinguish them from ordinary goals and variables. When a process or a
stream is created, the system asks dynamically whether he wants to open a window in
“ps_canvas.” If answered ves, a process or stream window will be created. We can see
and conirol the current state of a process or a streamn from there. (Here, “ps_canvas”
window is considered as a kind of a blackboard in which we can freely write figures and
communicate.)

The odd-number-learning example is shown in Figure 8.

11

mnhs ey (2203 winp mbort
Lol roposs halt
stnts werol

is cramted 41
L L e]
b jactTT yua
Whavwn /T pb ject
antar Sall sersll ix gramied 1)

o learning/® ob ject
in gramtmd 11

R R T R A T

L P
EmtER

&l
1) I

]
T .

whnwl edgn i

e e
LR 2 damc gl bor bt P o | e 3
|: SiWPOs versien 4.3 L2-3ap-89 Tuwaday 1113387

Figure 8 0Odd-number-learning example

This example consists of four processes, i.e., child, knowledge, teacher and even pro-
CEesSSes.

We can input infeger numbers from the child process. The child process can access to
the knowledge process and is expected to throw only the even numbers to teacher process.

The knowledge process can contain odd numbers. However, it is initially empty. Ini-
tially, child does not recognize the given number whether it is even or odd. Therefore, it
simply passes the given number to the teacher. The teacher knows whether it 1s odd or
even. If it is odd, feacher teaches the child that it is odd and is entercd to the knowledge
process. If it is even, is is simply passed to the even process.

Next time the same odd number s entered from the child process, child can recognize
that the number 15 odd by consulting the knowledge process and does not pass it to the
teacher.

This edd-number-learning example is the interactive system which models the learning
processes of a child at the very superficial level.

In Figure 8, four processes and two streams are explicitly declared and opened win-
dows. We can see the current state of processes or streams from these windows. The
execution of processes and streams can be suspended, aborted or resumed separately by
entering commands [rom these windows.

7. Reflective programming on ExReps

We can write reflective programs by using reflective operations described in Section 3.
In this section, we show two examples of reflective programming. The first example is the
load balancing program, the second is the dynamic reduction count contrel program.

7.1. Load balancing

The first example is the load balancing program which is executed directly on top of
absiract machines. The load balaneing program can be written as a reflective program by
using reflective operations.

Reflective operations must be executed urgently. Therefore, we introduce the notion
of ezpress goals, which have the form “Geexp.” We assume that ezpress goals are executed
urgently in “exec.” While express goals being processed, the normal execution of goals
are frozen. When ezpress goals are decomposed to subgoals, they are also processed as
erpress goals.

The load balancing program is shown below. If we enter “]oad_balance@exp” as a
goal executed on the abstract machine, it automatically moves among abstract machines

and performs load balancing.

load_balance:-true]
get_q(H,T),
length(H,T,N),
balance{N,H,T).

balance(N,H,T):-N>100|
Ni:=N-100,
separa.t&(ﬁl JH,T,NH,NT,X),
goals(X)Cexpldown,
load_balance@exp@right,
put_q{NH,NT).
balance(N,H,T) :-N=<100]
load_balanceQexp@right.

When “load_balance®exp” is executed inside an abstract machine, it goes into the
erpress state. The current scheduling queue of the abstract machine is taken out and
the length of the queue is computed. If it is longer than 100, “N1" excessive goals are
separated from the scheduling queue and thrown out. “Joad_balance@exp” goal is also
thrown out to the right direction to invoke load balancing on other abstract machines.
(If the abstract machine is at the right end, it is thrown to the left.) If the length of the
quene is shorter than 100, it simply throws the “]oad_balance@exp” goal to the right (or
left) abstract machines.

Figure O shows the snapshot of executing this load balancing program.

13

wntar Bali amrall

rarsss Balt
siate merel

wkrats] ab ject
us cramted [}

E

Sil. rat 0131 eIt

antah pos B AL 0EPmE (31D

load _ balarce famw (T EF i
|8 c1ml ratid

3% rwan [o TR
USER | genp ad p e Buffer window 19
B1HPOES Varasss 4,2

12=5sp=8% Tuanday I@:25141

Figure 8 The execution snapshot of load balancing program

We assumed 2 by 2 mesh abstract machines. This load balancing program is entered
from “VM_window.” It means that this program is executed in parallel with the exccution
system program. As a user program, we execute ral programs only on machines #1 and
#2. These rat programs produce children incessantly and the load of abstract machines
becomes busy as time goes on. The load balancing program is also moving between
machine #1 and #2. When the load of the machines #1 and #2 exceed the limitation,
the excessive goals are thrown out to the machines #3 and #4.

7.2. Dynamic reduction count control

The second example is dynamic reduction count control program which is executed
at the user program level. The following program shows how to define the “check_re”
predicate, which asks the user whether it wants to change the remaining reduction count
of the user task.

check_rc:-true|
get_rec(MaxRC,RC),
ResthiC :=MaxRC-RC,
cutput{[rc_rest=,RestRC])i,
input([change_rc??],Ans)0io,
chaeck{Ans ,MaxRC,RC) .

check(yes ,MaxHRC,RC) : -truel
input([add_rc>>],AddRC)Qio,
NMaxRC :=MaxRC+A44RC,
put_rc(NMaxRC) .

check(no,_,_):-trueltrue,.

14

We assume that the input and ouiput operations have the format of
“input(Message_1ist,X)” and “eutput(Message_list),” respectively. In the case of
the input, “Message_list” is printed first, then the user’s input is instantiated to X.

We insert this “check_rc@exp”goal in Lhe application program. Whenever this goal is
executed, it it gets “MaxRC” and “RC" and compntes the remaining reduction count. After
displaying the remaining red uction count, it asks whether he wants to change the reduction
count. If answered “yes,” it asks how many reduction count he wants to increase. Then

it computes the new maximum reduction count and stores it as the new “MaxRC” of the

user task. If answered “no,” it will do nothing.
The execulion snapshot of this program is shown in Figure 10.

LI wdiar 1
romsns PalR

alate merol

Gharmge-roT ne
rE.rest=4d

chanpa_*aTT ng
g Fermatall
satar halt scroli shunge_raTT g
wdd_rg 183,
et et fentd R ol gt re_fwak=118

i3 pramted 11 change_roT?

TEEmE ama |

LP-Sap- B9 Tuaadiy Bl ieinl

20T e
LSER ! dawd i bor Buffar wirdeas]]
=IWPUS Yaraion 42

Figure 10 Dynamic reduction count control example

Though we created the ring abstract machines of size 3 here, the structure of abstract
machines are irrelevant here. In this example, the current remaining reduction count is
decreasing gradually. When it became «33." we added “100." However, gince we COnsume
reduction count before we come across the next “eheck_rc@exp’goal, the next display of

the remaining reduction count is “118.7

8, Conclusion
We have presented an overview of ExReps system, After describing enhanced metacall

mechanism, we described abstract machine layer and execution system layer of ExHReps
system. The enhanced metacall has been used in two ways. Omne is for expressing an
abstract machine, and the other is for managing user task Program execition examples
and reflective programming examples are also presented.

15

Our approach can be classified as a software-oriented approach. Our *“exec” can be
written in GHC. In contrast, PIMOS [18] tries to implement their “exec” directly as a
built-in predicate. PIMOS tries to realize various features of distributed operating system
in machine-dependent and hard-wired way.

On the other hand, reflective operations work as wires which connect mefa-level and
abject-level in our approach. The object-level world can obtain mefa-level information
through these wires. User can write object-level programs which handle mefa-level in-
formation and the modified met-level information can be reflected back to the meta-level
These result the flexible and powerful systern which consists of small core.

Though refleciive operations are defined as an ad hoc way, other resources, such as
vartable environment, can also be controlled in a similar manner [19]. Defining reflective
operations in more sophisticated way [15] [20] is also possible.

The current version of ExHeps iz implemented on PSI-11. However, we imagine that
the extension to distributed hardware, such as Multi-PSI [21], will not be difficult.

Also note that the programs shown here are the extremely simplified version. The
more complete version of ExReps, running on PSI-11, has already been demonstrated at
FGCS'88 and is available from the authors.

9. Acknowledgments

This research has been carried out as a part. of the Fifih Generation Computer Project.
I would like to express my thanks to Youji Kohda, lliroyasu Sugano and Susurnu Kunifuji
for their disenssions and encouragements.

16

References

[1] Clark, K. and Gregory, §.. PARLOG, Parallel Programming in Logi. Research
Report DOC 84/4, Department of Computing, Imperial College of Science and Tech-
nology, Revised 1985.

2] Shapiro, E: A Subset of Concurrent Prolog and Its Interpreter. ICOT Technical
Report, TR-003, 1983,

i3] Ueda, K.: Guarded Horn Clauses. ICOT Technical Report, TR-103, 1985,

(4] Clark, K. and Gregory, 5.: Notes on ysterns Programming in Parlog. Proc. In-
{ernational Conference on Fifth Generation Computer Systems 1984, [COT, 1954,
pp.299-306.

(5] Shapiro, E.: Systems programming in Concurrent Prolog. Proc. 11th Annual ACM
Symposium on Principles of Programming Languages, ACM. January 1984, pp.93-
1005,

(6] Foster, I.: The Parlog Programming Svstem (PPS). Version 0.2, Tmperial College of
Science and Technology, 1956,

7] Silverman, W, Hirsch, M., Houri, A. and Shapiro, F.: The Logix Systern User
Manual. Version 1.21, Weizmann Institute, Isracl, July 1986,

[8] Tanaka,J.: Experimental Reflective Programming System “ExReps.” Demonstration
material of the International Conference on Fifth Generation Computer Systems
1948 1COT, November 1988,

9] Tapaka, J.: A Simple Programming Systern Written in GHC and Its Reflective Op-
erations. Proc. The Logic Programming Conference '88, 00T, Tokvo, April 1985,
pp.143 149

[10] Nakashima, H. and Nakajima, K.: Hardware Architecture of the Sequential Inference
Machine: PSI-IL Proc. 1987 Symposium on Logic Programming, San Francisco, 1987,
pp.104-1173.

(11} Chikayama, T.: Unique Features of ESP. P'roc. International Conference on Fifth
Generation Computer Systems 1984, ICOT, 1984, pp.292-208.

12] Ueda, K. and Chikayama, 1. Concurrent Prolog Campiler on Top of Prolog. Proe.
1985 Symposium on Logic Programming, Boston, 1955, pp-119-126.

[13] Taylor, S.. Av-Iton, E. and Shapiro, F.. “A Layered Method for Process and Code
Mapping.” Concurrent Prolog: collected papers, Shapiro, E., ed., The MIT Press,
1987, pp.78-100.

[14] Maes, P.: Reflection in an Object-Oriented Language. Preprints of the Workshop on
Metalevel Architectures and Reflection, Alghero-Sardinia, October 1986

17

[15]

Smith, B.C.: Reflection and Semantics in Lisp. Proc. 11th Annual ACM Symposium
on Principles of Programming Languages, ACM, January 1984, pp.23-35.

[16] Foster, L.: Logic Operating Systems: Design Tssues. Proc. Fourth International Clon-

[17]

18]

19]

ference on Logic Programming, Vol.2, The MIT Press, May 1987, pp.910-926.

Shapire, E.: Systolic programming: A paradigm of parallel processing. Proc. Iu-
ternational Conference on Fifth Generation Computer Systems 1984, ICOT, 1984,
pp.458-471.

Chikayama, T., Sato, H. and Miyazaki, T.: Overview of the parallel inference ma-
chine operating system (PIMOS). Proe. International Conference on Filth Generation
Computer Systems 1988, ICOT, Novemnber 1988, pp.230-251.

Tanaka, J.: Meta-interpreters and Reflective Operations in GHC. Proc. International
Confercnce on Fifth Generation Computer Systems 1988, ICOT, November 1988,

Pp.T74-783.

| Watanabe, T. and Yonezawa, A.: Reflection in an Object-Oriented Concurrent Lan-

guage. 'roc. ACM Conference on Object-Oriented Programming Systems, Languages
and Applications, San Diego, September 1988, pp.306-315.

Uchida, 5., Taki, K., Nakajima, K., Goto, A. and Chikayama, T.: Research and
development of the parallel inference system in the interinediate stage of the FGCS
project. Proc. International Conference on Fifth Generation Compuler Systems 1988,
[COT, Novemnber 1988, pp.16-36.

18

