ICOT Technical Report: TR-488

TR-488

An Efficient Learning of Context-Free
Grammars from Positive Structural
Examples

by
Y. Sakakibara (Fujitsu)

Julv, 1959

L1989 1COT

Mita Kokusai Bldg. 21F {03) 456-3181~5
“ :D | 4-28 Mita 1-Chome Telex ICOT J32964
Minato=ku Tokvo 108 Japan

Institute for New Generation Computer Technology

An Efficient Learning of Context-Free Grammars
from Positive Structural Examples *

Yasubumi SAKAKIBARA

International Institute for Advanced Study of
Social Information Seience (1IAS-SIS)
FUJTSU LIMITED
140, Miyamoto, Numazu, Shizuoka, 410-03 Japan
E-mail : yasu%iias.fujitsu.co.jp@uunet.un.net

“A preliminary version of Lthe paper was presented at FGCS '88, ICOT, Tokyo, JAPAN.

Abstract

In this paper, we introduce a new normal form for context-free grammars, called reversible
context-free grammars, for the problem of learning context-free grammars from positive-only
examples. A context-free grammar G = (N, I, P, 5) is said to be reversible if (1) 4 — a
and B — a in P implies A= B and (2) A — aBf and 4 —» «CF in P implies H = C. We
show that the class of reversible context-free grammars is learnable from positive samples
of structural descriptions and there exists an efficient algorithm to learn them from positive
samples of structural descriptions, where a structural description of a context-free grammar
is an unlabelled derivation tree of the grammar. This implies that if information on the
structure of the grammar in the form of reversible is available to the learning algorithm, the

full class of context-free languages can be learned efficiently from positive samples.

1 Introduction

We consider the problem of learning context-free languages from positive-only examples.
The problem of learning a “correct” grammar for the unknown language from finite exam-
ples of the language is known as the grammatical inference problem. In the grammatical
inference problem, hawever, there exists the computational hardness ol it, and recently manv
researchers have turned their attention to the computational complexities of learning algo-
rithms [5, G, 8, 13, 14, 16, 17]. A criterion for evaluating the computational efficicney of a
learning algorithm is the polynomial time bound, what is called polynomial-time learnability.
Previously in order to solve the computational hardness of the inference problem of context-
[ree grammars, we [16] have considered the problem of learning context-free grammars from
their structural descriptions. A structural description of a context-free grammar is an unla-
belled derivation tree of the grammar, that is, a derivation tree whose internal nodes have no
label. Thus this problem setting assumes that information on the structure of the unknown
grammar is available to the learning algorithm, which is also necessary to identify a gram-
mar having the intended structure, that is, structurally equivalent to the unknown ErALLITIAT.
We showed an efficient algorithm to learn the full class of context-free grammars using two
types of queries, structural membership and structural equivalence queries, n a teacher and
learner paradigm which is introduced by Angluin (7] to model a learning situation in which
a teacher is available to answer some qucries about the material to be learned.

In Gold’s eriterion of identification in the limit for successful learning of a formal language,
he [11] showed that there is a fundamental, important difference in what could be learned
from positive versus complete samples. A positive sample presents all and only strings of the
unknown language to the learning algorithm, while a complete sample presents all strings,
each classified as to whether it belongs to the unknown language. Learning from positive
samples is strictly weaker than learning from complete samples. Int uitively, an inherent
difficully in trying to learn from positive rather than complete samples depends on the
problem of “overgeneralization™. Gold showed that any class of languages containing all

the finite languages and at least one infinite language cannot be identified in the limit from

o

Lhe big dog chases a voung wirl

Tigure 1: A structural description for “the big dog chases a young girl”

positive samples. According to this theoretical result. the class of context-free languages
(even the class of regular scts) cannot be learned from positive samples. These facts seem
to show that learning from positive samples is too weak to find practical and interesting
applications of the grammatical inference. However it may be Lrue that learning from positive
samples is very useful and important for a practical use of the grammalical inference because
it. is very hard for the user to present and understand complete samples which force him to
have a complete knowledge of the unknown (target) grammar.

In this paper, to overcome this essential difficulty of learning from positive samples, we
again consider learning from structural descriptions, that is, we assume example presenta-
tions in the form of structural descriptions. The problem is to learn context-free grammars
from positive samples of their structural descriptions, that is, all and only structural de-
scriptions of the unknown grammar., We show that there is a class of context-free grammars,
called reversible contezi-free grammars, which can be identified from positive samples of their
structural deseriptions and the reversible context-lrce grammar is a normal form for context-
free grammars, that is, reversible context-free grammars can generate all of the context-free
languages. We present a polynomial-time algorithm which identifies them in the limit from
positive samples of their structural descriptions by extending Angluin’s efficient algorithm

[4] which identifies finite automata from positive samples to the one for tree automata. This

implies that if information on the structure of the grammar in the form of reversible is
available to the learning algorithm, the full class of context-free languages can be learned
efficiently from positive samples.

We also demonstrate several examples to show the learning precess of our learning al-
gorithm and to emphasize how successfully and efficiently our learning algorithm identifies

primary examples of grammars given in the previous works for the grammatical inference

problem.

2 Basic Definitions

Let N be the set of positive integers and N* be the free monoid generated by N. Fory, r € N*,
we write y < x il and only if there is a » € N” such that x = y- 2, and y < 7 if and only if
y<zandy# =

A ranked alphabet V is a finite set of symbols associated with a finite relation called
the rank relation ry € V x N. V, denotes the subset {f ¢ V' | (fin) € ry} of V. Let
m = max{n | V, # 0}, ie, m = min{n [ry C V x {0,1,...,n}}. Tn many cases the
symbols in ¥, arc considered as funetion symbols. We say that a function symbol f has an
aritly n if f €V, and a symbol of arity 0 is called a constant symbal.

A tree over Vois a mapping ¢ from Dom, iuto V where the domain Dom, is a finjte subset
of N” such that (1) if = € Dom, and y < z, then y € Domy; (2) if y-1 € Domy and i € N,
theny-j € Dom, for 1 <7 <4,5 € N; (3) t(x) € V,,, whenever fori € N, z-1 € Dom, if and
only if 1 <7 < n. An element of the tree domain Dom, is called a node of t. If t(z) = A,
then we say that A is the label of the node z of . V7 denotes the set of all trees aver V.
| Dom,| denotes the cardinality of Jom,, that is, the number of nodes in .

If we consider V' as a set of function symbols, the finite trees over V' can be identified
with well-farmed terms over V and written linearly with commas and parentheses. Within
a proof or a theorem, we shall write down only well-formed terms to represent well-formed
trees. Hence when declaring “let ¢ be of the form f{ty,...,#,)..." we also declare that f is

of arity n

Let ¢ be a trec over V. A node y in t is called a terminal node if and only if for all
r e Domy, y £ z. Anodey int is an énternal node if and only if y is not a terminal node.
The frontier of Dom,, denoted frontier(Dom,}, is the set of all terminal nodes in Dom,.
The interior of Dom,, denoted interior(Dorn,), is Dom, — frontrer(Dom,). The depth of
x € Domy;, denoted depth(z), is the length of 2. For a tree ¢, the depth of t is defined as
depth(t) = mar{depth(z) | z € Dom,}. The size of { is the number of nodes in t.

Let § be a new symbal (e, § & V) of rank 0. VT denotes the set of all trees in (VU{8})7
which exaclly contains one $-symbol. For trees s € VT and t € (VT U V), we define an
operaiion “#"” to replace the terminal node labelled 3 of s with ¢ hy

siz) if = € Dom, and s(z) # §,
s#t{z) =
tly) ifx=2z-y, s(z) =% and y € Dom,.
For subsets S C Vil and T C (VT U V), S#T is defined to be the set {s#t|se Sandie
1.

Let t € VT and x € Dom,. The subtree t/x of t at x is a tree such that Domy. = {y |
x-y € Dom} and tfz{y) = t{x - y) for any y € Domy.. The co-subtree t\z of f at z is a
tree in VT such that Domp, = {y |y € Dom, and = £ y} and

t{y) for v € Domyp, — {z},
t\z(y) =
] fory ==.

Let T be a set of trees. We define the set Se(T') of co-subtrees of clements of T' by
SelT)y={t\z | te T and = € Dom,},

and the set Sub{T) of subtrees of elements of T' by
SublT)={t/z |t € T and = € Dom,}.

Also, for any ¢t € VT, we denote the quotient of T and ¢ by
{ulue VT and ufpte T} il te VT -1,
Ur(t) =
t if t € V.
A partition of some set S is a sel of pairwise disjoint nonempty subsets of § whose union

is S. If 7 is a partition of S, then for any element s € 5 there is a unique element of

containing s, which we denote H{s,7) and call the block of containing s. A partition
7 is said to refine another partition 7', or x is finer than =’, if and only if every block
of 7' 15 a union of blocks of 7. If 7 is a partition of a set 5 and S’ is a subset of S,
then the restriction of # Lo S is the partition =’ consisting of all those sets £ that are
nonempty and are the intersection of 5° and some block of =. The trivial partition of a
set 5 1s the class of all singleton sets {s} such that s € 5. An alyebraic congruence is a
partition = of V7T with the property that for tou; € VI(1 = ¢ < k)and fe Vi, Bli,x) =
Blui,) implies B(f(t...., 4),7) = B(f{uy, ..., ug),m). I T is any set of trees, then for
L=i<kand f eV, Up(t;) = Up(u,) implies Up(f(ta, .. te)) = Up(Sy, tay .. 1)) =
s = Up(flun, o wemn te)) = Ur(f(un, ..., ue)), so T determines an associated algebraic

congruence 7 by Blty,mp) = B(ty, wr) il and only if Up(t,) = Ugpta).

Definition Let V be a ranked alphabet and m be the maximum rank of the svmbols in
Vo A (frontier-to-root) tree aulomaton over V is a quadruple 4 = (@, V.4, F) such that ¢
is a finite set, I" is a subset of @, and & = (&, 4, ..., bm) consists of the lollowing maps:

b Vi % (QU V) o 29 (k=1.2,...,m),

dola) =a for a £ V.
€} is the set of states, F' is the set of final stales of A, and § is the stale transition function
of A. In this definition, the terminal symhbals on the frontier are taken as “Initial” states, &

can be extended to V7 hy letting -

Gl fiq, ... q) k>0,

FIES{L) At)

{f} if k=0

Sf(th, . te)) =

The trec t is accepted by A if and only if 8(#) N F # 0. The set of trees accepted by A,
denoted T(A), is defined as T(A) = fte VI8N F £ #}.

Note that the tree automaton 4 cannot accept any tree of depth 0.
A tree automaton is deferministic il and only if for each & tuple ¢y, ..., q € QU V, and
each symbol f € Vi, there is at most one element in Sl fymy. ... qe). Note that we allow

undefined state transitions in delerministic tree automata.

T

Proposition 1 ([15]) Nondeterministic tree aulomata are no more powerful than determin-

istic tree automata. That is, the set of trees accepted by a nondeterministic tree autoematon

is accepted by a deterministic tree automaton.

Remark 1 Let A be a deterministic tree aulomaton. If &(ty) = 6(11), then Urpaylth) =

UTI,A}{ fz).

Note that rp(q, contains finilely many blocks for any tree automaton A.

Let A = (Q, V.6 F) and A’ = (Q, V. &' F') be tree antomata. A is isomorphic to A’
if and only if there exists a bijection ¢ of Q@ onto &' such that @(F) = F' and for every
e nqh € QUVp and [€ Vi, w8l foam, ..o ax)) = 84(f 01, - gh) where gf = (q) if ¢; €
Qandgl=qgifgelpforl <1<k

Definition Let 4 = (Q,V,§,F) and A" = (@', V,&", F') be lrce automata. A’ is a free
subautomaton of A if and only if Q" and F' are subsets of @ and F respectively and for
every qly-. .yl € @ U Vg and f € Vi, &£, 00 ai) = &lfiq, - q) or E(f. g0 60
is undefined.

Clearly T(A") C T(A).

Definition Let A = (Q,V,6 F) be a tree aulomaton. 1f Q" is a subset of @, then the
tree subautomaton of A induced by Q" is the tree automaton (@", V, 8", F'"), where F"is the
intersection of Q" and F, and ¢” € §;(f,q),...,qy) ifand only if ¢" € Q" ql,....qr € Q"Uk,,

and ¢" € &(f.qf. ... q))

A state g of A is called useful if and only if there exist a tree i and some address
z € Dom, such that §(1/z) = ¢ and &(t) € F. States that are not useful are called useless.

A tree automaton that contains no useless states is called stripped.

Definition The stripped tree subautomaton of A is the tree subautomaton of A induced

hy the useful states of A.

Definition Let 4 = (2, V., F) be any tree automaton. [f = is any partition of ¢, we
define another tree antomaton 47 = (@', V.8, F') induced by 7 as follows: @' is the sct
of blocks of 7 (le. @ = =). I is the set of all blocks of # that contain an element of
F(ie Ff={Bex|BNF#08}). &isa mapping from Vi x (x U V)* to 27 and for
Bi,...,B, € Q"U Vs and [€ Vi, the block B is in &(f, B1,..., B;) whenever there exist
ge Band ;e Bemorg =B, e Vyfor 1 <1< ksuchthat g = (S, q1.. ... qe).

Remark 2 Let A = (@, V.6 F) be a tree wulomaton and = be a partition of (). Then
TiA/m) 2 T(A), T{A/z) =T{A) if = is the triviel partition of Q, and T(Afx) CT(A/x")

if # refines o',

Definition Let T be a set of trees accepted by some tree automaton. We define the

canonical lree aulomalon for T, denoted C(T) = (@, V, 8, F), as {ollows :

[Up(u) | u e Sub(T) — Vy},
F o= {Ug(t) |1 €T},
bl S Unu)y o Unlue)) = Uy e ue))
if wyy. .o ue and fuq, ..., ue) are in Sub(T),

dola) = a for a € V.

Since T is accepted by some tree automaton, by Remark 1, the set {Uyp(u) | u € Sub{T)—
Vp} becomes finite. Since Uypluy) = Upl(ua) implies Up{tfiu,) = Up(t#uy) for all trees ¢ in
Vgl , this state transition function is well defined and 7(T) is deterministic. (T} is stripped,
that is, contains no useless states. A tree automaton A is called canonical if and only if A

is isomorphic to the canonical tree automaton for 17 A4).

Definition Let Sa be a finite set of trees of VT, We define the base tree automaton for

Sa, denoted Bs(Sa) = (Q. V. F), as follows :

Q) = Sub{Sa)-—V;,
F = 5Su,

'ﬁk{fﬁul:“'!uk} = f{ul!---r“k}

whenever uy,...,u; € QU Vyand fluy,...,u) € Q,

fola) = a forac V.

Note that Hs(5a) is a tree automaton that accepts precisely the set Sa.
An alphabet is a finite non-empty set of symbols. The set of all finite strings of symbols
in an alphabet ¥ is denoted £*. The empty string i= denoted e. The length of the string w

is denoted |w|. If X is a finite set, | X'| denotes the cardinality of X.

Definition A contert-free grammar is denoted & = (N, X, P, 5), where N and ¥ are
alphabets of nonterminals and terminals respectively such that NN E = 0. P is a finite
set of productions; each production is of the form A — o, where 4 is a nonterminal and
a is a string of symbel: from (N U E)*. Finally, 5 is a special nonterminal called the
start symbol. If A — #is a production of P, then for any strings a and ~ in (N U Z)*, we
define @Ay = afv. = is the reflexive and transitive closure of =. The language generated

by G, denoted L{G), is {w | wis in % and § = w].

Two context-free grammars 7 and G7 are said to be equivalent if and only i[L{C) =
L{G"). Two context-free grammars G = (N,E, P, S) and G' = (N, E, P, 8") are said o
be isomorphic, that is, differ only by the names of nonterminals, if and only if there exists
a bijection ¢ of N onto N’ such that (S) = 5’ and for every A, By,...,By € NUZE,
A— By By € Pif and only if w(A) — B .- B, € P' where B! = (B;) if B; € N and
Bi=BiB,eXforl<i<k

Definition Let G = (N, X, P, 5) be a context-free grammar. For 4 in N U E, the set
D A7) of trees aver N U Y is recursively defined as :
{a} ifA=ae ¥,
DA(G) =
{A(t,... i) | A= BBy, , e Dg(G) (L =i<k)} ifAe N.

A tree in 1D 4((7) is called a derivation tree of G from A.

For the set De((G) of derivation trees of (7 from the start symbol S, the S-subscript will
be deleterd.

A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol o with
the rank relation rgp © {7} x {1,2,4,...,m}, where m is the maximum rank of the symbols

in the alphabet Sk, A tree defined over 5k UV} 15 called a skeleton.

Definition Let t € V7. The skeletal (or structural) deseription of t, denoted s(t), is a

skeleton with Do,y = Dom, such that

Hz) ifx € fromtier{Dom,),

s(t)fx) =
o4 if z € interior{ Dom,).

Let T be a set of trees. The corresponding skeletal set, denoted K(T), s {s(t) | t € T'}.

Thus a skeleton 1s a tree defined over 5k U X which has a special label & for the in-
ternal nodes. The skeletal deseription of a tree preserves the structure of the tree, but
not the label names describing that structure. A tree automaton over Sk U X is called a
skeletal tree automalon.

A skeleton in K(D(()) is called a structural description of . Then K(D(G)) is the
set of structural descriptions of (7. Two context-free grammars (7 and 7' are said to be
structurally equivalent if and only of K(D(G)) — K(D(')). Note that if 7 and @' are
structurally equivalent, they are equivalent, too. Given a context-free grammar 7, we can
get the skeletal alphabet which K{I{G)) s defined over. Let r be the set of the lengths of
Lhe right-hand sides of all the productions in . Then the skeletal alphahet Sk for K{D(G))
consists of {g} with rg, = {&} x r.

Next we show two impartant propesitions which connect a context-free grammar with
a tree antomaton. By a coding of the derivation process of a context-free grammar in the

formalism of a tree antomaton, we can get the following result.

Definition Let G = {N,X, P, 5) be a context-free grammar. The corresponding skeletal

iree automalon A(C) = (Q, Sk UL, 4, F) is delined as lollows:

@ =N,

F = (s},

bpio, By, ..., By} 3 A if the production of the form 4 — By -+ By is in P,
dola) = a fora € E.

Proposition 2 Let G be a context-free grammar. Then T{A(G)) = K(ING)). That is, the

set of trees accepted by A{G) is equal to the sel of structural deseriptions of 7.

Proof. First we prove that s € K(D4(G)) if and only if 8(s) 3 A for A € N U L.
We prove it by induction on the depth of 5. Suppose first that the depth of 5 is 0, ie
5 = a € X, By the definition of D4((7) and A{G), a € D4(&) if and only if A = @ if and
only if 8{a) = {dg{a)} 2 A Hence a € K(D4(G)) il and only if §{a) 3 A.

Next suppose that the resull holds for all trees with depth at most &, Let s be a tree of

depth h 4+ 1, so that s = o(uy,...,u) for some skeletons uy,...,ux with depth at most A.

Assume that u;, € K(Dg (G)) for 1 <: < k. Then

oy, ..) € K{(D4(G))
il and only if there is the production of the form A — B, --- B in P,
by the definition of D 4(G),
ifand only if &(e, By, ..., H) 2 A, by the definition of A(G),
if and only if &,(e, By,..., B) 3 A and By € §{uy),..., By € §{ug),
by the induction hypothesis,
if and only if §(o(uy,...,ug)) 3 A

This completes the induction and the proof of the above proposition.

Then it immediately follows from this that s € K{D(G)) if and only if §(s) 3 5. Hence
K(D(G)) =T(AG)). Q.E.D.

Conversely, by a coding of the recognizing process of a tree automaton in the formalism

of a context-free grammar, we can get the following result.

Lo

Definition Let 4 = (), 5k U X, 8, F) be a deterministic skeletal tree automaton for a
skeletal set. The corresponding context-free grammar G(A4) = (N, E, P, 5) is defined as

I{]H[}\‘r‘S.’

N = Qu{s}.
P = {&lo,z,. . .,08) — 2y 1y
| o€ Ski, xy,..., 06 € QUY and (o, 2y, ..., 2] is defined}

U{H—PII"‘I&Jék[g‘xl?""xk}&F}1

Proposition 3 Lel A= {Q, 5kUE, & F) be u skeletal tree aulomalon, Then K{D(G(A))) =
T(A}. That iz, the sel of struciural descriptions of G{A) is equal to the set of irees accepted
by A.

Proof. First we prove that (i) #(s) = q if and only if s € K{D,{G{A))) for g € Q U Y.
We prove it by induction on the depth of 5. Supposc first ihat the depth of s is 0, e
s —a € Y. By the definition of G{A) and D4(G), é(a) = ¢ if and vuly if ¢ = ¢ il and only
if a © D{G(A)). Hence 8(a) = ¢ il and only if @ € K({D,(G{A))).

Next suppose that the result holds for all trees with depth at most &, Let 5 be a tree of
depth b+ 1, so that 8 = o(uy, ..., ug) for some skeletons uy, ..., up with depth at most h.

Aszume that &{u,) =z, for 1 <4 < k. Then

blofwy,. .. ug)) =g

if and enly if du{o, 8(us), ..., 8ue)) =g

il and only if d(m,xy,...,20) = ¢q

if and only if there is the production of the form ¢ — x; -+ -z In G(A),
by the definition of G(A),

ifand only if ¢ — xy - 74 in G(A) and vy € K (D, (G(A))),...,ux € KD, (C{A))),
by the induction hypothesis,

ifand only if m{uy, ... u) € K(D,(G(A)), by the definition of D4(G).

11

This completes the induction and the proof of (i).

Secondly we prove that (ii) s € K(Ds(G(A))) if and only if s € K(D4(G(A))) for
some g € F. Let s be a skeleton of the form o(uy,...,u;) for some skeletons uy, ... up. If
s € K{Ds(G(A))), thensince if u; € K (D (G(A))), then g, = &(s,) for 1 <7 < kby (i), there
is the production of the form § — &(uy)---&(uy) in G(A) and 8o, 8(uy), ..., 6(us)) € F
by the definition of G{A). Then & a(uy,.... ux)) € F and so &(s) € F. Hence by (i),
s e K{D,(G{A))) for some q € F.

Conversely if s € K(D,(G(A))) for some q € F, then &(s) = & o, 8wy}, ...,8(us)) € F
by (i). By the definition of G{A), there is the production of the form 5 — d{uy) -« é{uy)
in G{A). Since u, € K (Dsuy(G(AN) for 1 <7 < k by (i), &{uy, ..., u) € K({Ds(G(A))).
HMence s € K(Dg(G(A))).

Lastly it immediately follows from (i) and (1) that &(s) € F ifand only if s € K{IH{G(A))).
Hence T(A) = K(D{G(A))). Q.ED.

Therefore the prablem of learning a context-free grammar from structural descriptions

can be reduced to the problem of learning a tree automaton.

3 Structural Identification

Gold's theoretical study [11] of language learning introduces a fundamental concept that is
very important in inductive inference : identification in the limit. In the Gold’s traditional
definition, to a learning algorithm M that is attempting to learn the unknown language
L, an infinite sequence of examples of L 15 presented. A positive presentation of L is an
infinite sequence giving all and only the elements of L. A complele presentalion of L is an
infinite sequence of ordered pairs (w,d) from E* x {0,1} such that d = 1 if and only if
w is a member of L, and such that every element w of £* appears as the first component,
of some pair in the sequence, where E 15 the alphabet which the language I is defined
over. A positive presentation eventually includes every member of L, whereas a complete
presentation eventually classifics every clement of £ as to its membership in L. If after

some finite number of steps in a positive (complete) presentation of L, M guesses a correct

12

conjecture for the unknown language L and never changes (converges to) its guess after this,
then M is said to identify I in the limit from positive (complete) samples. In the casc that
the conjectures are in the form of grammars, M identifies in the limit a grammar G such
that L{G) = L.

On the other hand, as indicated in [16], in order to identily a granunar which has the in-
tended structure, it is necessary to assume that information on the structure of the grammar
is available to the learning algorithm M. In the case of context-free grammars, the structure
of a grammar is represented by the structural descriptions of it. Suppose & is the unknown
context-free grammar {not the unknown language). This is the grammar that we assume has
the intended structure, and that is to be learned (up to structural equivalence) by the learn-
ing algorithm M. In this case, a sequence of examples of the structural deseriptions K(D{(7))
is presented. A posilive presentulion of K(D{G)) is an inlinile sequence giving all and only
the elements of K(D()). A complele presentation of K{D(C)) is an inflinite sequence of
ordered pairs (s.d) from (SE U2 « {0, 1} such that d = | if and only if 5 is a member
of K(D((7}}), and such that every element s of (5% U X}” appears as the first component of
some pair in the sequence, where Sk is the skeletal alphahet for the grammar . Then a
learning algorithm identifies in the limit a grammar &’ such that K{ING")) = K(D{G)) (ie.
structurally equivalent to) from a presentation of the structural descriptions K {D{G)).

This type of dentification criterion is called structural identification in the limit.

4 Condition for Learning from Positive Samples

In order to learn formal languages from positive samples in the Gold's eriterion of identifica-
tion in the limit, we must avoid the problem of “overgeneralization”, which means gnessing
a language that is a strict superset of the unknown language. Angluin showed in [3] various

conditions for correct identification of formal languages from positive samples that avoids

overgeneralization. In her framework, the target domain is an indexed family of nonempty

recursive languages Ly, Lo, La.

An indexed family of nonempty recursive languages Ly, Ly, La, ... is said to be learnable

13

from positive (complete) samples if and only if there exists a learning algorithm M which
identifies L, in the limit from positive (complete) samples for all @ = 1.
One of necessary and sufficient conditions for correct identification from positive samples

is lollowing,.

Condition 1 An indexed family of nonemply recursive languages Ly, Ly, Ly, . .. satisfies
Condition 1 if and only if there exists an effective procedure which on any input 2 = 1

enumcrates a set of strings T; such that

. T s finite,

]

T, C L, and

L%

. forall j = 1,if T; € L; then L; is not a proper subset of L,.

This condition requires that for every language L,, there exists a “lelltale” finite subset
T: of L; such that no language of the family that also contains T; is a proper subset of L;.
Angluin proved that an indexed family of nonempty recursive langnages i learnable from
positive samples if and only if it satisfies Condition 1.

These characterizations and resulls can be easily applied to the problem of learning tree
automata, and hence to the problem of structural identification of context-free grammars
because the Angluin’s results assume only the enumerability and recursiveness of a class of

languages.

5 Reversible Context-Free (Grammars

Definition A skeletal tree automaton A = (Q,5k U E,8, F) is reset-free if and only
if for no two distinct states g, and g; in @ do there exist a symbol ¢ € 5k;, a state
gs € @, an integer t € N (1 < ¢ £ k) and k — 1-tuple uy,...,upy € @ U T such that
Bl sy Uimry Gy My ey 1) = g3 = Slo, Uy, Uiy G2y Uiy - k). The skeletal
tree automaton is said to be reversible if and only if it 15 deterministic, has at most one

final state, and is reset-free.

14

The idea of the reversible skeletal tree automaton comes from the *reversible automaton”™
and the “reversible langnages” in [4]. Basically, the reversible skeletal tree antomaton is the

extension of the “rera-reversible antomaton”™.

Remark 3 If A is a reversible skelctal free automaton and A" is any lree subaulomaton of

A, then A" is a reversible skeletal tree automaton.

Lemma 4 Let A = (@, 5k 0 X, 6, {qs}) be a reversible skeletal tree automaton. For i ¢

(kU }_.]g" and wy. s € (S UE)T, if A accepts both 18w, and t#usy, then Sluy) = &uz).

FProof. We prove il by induction on the depth of the node labelled § in f. Suppose first that

= 5. Since A has only one final state g5, 6{uy) = &(t#u) = qp = {t#us) = d{uz). Next
suppose that the result holds for all € (SkUE){ in which the depth of the node labelled §
is at most h. Let ¢ he an element of (SkU Y}, in which the depth of the node labelled § is
h+1, s0that t = V'#o(sy, .. . 5,8 5. 80-q) for some sq,..., 85, €(SEUX)T,ieN
and t' € (Sk U)] in which the depth of the node labelled § is h. Tf A accepts both
tf#uy = PHFo(s, . o fimny iy, 8y 000y 851) and t#Huy = T80, 00 Sio1 oy Siae e Sk)
them 8(a{s, ... 8y Uy, 8.0 861)) = Sla{s, . o 80,12, 80, ... 561)) by the induction

hyvpothesis. So

Since A is reset-free, 8{uy) = 6{uz), which completes the induction and the proof of Lemma

4. Q.ED.
Definition A context-lree grammar G = (N, X, P, 5) is said to be invertible if and only
ilA—oand B— oin P implies 4 = B.

The motivation for studying invertible grammars comes from the theory of bottom-up
parsing. Bottom-up parsing consists of (1) successively finding phrases and (2) reducing

them to their parents. In a certain sense, each half of this process can be made simple but

15

only at the expense of the other. Invertible grammars allow reduction decisions to be made
simply. Invertible grammars have unique righthand sides of the productions so that the
reduction phase of parsing hecomes a maiter of table lookup. The invertible grammar is one
of normal forms for context-free gramnmars. Thus for any context free language ., there is

an invertible grammar G such that L(G) = L.

Definition A context-free grammar G = (N, X, P, 5) is reset-free if and only if for any

two nonterminals B,C and a, 3 € (NUE)", A — aBfd and A —+ aC§ in P implies B=0C,.

Definition A context-free grammar (7 is said to be reversible if and only if (7 is invertible
and reset-free. A context-free language L is defined to be reversible if and only if there exists

a reversible context-free grammar G such that L = L(G).

Definition Let A = (@, 5kU %,8 {qs}) be a reversible skeletal tree automaton for a

skeletal set. The corresponding context-free grammar G'(A) = (N, E, P, §) is defined as

follows.
N = @,
5 = 41
P = {‘ﬁ-k[ﬂdifl;---,mgrj—rxl..,xk

| & Skyy, z4,...,2x €EQUY and &(o,71,...,7;) is defined}.
By the definitions of A(G) and G'(A}, we can conclude the following,

Proposition 5 If G is a reversible context-free grammar, then A(G) is a reversible skeletal
tree automaton such that T(A(G)) = K(D(G)). Conversely if A is a reversible skeletal tree

automaton, then ('(A) is a reversible context-free grammar such that K(D(G'(A))) = T{A).

Therefore the problem of structural identification of reversible context-free grammars is
reduced to the problem of identification of reversible skeletal tree antomata.

Next we show some important theorems about the normal form property of reversible
context-free grammars. First we show that each context-free language can be given a re-

versible context-free grammar.

16

Theorem 6 For any contert-free language L, there 1s a reversible contert-free grammar G
such that L(G) = L.

Proof. I'irst we assume that . does not contain the empty string. Let &' = (N', X, P, §)
be a e-free context-free grammar in Chomsky normal form such that L{G") = L. Index the
productions in P’ by the integers 1,2....,|FP’|. Let the index of 4 = o & F' he denated
I{A — a). Let R be a new nonterminal symbel not in N and construct G = (N, L, P, 5) as

follows:

N = NU{R),

iy
[

— 5’1
P = {A-aR|A>acP andi=1A—al}
U{R — ¢}

Clearly (7 is reversible and L{G) = L.

Ifee Lilet L'=L — {¢} and G' = (N,E, P, 5] be Lhe reversible context-free grammar
constructed in the above way for L' . Then G = (N, X, PU {5 — R}, 5) is reversible and
LiGy=1. Q.ED.

The trivialization occurs in the previous proaf because e-productions are used to encode
the index of the production. We prefer to allow e-production enly if absolutely necessary and
prefer e-free reversible context-free grammars if possible. Unfortunately there are context-
frie languages for which there do not exist any e-free reversible context-free grammar. An

example of such a language is:
fa" iz 1}u{t [jz 1}V (¢}
However if a context-free language does not contain the empty string and any terminal
string of length one, then there is a e-free reversible context-free grammar which generates

the language. In order to obtain this useful result, we guote an important theorem for

invertible grammars in [12].

Proposition 7 ([12]) For each conteri-free grammar G there is an invertible contert-free

grammar G so that L{G') = L(G). Moreover, if G is e-free then so 1s G

7

Now we have the following. The argument of the prool becomes more complex but the

result 18 more useful.

Theorem 8 Let L be any context-free language in which all strings are of length at least

two. Then there is a e-free reversible conlert-frec grammar G such that L(G) = L.

Proaf. We construct the reversible context-free grammar & = (N, X, F, §) in the [ollowing

stops.
First by the proof of the above proposition in [12], there is an invertible context-free

grammar G' = (N',E, P', §') such that L(G') = L and each production in P’ is of the form
1. A— BC with A,B,C e N'— {S"} or
2. A—awithAe N'—{Standa € Z or
3. 5" — A with A € N' — {§'}.

Since all strings in L are of length at least two, I’ has no production of the form A — a for
Ae N'- {5 and @ € ¥ such that §' - A g P
Next for all productions in P’ whose left-hand side is not the start symbol, we make them

reset-free with preserving invertible. P" is defined as follows:
1. Foreach A € N'— {5}, let
{A—=a,A—ag,...,A— a,}

be the set of all productions in P’ whose left-hand side is A. P" contains the set of

productions
(A= o, A— Xy Xy, — o, Xy, — Xayyoo X, — o)y
where X, X4, ..., X4, are new distinet nonterminal symbols.
2. For each A € N' — {5"} such that §' — 4 € P/, let

{A —PB1G1,A—P B]Gz-,”-..f‘i—? B,.G.,}

18

be the set of all productions in P whose left-hand side is 4. P" contains the set of
productions

{H" — 0,0, 8" = B0y, . 58" — 4,00
where (', (1 < j < n) is a new nonterminal symbol.

3. P" contains the set of productions {C — C | C e N' — {5} .

Let G" = (N",E, P", 5"), where N" = N'U{X 4, X4, oo Xa_, |AEN {8 u{C]
Ce N — {8} u{S"}. Then it is obvious thal G" is invertible and L(C") = L(G").
Lastly for all productions in P whose leflt-hand side is the start symbaol, we make them

reset-free with preserving invertible and get the desired grammar. F is defined as follows:
1. AwonePilA—o€ P'and A# 5"

2. Let

il N
(8" w0, 5" —ag,... 58" = a,}

be the set of all productions in P" whose left-hand side 15 7. P containg the set of

productions
{5 -t (x],S —+ X.E-'H XS.‘ —* (¥g, .Y,g, —* .‘:32,-“ 1-]{3-.-; —* (‘tn},

where X Xg ..., Xs, , are new distinct nonterminal symbols.

1

TLet & = (N,E, P58, where N = N" U '[X'_q] s Xg.oo, Xg, U {S). Clearly the resulting

grammar (7 15 reversible, e-free and L{G) = L{G"), that is, (' generates L. QLD
Definition A context-free grammar & = (N, X, P, 5) is said to be extended reversible if
and only if for P'= P - {5 wa|ae ¥}, 7' = (N,E, ", 5) is reversible.

By the above thenrem, reversible context-free grammars can be easily extended so that for
any context-free language not containing €, we can find an extended reversible context-free

grammar which is e-free and gencrates the language.

19

Theorem 9 Let L be any contexi-free language not containing €. Then there is a e-free

ertended reversible contezt-free grammar G such that L(G) = L.

Proof. It is obvious from the definition of the extended reversible context-free grammars

and Theorem §. Q.E.D.

6 Learning Algorithms

In this section we [lirst describe and analyze the algorithm RT to learn reversible skeletal
tree automata from positive samples. Next we apply this algorithm to learning context-free
grammars from positive samples of their structural descriptions. Essentially the algorithm
RI'is an extension of Anglnin’s learning algorithm for zero-reversible automata [4]. Without

loss of generality, we restrict our consideration to only e-free context-free grammars.

Definition A positive sample of a tree automaton A4 is a finite subset of T(A). A positive
sample CS of a reversible skeletal tree automaton A is a characteristic sample for A if and

only if for any reversible skeletal tree automaton A, T(A") 2 €S implies T(A4) C T{A').

6.1 The Learning Algorithm RT for Tree Automata

The input to AT is a finite nonemply set of skeletons Sa. The output is a particular reversible
skeletal tree automaton A = RT(Sa). The learning algorithm RT begins with the base tree
automaton for Sa and generalizes it by merging states. RT finds a reversible skeletal tree
automaton whose characteristic sample is precisely the input sample.

On input Sa, RT first constructs A = Hs(Sa), the base tree automaton for Sa. Tt then
constructs the finest partition =, of the sel @ of states of A with the property that A/x; is
reversible, and outputs A4/7;.

To construct 7y, BT hegins with the trivial partition of @ and repeatedly merges any

two distinct blocks H; and [if either of the following conditions is satisfied.

1. By aud B; boili contain final states of 4.

20

9 There exist two states ¢ € B, and ¢' € I3, of the forms g = oy, ... ug) and
q' = a(ul,...,u}) such that for | < 5 = k, u; and u} both are in the same block

or the same terminal symbols.

3. There exist two states ¢,¢' of the forms g = o{uy,.. Lue) and ¢ = olul, ... 0)
‘1 the same block and an integer I (1 <[< k) such that w, € B, and u} € H;
and for 1 < j < k and j # I, u; and 1) both are in the same block or the same

terminal symbols.

When there no longer remains any such pair of blocks, the resulting partition is my.

To implement this merging process, 1 keeps track of the further merges iminediately
implied by each merge performed. The variable LIST coutains a list of pairs of slates whose
corresponding blocks are to be merged. RT initially selects some final state g of 4 and places
on LIST all pairs (g, ¢') such that g is a final state of A other than g. This ensures that all
blocks containing a final state of A will eventually be merged.

After these initializations, RT proceeds as follows. While the list LIST is nonempty, T
removes the first pair of states (g1, ¢z). 1fgq; and ¢z are already in the same block of the current
partition, I goes on to the next pair of states in LIST. Otherwise, the blocks confaining
q1 and ga, call them B, and By, are merged to form a new block By, This action entails that
LIST be updates as follows. For any two states ¢.¢" € @ of the forms ¢ = o(uy,...,uk) and
g = o{u},... ui), if ¢ and ¢’ are not in the same block and u; and 1} both are in the same
block or the same terminal symbols for 1 < j < k, then the pair (g,¢") is added to LIST.
Also for any g € By.q € By of the forms q = a(w, .. coug) and gf = o(uf, ..., u) and an
integer [{1 <1 < k), if u; and uj are states of A and not in the same block and u; and u}
hoth are in the same block or the same terminal symbols for 1 < 5 < k and j # 1, then the
pair (u, u}) is added to LIST. After this updating, /1" goes on to the next pair of states
from LIST.

When LIST becomes empty, the current partition is 7;. RT outputs A/7; and halts.

The learning algorithm RT is illustrated in Figure 2. This completes the description of

the algorithm KT, and we next analvze its correciness.

21

Input : a nonempty positive sample Sa;
Output : a reversible skeletal tree automaton A;
FProeedure
%% Initialization
Let A = (Q,V,6 F) be Bs(Sa);
Let 7 be the trivial partilion of Q;
Choose some g € I
Let LIST contain all pairs (¢,¢") such that ¢' € F — {g};
Let : = 0;
%% Main Routine
%% Merging
While LIST# @ do
Begin
Remove first element (g1, ;) {rom LIST;
Let By = B(q,m;) and By = Blgy, m);
If B, # B; then
Begin
Let w4y be m;y with [}y and H; merged;
p-UPDATE(x;1) and s-UPDATE(74, By, Ba);
Increase ¢ by 1;
End
End
%% Termination
Let f =t and output the tree automaton A/r,.
%% Sub-routine
where
PUPDHTE(TF.+1} is :
For all pairs of states o(uy,...,u;) and oful, ..., u;) in @ with
Bluj,min) = B[u;,w.—+-.} oru;=u;€Lforl <5<k
and Ble(uy,... u), M1 7 Blo{ul,. . ul), mis)
do
Add the pair (o{uy,...,u), o{u],...,u;)) to LIST;
5-UPDATE{ x4y, By, Hy) is:
For all pairs of states o(uy, ..., u,) € By and o{ul,...,u;) € By with
u,uy € @ and Bluy, 7)) # Bluf, miya) for some I (1 <1< k)
and Blu;, 7)) = Blul,migq) oru; =u; € Eforl1 < j < kandj#l
do
Add the pair (u, ;) to LIST.

Figure 2: The learning algorithm RT for Reversible Tree Automata

22

6.2 Correctness of BT

In this section. we show that RT correctly finds a reversible skeletal tree automaton whose

characteristic sample is precisely the input sample.

Lemma 10 Let Sa be a positive sample of some tree automaton A. Let m be the partition
mryay restricted to the set Sub(Se)—X. Then Bs(Sa)/w is isomorphic to a tree subautomaton

of the canonical tree automaton C(T(A}). Furthermore, T{Bs(Sua}/7) is contained in T(A).

Proof. The result holds trivially if Sa = 0, so assume that Sa # 0. Let Bs(Sa)/w =
(Q,V, 6, F) and C(T{A)) = (Q", V.&, F'). The partition « is defined by B(t,) = Blts, 7)
if and only if Uray(t) = Uga)(tz), for all ¢y, t; € Sub(Sa) — E. Hence h(B(t,7}) = Ur4)(#)
is a well-defined and injective map from @ to @' If B, is a final state of Bs(Sa)/r, then
By, — B{t.z) for some | in Sa, and since T(A) contains Sa. Uggay(t) s a final state of
C(T(A)). Hence h maps F o F".

Rs(5a)/7 is deterministic because for f{ty, ..., &) and fluy, ... ug) in Sub(Sa), B{t;, 7) =
Blug,w)if t,u; € Sub{Sa)—Zand t; = w; il t;,u; € B (1 <1 < k) lmply B(f(t,...). 7} =

B(f(w,....us). 7). For gu,....qs € QUS and J € Vi,
h'(“'k(fﬂ?h“'!‘?k” = 'h'fB{f“l- ,,f*}lTi‘i':IL
where Blt,sl=qifqgeQandf; =g ifq e B (1 <1< k),
= Uppy(f(ts, .. 1))

= S, Ureay(te)s -« Urayte))-

I'hus h is an isomorphism between Bs(Sa)/m and a tree subautomaton of C(T{A)).

Q.E.D.

Lemma 11 Suppose A is a veversible skeletal tree automaion. Then the stripped [ree sul-

aulornaton A" of A is canonical.

Proof. By Remark 3, A" is a reversible skeletal tree automaton, and accepts 7 = T(A).

T =9, then A" is the tree automaton with the empty set of states and therefore canonical.

23

So suppose that T £ . Let C(T) = (Q, SkU .6, {g/}) and A’ = (@', SkUE, &, {g}}). We
define h{g") = Ur(u) if §'(u) = q' for ¢’ € Q'. By Remark 1, h is a well-defined and surjective
map from Q' to Q. Let ¢ and ¢} be states of A’, and suppose that Ur(u,) = Up(ug) for
u, and up such that &(uy) = gy and §'(uz) = ¢3. Since A’ is stripped, this implies that
there exists a tree ¢ € (Sk U Y)] such that t#u; and t#uy are in T. Thus, by Lemma 4,
¢, = ¢}. Hence h is injective. Since §'(u) = ¢} for any u € T, h maps {¢}} to {gs}. For

Grooea G € QU T and o € Sk,

R{bp(o, gy gr)) = h(8(a(ur, ... uwe))),

where 8'(u,) = ¢l for 1 <i <k,

Thus & is an isomorphism between C(T') and A'. Hence A’ is canonical. Q.E.D.

Lemma 12 Suppose that A iz a reversible skeletal tree automaton. Then the canonical tree

aufomaton C(T(A)) is reversible.

Proof. By the above lemma and Remark 3, the stripped tree subautomaton A’ of A is
canonical, reversible, and accepls T[A). Thus, since C(T(A4)) is isomorphic to A', C(T(A))
is reversible. Q.E.D.

Lemima 13 Let Sa be any nonempty positive sample of skeletons, and =; be the final par-
tition found by RT on input Sa. Then r; is the finest partition such that Bs(Sa)/my is

reversible.

Proof Let A = (Q,SkU X, 8, 1) be iz(Sa). If the pair (g1, 42) i= ever placed on LIST,
then g; and ¢, must be in the same block of the final partition, that is, B{g,, 7y) = B(qz, 7).
Therefore, the inilialization guarantees that all the final states of A are in the same block of
7s, 5o A/m; has exactly one final state. For any By,..., By € 7; UX and ¢ € Sky, all the
clements of &(o, By,. .., Bi) are contained in one block of 7. Thus A/wy is deterministic.

Also, for any block B of 7y, any pair of states g;,q; € B of the forms ¢, = o(uy, ..., u) and

24

g = a{u},...,u}) and any integer [(1 <1< k), if Bluj) = Bluf,mg) or uy = uj € £
for 1 < j < k and j # [, then both u; and uj arc in the same block or the same terminal
symbols. Thus A/n; is reset-free. Hence A/m; is reversible.

Next we show that if 7 is any partition of @ such that A/= is reversible, then g refines 7.
We prove by induction that r, refines « fori =0,1,... . f. Clearly mg, the trivial partition of
Q, relines 7. Suppose that g, Ty,7; all refines = and 7, is obtained from =; by merging
the blocks B{q, n;) and £{ga, 7} in the coursc of processing entry (g1, g2) from LIST. Since
x; vefines m, Blgy, =) is a subset of Blq,7) and Blgz, 7,) s a subset of B(gs, 7). Soin order
to show that w4y refines =, it is sufficient to show that H(q,,7) = B(g:, 7).

If (g1, g2) was first placed on LIST during the initialization stage, then ¢, and g, are both
final states, and since 4 /7 is reversible, it has only one final state, and so B{q,,7) = B(qa. 7).
Otherwise, {qy, q2) was first placed on LIST in consequence of some previous merge, say the
merge to produce %, from 7,5, where 0 < m = i. Then either q; and g2 are of the [orms
a(ty, ..., up) and ofuf,... u;) respectively and Bluj,my,) = Bluj,mm) or u; = u, € L
for 1 € j < k, or there exist two states q{ in the block By and ¢; in the block H; of
the forms oy, .. g, §ya¥yy oy upq) and olug, o Uy, g2, Uy ,uk_,) respectively for
some [(1 < [< k) such that Blu;,7.) = Bluj, 7n) or u; = u; € Lforl == k=1,
where By and B, arc the blocks of 7 merged in [orming 7. Since m, refines « by the
induction hypothesis and A7 is reversible, B{gy,) = B{g;,=). Thus in either case 7,4,

refines 7. Ilence by finite induction we conclude that 7y refines . Q.FE.D.

Theorem 14 Let Sa be a nonempty positive sample of skelelons, and Ay be the skeletal tree
aufomaton output by the algorithm R1' on input Sa. Then for any reversible skeletal tree

automaton A, T(A) 2 Sa implics T(Ay) T T{A).

Proof. The preceding lemma shows that Ay is a reversible skeletal tree automaton such
that T(A;) 2 Sa. Let A be any reversible skeletal tree automalon such that 7(A4) 2 Sa,
and 7 be the restriction of the partition mr(4) to the set Sub{Sa)— X. Lemmna 10 shows that
Ds(Sa)/n is isomorphic to a tree subautomaton of C(T(A)) and T(Bs(Sa)/w) is contained

in T(A). Lemma 12 shows that C(1'(A)) is reversible, and therefore by Remark 3, Bs{Sa)/=

25

is reversible. Let m; be the final partition found by RT. By the above lemuma, =, refines
x, so T(Bs(Sa)/ms} = T(Ay) is contained in T{Hs(Sa)/x) by Remark 2. Hence, T{Ay) 13
contained in T(A4). Q.E.D.

6.3 Time Complexity of RT

Theorem 15 The algorithm RT may be implemented to run in time pelynomial in the sum
of the sizes of the input skeletons, where the size of a skeleton (or tree) t is the number of

nodes in t, i.e. |Dom,!.

FProof. Let Sa be the set of input skeletons, n be the sum of the sizes of the skeletons in Sa,
and d be the maximum rank of the symbol & in k. The base tree automaton A = Bs(Sa)
may be constructed in Lime O(n) and contains at most n states. Similarly, the time to output
the final tree automaton is O{n). The partitions =, of the states of A may be queried and
updated using the simple MERGE and FIND operations described in [1]. Processing each
pair of states from LIST entails two FIND operations to determine the blocks containing
the two states. If the blocks are distinct, which can happen at most n — 1 times, they
are merged with a MERGE operation, and p UPDATE and s UPDATE procedures process
2(d 4+ 1in{n — 1) and at most 2dn(n — 1) FIND operations respectively. Further at most
n — 1 new pairs may be placed on LIST. Thus a total of at most 2n(n — 1) + {n — 1) pairs
must be placed on LIST. Thus at most 2({2d+ 1ln{n = 1)+ 2n+41)(n — 1) FIND operations
and n — 1 MERGE operations are required. The operation MERGE takes O(n) time and

the operation FIND takes constant time, so BRI requires a total time of O(n?). Q.E.D.

6.4 Identification in the Limit of Reversible Tree Automata

Next we show that the algorithm AT may be used at the finite stages of an infinite learning
process to identify the reversible skeletal tree automata in the limit from positive samples.

The idea is simply to run /7" on the sample at the nth stage and ontput the result as the

nth guess.

26

Definition An operatar H1.. from infinite sequences of skeletons sy, 33, 85,... Lo infinite

sequences of skeletal tree automata A, A, 4a, ... is defined by

Ay = AT{({s,85...., 5, }) foralin = 1.
We need to show that this converges to a correct guess after a finite number of stages.

Definition An infinite sequence ol skeletons sy, 55, 5y, ... is defined to be a positive pre-
sentation of a skeletal tree antomaton A 1f and only if the set {81,252, 85,...} Is precisely
T(A). An infinite sequence of skeletal tree automata Ay, Az, Aa, ... is said to converge to a
skeletal tree automaton A if and only if there exists an integer N such that for alln = N,

A, s isomorphic to 4.

I'he following result is necessary for the proof of correct identification in the limit of the
reversible skeletal tree automata from positive presentation. We extend 6 to (V' U QJT by
letting &(¢) = ¢ for ¢ € @, where @ is considered as a set of terminal symbols. In this

definition, if ¢ — &{u) for ¢ € Q and u € V7, then &(t#q) = 6(t#u) for t € ‘r"sT.

Proposition 16 For any reversille skeletal tree automaton 4 = (@, 5k U E, 6, {qg}), there

effectively exists a characteristic sample.

Froof. Clearly, f T(A) = @, then 'S = ¥ is a characteristic sample for A. Suppuose
T'(A) # 0. For each state ¢ € ¢, let u(g) be a tree of the minimum size in Sub{T(A))
such that &(u{q)) = ¢, and v(g) be a tree of the minimum size in S¢(7'(A)) such that
So(ql#fg) — g For each a € X, let ufa) = a. Let O5 consist of all skeletons of the form
vigl#ulq) such that ¢ &€ @ and all skeletons of the form v{g)#a(ul(g), ... uw{ge)) such that
Tireeaa EQUE, a& Sk and g =8ido,q, .. ooqe). Ttas clear that ©5 C© T(A4). We show
that 'S is a characterislic sample [or 4.

Let A" be any reversible skeletal tree automaton such that 1'(A') 2 'S, We show that
Urgan(t) = Ugpanl(ulg)) for all skeletons ¢ € Sub(T(A)), where ¢ = &(f). We prove it

by induction on the depth of t. Suppose first that the depth of £ is 0, ie. [= a € E.

27

Since u{a) = a, it holds for the depth 0. Next suppose that this holds for all skele-
tons of depth at most h, for some A > 0. Let ¢ be a skeleton of depth h + 1 from
Sub{T(A)), so that t = o(sy,...,s4) for some skeletons sq,..., 8 € Sub(T(A}) with depth
at most h. By the induction hypothesis, Urgay(s:) = Urgay(u{g)), where q; = 8(s;) for
1 <i < k. Thus, Urgay(t) = Urpan(o(sr, ... 80)) = Urpanlo(u(qr), s2,.. . 86)) = -+ =
Urian(olu(g), - -, ulge-1), s2)) = Uray(o(ulm), - ulge)). Hg' = bilovqr, .. @) = &(1),
then v(g")#tu(g’) and v(g)#a(u(q),... . u(ge)) are both elements of CS. So v(g)#ulq'},
v(g)#e(ulg),...,ulge)) € T(A'). By Lemma 4, Urpan(o{u(qi), - . ulqe))) = Urpan(ulg)).
Hence Upan(t) = Uzpan(ulq’)), which completes the induction.

Thus for every t € T(A4), Uyan(t) = Urpan(ulgs)). Since vigs) = 8, u(gs) € CS and
so u(g;) € T(A"). This implies that § € Urpan{u(gs)) = Urgan(t). Thus t = $#¢ € T(A').

Hence T(A} is conlained in T(A"). Therefore C'S is a characteristic sample for A. Q.E.D.

Then we conclude the following result.

Theorem 17 Lel A be u reversible skeletal tree automaton, s, 8;, 8a,... be a positive pre-
sentalion of A, and Ay, Az, Ay, ... be the output of BT on this input. Then Ay, Ag, A4, ...

converges to the canonical skeletal tree automaton A" for T'(A).

Proof. By Theorem 16, there exists a characteristic sample for A. Let N be sufficiently
large that the set {5, 33,...,3n) contains a characteristic sample for 4. For any reversible
skeletal tree automaton A', T(A') 2 {sy,82,.. ., 5, } implies T{A,) C T(A"), by the definition
of BT, and Theorem 14. Thusforn > N, T(A,) = T(A}), by the definition of a characteristic
sample. Maoreover it is easily checked that the skelctal tree automaton output by RT is
stripped, and therefore canonical, by Lemma 11. Hence A, is isomorphic to C(T(A)) for all

n > N, so Ay, A, As, ... converges to C(1'(A)). Q.E.D.

We may modify BT by a simple updating scheme to have good incremental behavior so

that A,4) may be obtained from A, and s5,41.

28

Fnput : a nonempty posilive structural sample Sa;
Qutput : a reversible context-free grammar (7
Procedure :

Run RT on the sample Sa;

Let & = G'(RT(S5a)) and ontput the gramumar G.

Figure 3: The learning algorithm RC for Reversible Grammars
6.5 The Learning Algorithm FC for Context-Free Grammars

In this section, we describe and analyze the algorithm RC using the algorithm RT" to learn
reversible context-free grammars from positive samples of structural descriptions.

A positive structural surmple of a context-free grammar (5 is a finite subset of K(D(G)).
A positive structural sample €S of a reversible context-free grammar (7 is a characteristic
structural sample for ¢ if and only if for any reversible context free grammar &', K{D{(')) 2
C'S implies K(D{G)) C K {LNG')).

The input to RC is a finite nonempty set of skeletons Sa. The output is a parlicu-
lar reversible context-free grammar (7 — 0 Sa) whose characteristic structural sample is
precisely Sa. The learning algorithm R is illustrated i Figure 3.

The following propositions and theorems of the correctness, time complexity and correct
structural identification in the limit of the algorithm HC are straightforwardly derived by
using Proposition 5 from the corresponding results for the algorithm RT described in Sections

6.2, 6.3 and 6.4

Theorem 18 Let Sa be a nonempty positive structural sample of skeletons, and Gy be the
output of the conteri-free grammar by the algorithm RC on input Sa. Then Gy is re-
versible and for any reversible contert-free grammar G, K(L{C)) D Sa implies K{D(G;)) C

K{D{&)).

Theorem 19 The algorithm RC may be implemented to run in time polynomial in the sum

of the sizes of the input skelcions.

Define an operator KC,, from infinite sequences of skeletons s, 82, $3,... to infinite se-

quences of context-free grammars Gy, Gy, Ga.... by
Gon=RC({31,82,....3,}) for all n = 1.

An infinite sequence of skeletons sy, 8z, 84, . .. is defined to be a positive sfructural presentation
of a context-free grammar G if and only if the set {s1, 53, 53,...} 1s precisely A {D({G)). An
infinite sequence of context-Iree grammars G, Gz, G3,. .. 15 said to converge to a context-free
grammar (7 if and only if there exists an integer N such that for all n > N, 7, is isomorphic

to (7.

Proposition 20 For uny reversible confezi-free grammar G, there effectively exists a char-

acteristic struetural sample.
Now we have the following.

Theorem 21 Let G be a reversible contert-frec grammar, sy, s, 83,... be a positive struc-
turul presentalion of G, and Gy, Gy, Ga, ... be the output of RC.. on this input. Then
(31,2, (7a,. .. converges to a reversible conteat-free grammar G' such thal K(D(G")) =

K(D(G)).

We modify the algorithm RC to learn extended reversible context-free grammars from
positive samnples of their structural descriptions.

We can easily verify that given a positive structural presentation of an extended re-
versible context-free grammar G, the algorithm RC’, illustrated in Figure 4, converges to
an extended reversible context free grammar which is structurally equivalent to G and runs
in time polynomial in the sum of the sizes of the input skeletons, This implies that if in-
formation on the structure ol the grammar in the form of extended reversible is available
to the learning algorithm, the full class of context-free languages can be learned efficiently

from positive samples.

30

Input : a nonempty positive structural sample Sa;

Output : an extended reversible context-free grammar G;
Procedure

Let Sa' = Sa - {o(a) |« € L};

Let I'ni = San{ala) |a € Z},

Run R on the sample Sa’ and let &' = (N,E, P, S) be RC(Sa');
Let P'= {5 —alo(a) € Uni};

Let G = (N, EZ, PU Tl 5} and output the gramumar G.

Figure 4: The learning algorithm HC” for Extended Reversible Grammars
7 Example Runs

In the process of learning coutext-free grammars from their structural descriptions, the
problem is to reconstruct the nenterminal labels because the set of derivation trees of the
unknown context-free grammar is given witl all nonterminal labels erased.

The structural descriptions of a context-free grammar can be equivalently represented by
means of the parenthesis grammar. For example, the structural description in Figure 1 can

be represented as the following senlence of the parenthesis grammar:

{ { the { big dog } } { chases { a { voung girl) }))

In the lwllowing, we demonstrate three examples to show the learning process of the
algorithm RC. Three kinds of grammars will be learned, the first is a contexl-lree grammar
for a simple natural language, the second is a context-free grammar for a subset of the syntax

for a programming language Pascal, and the third is an inherently ambiguous context-lree

ETAININAT.

7.1 Simple Natural Language

Now suppose that the learning algorithm RC is going to learn the following unknown context-

free grammar Gp for a simple natural language:

31

Sentence — Noun_phrase Verb_phrase
Noun_phrase — Determiner Noun_phrase2
Noun_phrase2 — Noun

Noun_phrase?2 — Adjective Noun_phrase2
Verb_phrase — Verb Noun_phrase
Determiner — the

Determiner — a

Noun — girl

Noun — cat

Noun — dog

Adjective — young

Verb — likes

Verb — chases.

First suppose that the learning algorithm EC 15 given the sample:

(({the) { {girl))) { (likes) { (a} { {cat))}))
(((the) { (girl))} } { (likes) { {a) ({dog) }))}

e first constructs the base context-free grammar for them. However it is not reversible.
So T merges distinct nonterminals repeatedly and outputs the following reversible context-
free grammar:

5= NT1 NT2
NT1 — NTI NT4
NT4 — NT5

NT2 - NT6 NT7
NTT — NTBR NTO
NT9 — NT1)
NT3 — the

NTH — girl

NTE — likes

NTE — a

NTI10 — cat
NT10 — dog.

R has learned that “cat” and “dog” belong to the same syntactic category, However
RC has not learned that “girl” belongs to the same syntactic category (noun) as “cat” and
“dog”, and “a” and “the” belong to the same syntactic category (determiner). Suppose

that in the next stage the following examples are added to the sample:

(((a) ((dog))) { (chases) { {the) ((gir]})}))
(({a) ((dog) }) ({chases) { (a) {(cat)))})

32

Then RC outputs the reversible context-free grammar:

58— NT1 NTI?
NT1 = NT3 NT4
NT4 — NTS
NT? = NT6 NT1
NTL = NTT NTH
NT8 = NT9
NT3 = the

NT5 — girl

NTG — likes

NT6 — chases
NIT —=a

NTY — cat

NTY — dog.

RC has learned that “likes™ and “chases” belong to the same syntactic category (verd)
and “the girl”, “a dog” and “a cat” are identified as the same phrase (noun_phrase). However
RC has not learned vet that “a” and “the” belong to the same syntactic category. Suppose

that in the further stage the following examples are added to the sample:

({ {a} ((dog))} { {chases) ({a) { {gixl})) })
({ {the} { (dog))) { (chases) { (a) ((young) ((i))} }))

RC' outputs the reversible context-free grammar:

5= NTIL NT2
NT1L — NT3 NT4
NT4 - NTG

NT4 - NT6 NT4
NT2 4+ NT7T NT1
NT3 — the

NTY — a

NT5 — girl

NT5 — cat

NT5 — dog

NTH — young
NTT — likes

NTT = chases.

‘I'his grammar is isomarphic to the unknown grammar Gy
7.2 Programming Language

Suppose that the learning algorithm HC is going to learn the following unknown context-free

grammar Gy for a subsct of the syniax for a programming language Pascal:

33

Statement — v = FEzrpression

Stalement — while Condilion do Statement
Statement — if Condilion then Statement
Statement — begin Statementlist end
Staternentlist — Stalemnent ; Slalementlist
Statementlist — Statement

Condition — Fzrpression > FErpression
Ezrpression — Term + Erpression
Erpression — Term

Term — Factor

Term — Faclor = Term

Factor — v

Factor — (Expression).
First suppose that BC is given Lhe sample:
(v o= ({{v)) + (({eh)))]}
(v = ({{v) x {{v}))})}
(v = (({v)) + {({v) x ((£})))))
(o os= (00N + (@) < (v)

RC outputs the following reversible context-free grammar which gencrates the set of all
assignment statements whose right-hand sides are arithmetic expressions consisting of a vari-
able “v”, the vperations of addition “4" and multiplication “x™ and the pair of parentheses
‘.'{'! md !:I'!':

H—=nv :=NT1

NT1 — NT2

NT1 = NT2 + NT1
NT2 - NT3

NT2 = N13 = NT2
NTA —»

NT4— (NT1).

Next suppose that K is given four more examples:

{ while { {{{v}}}) > {({{t} x {(e})}) } do (v := ({{v)) + (({v}}))})
(i (D) = () x ({v))})) then (v 2= (({v})} + {{{v}})))})
{ begin { {v = ({(v}) + (({v))))} 5 {{v = ({{v) x ({v)}})})})}) end)
(begin { (v == {{{v) x {{t)}}}}) end)

RC emtputs the following reversible context-free grammar isomorphic to the unknown

grammar (7

34

2y =N

5 o while NT4 do §
5 — il NT4 then &

5 — begin NT5 end
NTL — NI2

NT1—- NT2 + NT1
NT2 + NT3

NT2 o N13 = NT2
NT3 —w

NT3 = (NTL)

NT4 - NT1 > NT1
NTG — 5

NTs - 5 NT5

7.3 Inherently Ambiguous Language

Suppose that the learning algorithm RC is going to learn the following unknown context-free
grammar (y; for the language {a™b"c"d™ | m 2 1,n =2 1}u {ambe"d™ | m = 1,n = 1}
which is known as an inherently ambiguous context-free language:

=+ AR
£ —saCd
A—ab
A—=aAb
B ed
B e Bd
¢ — D
D—aldd
D - E
E b
E—sbEec

First suppose that HC' is given the sample:

{{a b) {cd))
({a{a)b} (clecd)d))
({ab) {c{cd)d)]

EC outputs the following reversible context-free grammar which generates the language

{a™™e*d* Im = 1,n 2 1}

a5

5—= NT1 NT2
NTlL —alb

NT]. —+ er-] I!'l
NT2 - ed

NT2 - ¢ NT2 d.

Next suppose that RC' is given three more examples:
la ({{bc)))d)
{a{{a{(b{bc)ec))d))d)
{a { {({B{bc)c}))d)
RC outputs the following reversible context-free grammar isomorphie to the unknown

grammar (G

55—+ NT1 NTZ
5 +aNT3d
NT1 —ab
NTl—a NIV &
NT2 = e d

NT2 e NT2 d
N3 — NT4
NT4— NTS
NT4 - a NT4d
NTi —be
NT5— b NT5 e,

8 Concluding Remarks

In this paper, we have considered the problem of learning context-free grammars from posi-
tive samples of their structural descriptions and investigated the effect of assuming example
presentalions in the form of structural descriptions on learning from positive samples. By
introducing the class of reversible context-free grammars, we have shown that the assump-
tion of examples in the form of structural descriptions makes il possible to learn the [ull class
of context-free languages from positive samples and in polynomial thme. Thus this problem
setting makes our learning algorithm practical and useful.

Augluin [2] has taken an entirely different approach with the same motivation of inves-
tigating what assumption can compensate for the lack of explicit negative information in

positive samples and studied the effect of assuming randomly drawn examples on various

36

types of limiting identification of formal languages. She showed that in her criterion for
It identification analogous to Valiant's finite criterion [17], the assumption of stochasti-
cally generated examples does not enlarge the class of learnable sets of formal langnages from
positive samples. Compared this result with ours in this paper, we can conclude that the
assumplion of examples in the form of structural descriptions strongly compensates for the
lack of explicit negative information in positive samples and is helpful for efficient learning
of context-free grammars.

Lastly we remark on related work. Crespi-Reghizzi 9] is most closely related, as it de-
scribes a constructive method for learning context-free grammars from positive samples of
structural descriptions. However his algorithm and our one use completely different meth-
ods and learn different classes of context-free grammars. The class of reversible context-free
grammars can generate all of the context-free languages, while his class of context-free gram-
mars defines a subclass of context-free languages, called noncounting conteri-free languages
110]. Since our formalization is based on tree automata, one of merits of our method is
the simplicity of the theoretical analysis and the easiness of understanding the algorithm,

whereas the time efficiency of his algorithm [9] is still not clear.

Acknowledgements

The author is indebted to Dr. Kaname Kobayashi for his useful suggestion and warm
encouragement. He is very grateful to Yuji Takada, his colleague, and Dr. Takashi Yokomori,
University of Electro-Communications, who worked through an earlier draft of the paper and
many comments. The author would also like to thank Shigemi Ooizumi for implementing
this algorithm and exhibiting it works well and fast.

This is part of the work in the major R&D of the Fifth Generation Computer Project,

conducted under program set up by MITL

37

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Uliman. Data Structures and Algorithms. Addison-

Wesley, 1983,

[2] D. Angluin. Identifying lunguages from stochastic ezamples. RR 614, YALEU/DCS,

1988,

[3] D. Angluin. Inductive inference of formal languages from positive data. Information

and Control, 45:117-135, 1980,
[4] D. Angluin. Inference of reversible languages. Journal of the ACM, 29:741-765, 1982.
5] D. Angluin. Learning k-bounded contert-free grammars, RR 557, YALEU/DCS, 1987,

6] D. Angluin. Learning regular sets from querics and counter-examples. Information and

Clomputation, T5:R7-106, 1987,
[7] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988,

[#] P. Berman and R. Roos. Learning one counter languages in polynomial time. In Pro-

ceedings of IEEE FOCS "87, pages 6167, 1087,

(9] S. Crespi-Reghizzi. An effective model for grammar inference. In B. Gilchrist, editor,

Information Processing 71, pages 524-529, Elsevier North-Holland, 1972.

[10] §. Crespi-Reghizzi, G. Guida, and D. Mandrioli. Nencounting context-free languages.

Journal of the ACM, 25:5T1-580, 19TH.

[11} E. M. Gold. Language identification in the limit. Information and Control, 10:447-474,

1967.

[12] J. N. Gray and M. A. Harrison. On the covering and reduction problems for context-free

grammars. Journal of the ACM, 19:675-698, 1972,

38

[13] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models
for polynomial learnability. In Proceedings of Ist Workshop on Computational Learning

Theory, pages 42-55, 1988,

[14] O. H. Ibarra and T. Jiang. Learning regular languages from counterexamples. In

Proceedings of 1st Workshop on Computalional Learning Theory, pages 371-385, 1988,

[15] L. S. Levy and A. K. Joshi. Skeletal structural descriptions. Information and Control,

39:192-211, 1978

[16] Y. Sakakibara. Learning context-free grammars from structural data in polynomial
time. Iu Proceedings of ist Workshop on Computational Learning Theory, pages 330-

344, 1988, To appear in Theoretical Computer Seience.

(17] L. G. Valiant. A theory of the learnable. Cammunications of the ACM, 27:1134-1142,
149384,

