ICOT Technical Report: TR-486

TR-486

The Multi-PE Data Processing
and Its Evaluation

by
K. Nakanma

July, 1989

1989 1COT

Mita Kokusai Bidg. ?1F (03) 456-3161 =5
“ :D | 4-28 Mita 1=Chome Telex 1COT J32964
Minalo-ku Tokyo 108 Japan

Institute for New Generation Computer Technoldgy

The Multi-PSI : Inter-PE Data Processing
and Tts Evaluation

Katsuto Nakajima
Institute for New Generation Compnter Technology

Abstract

The Multi-PSI system developed in the Japanese FGCS project is a loosely
coupled multiprocessor and is used as a testhed to experiment on the implemen-
tation of parallel execntion of KL1 programes,

The key point of the implementation is to minimize the inter-processar com-
munication becanse the cost for data access between processors is much higher
than ingide one processor.

Address translation tables for inter-processor data references, called ezport
and import tables, are introduced Lo realize local garbage collection. The weighted
reference counting (WEC) method is uszed for incremental inter-processor garbage
collection., To avoid redundant copies of KL1 data among processors, the two
schomes, export/impart hash tables and siructure ID, are employed.

The cost of handling frequent messages is 25 to 80 psec, and they are expected
to be reduced to around 70 to 85 % of the current implementation by tuning up.
Evaluation with two medium size benchmark programs shows the overhead for
inter-processor communication is about 10 to 25 % in operating time even with
the large cost of communication processing. The network traffic is very light and
the topalogy is not limiting the system performance in the current system.

1 Introduction

In the course of the Japanese I'ifth Generation Computer Project, a prototype parallel
inference system, the Muti-PST[Tak! 88), was developed aiming at two objectives: (1)
to provide a practical tool for parallel software research and development, (2) to provide
a testhed for implementation of parallel execution of KL1 programs. KL1 1s a stream
AND-parallel logic programming language based on Flat GHC[Ueda 86.

The Multi-PSI is a non-shared memory multiprocessor, whose processing elements
(PEs) are the CPUs of the personal sequential inference (PSI) machine. There was
an earlier version, the Multi-PSI{V1, but in this paper the name Multi-P5SI represents
only the Multi- PSI/V2.

Up to 64 PLis are connected to each other to form a two-dimensional mesh network
that can switch messages and perform automatic routing. The two-dimensional mesh
may not be the best network topology for parallel exeention of KLI, but it is a realistic
candidate for dense implementation in a limited space retaining the scalability with the
currently available technology. Therefore, the Multi-PSI can be considered a prototype
of a highly parallel machine, in which the number of processing nodes is, for instance,

source(output) destination{input)
data byte (5)——
control for data ——{1)——
a parity bit ——(1)}——
i——(1)—— husy

Figure 1: Physical Lines of the Network Channel

more than 1000, In the design of KL1 implementation, the emphasis was placed on
achieving efficient inter-PE communication and ellicient use of local memory.

This paper describes the design issues of the KL1 processor especially en the inter-
PE data processing, and also gives some evaluation resulis on the inter-PF processing
and the dynamies of parallel execution.

2 Overview of the Multi-PSI Architecture

2.1 Processing Element Architecture

The processing element { PE) of the Multi-PSI is the CPU of the PSI-II [Nakashima 87
Tt is a horizontal micro-programmed CISC architecture which enables a flexible im-
plementation suited for incrementally enhancing the performance and adding various
functions. The cvcle time is 200 nsec. It has a 4 Kword direct map cache memory.

2.2 Network Controller Architecture

Fach PE is associated with a specially designed network controller. It has five pairs
of channels connected to the four adjacent network nodes and to the PE of the node.
A pair of channels is for input and output, each of which has 9-bit data with a parity
line and one bit busy acknowledge signal (Figure 1). A 48-byte buffer (Output Buffer)
is installed at each output channel to retain messages in the event of the destination
node heing busy. A 4-Kbyte buffer (Writc Buller and Read Buffer) is installed at each
inpnt and output channel for the PE of the node to reduce disturbance of processing.
The controller also has an antomnatic routing function. It provides two transmis-
sion modes. Oue is to route messages according to the physical PE number in the
message header. The other uses the logical PE number, a point in a hypothetical
two-dimensional space, named the processing powcer plane (P, for automatic load
balancing![Takeda 88]. A software-defined table called a path table is looked up to
determine transmiission direction. The bandwidth of each channel is 5 Mbytes/sec.

2.3 Routing Strategy

A fixed routing strategy called prioritized coordinate ordering 15 adopted. 1t means
transmitting along the z-coerdinate until the distance in the coordinate becomes zero,
then transmitling along the y-coordinatc.

IThe P? schewme is entrently being studied and has not been implemented yet.

This prevents network deadlock as 1t is impossible to make a circle of nodes waiting
for one another. Note that even with this strategy, a deadiock may occur if a PE fails
to take in zll the messages dirccted to it.

2.4 DBasic Message Handling Routine

A low level microcoded routine is respensible for basic handling of the messages to and
from the network controller. It performs composition and decomposition of message
packets such as handling message header and tail, and arranging a 32-bit data in the
processor to/from four byte serial data in the network controller. The operalions in
this routine are independent [rom the implementation of KKL1.

The following is also a function of this routine. When one complete message (from
the head to the tail) arrives at the Read Buffer, an interrupt is signaled to invoke the
rantine, which moves the contents of the Read Buffer to a large pre-defined memory
area, called Read Packed Buffer. The aim is to prevent network deadlock by propa-
gating the processing delay to other nodes along the network path.

On sending a message, if the routine cannot find enough resm to store the whole
message in the Write Buffer, it will wait until n wre room becomes available.

3 KL1 Distributed Implementation

3.1 Key Points of the Design

The architecture of the next gencration parallel inference system, PIM 'Geto 88], has
two levels; the upper level is a scalable network-connected multi cluster architecture,
and the lower level (cluster) is shared memory high-performance architecture. As a
PE in the Multi-PSI corresponds to a cluster in the PIM, the research of the language
implementation on the Multi-PSI has been concentrated on the problems related to
inter-cluster non-shared memory processing, and has emploved various mechanisms to
solve them.

The mechanisms we designed are meant to be available for a highly parallel system
with more than one thousand nodes, and not necessarily optimized for the Multi-PSI
itself which has up to 64 nodes.

The most critical issue in the design is that the cost of data access between PEs
is much higher than that within one PE. So onr first priority was to reduce inter-PE
communication.

Inter-PE communication can be categorized into two: inter-PE data management
and inter-PE goal management (control of the distributed computation). This paper
will not describe the latter, which can be found in [Ichiyoshi 87], [Rokusawa 88|, and
[Nakajima 89].

The key points in our design for inter-PE data management are as follows:

(1) Local garbage coliection (local GC)
(2) Efficient inter PE garbage collection (inter-PE GC)

(3) Avoidance of redundant data copies

Processory, Processor,,

Import table Export table
EX cell . Exported data
IEL. 1 __*_{r'.-,, e) Y

Figure 2: Fxternal Reference and Export/Import Table

3.2 Inter-PE Data Reference

KL1 goals can be moved to other PEs by throw_goal messages initiated by KL1 pragma
(...,goal@processor(PE),...)|Ichiyoshi 87, Nakajima 89]. When a KL1 goal contain-
ing pointers to a data structure (including unbound variable] is moved to another PE,
such pointers become a pointer referring io a data structure in a different PE. This is
called an external reference, and the pointer is called an external (reference) pointer.
To generate an external pointer is called exporiing, and to receive the external pointer
is called tmporting.

As the single assignment semantics of KLI allows data copying, 1-word atomic
values such as integers and atoms are usvally eopied and carricd with the thrown
goals. However, if the data is a structure, the overhead for transferring the whole data
may become unnecessarily large; the goal might not need all the data. Therelore, the
sysien exports structure data as an external pointer and the contents are transferred
lazily on request by a read message. To retain the identity of variables, unbound
variables are alwayvs exported as external pointers.

3.3 Local Garbage Collection

To collect all the garbage in the system, a global (77 is needed, which must be performed
by cooperation of all the PEs. This global GC has the serious disadvantage of forcing all
the processors to stop program execution. It takes a very long time, up to the longest
path of dala relerences in the system multiplied by the network communication delay.
The more processing nodes the system has, the more serious the disadvantage will be.
Tt is betler to perform GC locally as far as it can reclaim enough memory resource. To
collect garbage without communicating with other PEs is called local GC.

To perform local GC, all the exported data must be known by the PE so that
they are not thrown away. For this purpose, the export table keeps addresses of all the
exported data in a PE. All the external pointers point to the entries of the table from
ontside the PE(Figure 2). The external pointers are represented in the form < n, ¢ >,
where n is the exporting PE number and e is the entry posilion in the export table.

The entries of the export table are maintained on local GC according to the move-
ment of the exported data. The maintenance cost of the export table on cach export
or on local GO and the indirection cost of the external accesses are the overhead of this
scheme, but would be well compensated for by the avoidance of performance degrada-
tion caused by global GC.

PE,; Fxport table entry PE;
EXREF .
WEC = 30 WEC = 50
Pl
EXREF H———
WEC =20

Figure 3: Weighted Export Counting Scheme

3.4 Efficient Inter-PE Garbage Collection

Ta reclaim garbage cells pointed to by the export table, the entries of the table must be
deleted when they become garbage. Lhree typical schemes can be considered. One is
the stop GU, which includes the global GU as described above, and may be the worst in
terms of system performance. Another is on-the-fly GC, in which dedicated processors
are running for memory reclamation. I'his scheme is often favorable for ensuring real-
time response, but the total performance is much reduced and the mechanism 15 hard
to implement. The last is incremental GC, probably using reference counting, which 1s
EDDd n MEemory access lucalil}', but not In terms of run-time overhead.,

The major defect of reference counting is that both when an external pointer be-
comes garbage | decrease of references), and when an external pointer is copied (increase
of references), a message must be sent from the importing PEs to the exporting one
to indicate the change of the references. Furthermore, an acknowledgment message is
necessary to prevent the reference count to reach zero by accident, because increment
and decrement messages may arrive the exporting PE under certain racing condition.

To solve these problems, we employed the weighted export connting (WEC) method
[Ichiyoshi 88] based on the weighted reference counting (WRC) principle [Watson 87]
for incremental inter-PE GC. In this scheme, a weighted count of a positive integer,
called WEC, is kept on the both export and import sides (Figure 3). The system operates
keeping the following invariant:

WEC of X at exporting PE= } . importing PEs (WEC of X)
+E|'r1. netwark {HEC of x]

The WEC scheme has the following advantages:

e When an imported pointer is copied to another PE, the WEC is split. No message
is sent to maintain the WEC of the exporting PE,

e There iz no racing problem.

To keep WEC on the importing side, we have the import table(Figure 2). The import
table is also beneficial in accelerating inter-PE GC after a local GC. It is swept after
a local GC, and release exref messages are sent to the exporting PEs to return the
WEC: if the imported pointers are known to be no longer used.

3.5 Re-exporting

The same data structure may be exported to the same PE scveral times. If a different
external pointer is given to the re-exported data, the importing PE cannot recognize
it as a pointer Lo the same data and may send a read message many times, in which
case the data is transferred redundantlv. This can be avoided by reusing the same
export and import table entries. For this purpose, the export hash table and import
hash table are provided on cach side. The export hash table associates the exported
data addresses with their exiernal pointers, and the import hash table associates the
imported external pointers with their import table entries. The number of imports
thraugh the same import table entry is also held as émport count in the entry to enable
ellicient release of the entry.

3.6 Global Structure Management

Tn our export system, the external pointer is originated at the exporting PE. For
example, if PEy has a slructure copied from PLi4, and PEg has two external references
to hoth the ariginal structure in PE,4 and the copy in PEg, their external pointers are
not the same. PEq will have two copies after reading both of them. Turthermore,
when the same data is imported twice even from the same PE, there are no means to
realize the re-import if a copy has been created before the second import, because the
detection of re-importing is done only for the externally referencing data not copied
vet,

If the copied structure 1s large and will live long, this will cause serious inefliciency
in both memory space and data transfer. In the worst casc, copies are created on each
irnport if a pair of mutually linked struetures are read alternately along a loop. This
is not a rare case for program code, To solve this problem, we introduced siructure
1D for such structures, which 1= a glohal 1T) attached to exported structures. By this
means, what was originally the same structure is duplicated only once in a PE even if
it is imported more than once from different PEs.

3.7 White and Black Exporis

The external reference management described so far maintains both the WEC and import
count, and looks up the hash table on each export and import.

Fortunately, the MRB mechanism[Chikayama 87] can be used to optimize this, Te
export a single reference pointer at low cost, a simplified pair of export and import
tables, called white export and white import tables, are used. The original tables are
called the black export and black smport tables. From our observation, poinlers copied
once will often be copied again later. In contrast, a single reference pointer is not likely
to be duplicated after being exported. Thus, the white export and import tables do
not have hash tables because the exported pointers are rarely exporled again.

The white import table can be considered as an import table for the pointers whose
WEC and import count equals one, and its entries are released immediately when the
imported pointers are collected by MRB GC#. White export entries are also released
only when the release_exref message is received,

i[f an imported poinler i copied, the MRR of hoth the original and copied peinters is turned on
50 that the import table entry will not be released when one of the pointers becomes garhage.

fi

4 Evwvaluation

This section shows the costs of basic inter-PE processing overhead and gives some
measurcment results of dynamic characteristics through execution of two experimental
Progratis,

4.1 Communication Overhead

Figure 4 shows the micro instruction steps (or time in microseconds) of the costs for
handling typical messages. The data was obtained by microprogram tracing and docs
not include the memory access overhead {cache miss penalty). The external pointers
in this evaluation are exported through the white export table.

The costs of sending and receiving a throw_goal message whose arguments are an
atom and two external reference pointers in a typical situation® are shown in Figure 4(a)
and (b, It takes about 85usec for sending such a goal and about 130usec for receiving
and storing it for later execution.

Copy-to_RPKB is the cost of moving a f5-hyte message from the Read Buffer to the
Read Packet Buffer. Tt ran be omitted by decoding messages directly from the Read
Buffer when there is enough room in the Ilead Duffer to get further messages. With
this optimization, the cost can be reduced by about 13.5%. Furthermore, according to
onr recent estimation, the cost of sending it would be reduced by up to 15 % and the
cost of receiving it by up to 30 % by fully tuning up the microcode.

Figure 4{c),(d),(e), and (f) describe the cost of sending and receiving of a read
message requesting the contents of an external pointer and an answer value message
answering the request. The returned data is a list whose CAR and CDR are an alomic
data and another external pointer respectively.

It costs 25psce to send a 14-byte read message and 35usec to receive it. It costs
42psec 1o send a 24-bvic answer_value message and 80usec to receive it. In these
cascs, our estimations of the tuning up cffcet are also 15 to 30 % of the current version.

ln the other evaluation, the overhead of black cxport/import is known Lo be 2 o
5.6 psec (10 to 28 steps) woere than thatl of while export/import in read or answer.
value message handling,

4.2 Dynamic Characteristics of Inter-PE Communication

4.2.1 Denchmarks

The two medium size programs listed below were used to analyze the dynamic charac-
teristics of inter- PE communication.

¢ Pentomino : A packing pieces puzzle program which packs pieces of various shapes
into a given rectangle.

e Bestpath : A program to find the lowest cost path from a given node to all other
nodes of a network consisting of 330 by 330 mesh-connected nodes.

*The PE receiving the message is assumed to already have program code and management infor-
mation to execute the goal,

Send throw (platom,EXREF,EXREF)] [65 byles]

(a) N\\Q\) 851Lsec (419 steps)

Recelve_throw (p{atom,EXREF,EXREF})) | 65 bytes]

o RS 1/

Send_read (EXREF) [14 bytes]
© RN 25usec (117 steps)

Receive_read (EXREF) [14 bytes]

(d) m 351 sec (175 steps)

Send_answer value ([atom | EXREF]) [24 bytes]

CENN 4211 sec (208 steps)

Receive answer value | [atom | EXREF]) [24byles]

0 mggggﬁgwﬁ BOp sec (397 sleps)

130 psec
(637 steps)

g0 100 120

Copy_to_RPKB

Basic message handling routines
Sending release_exref message
Storing goal for exacution

(i

Figure 4: Message Handling Cost

140 (K sec)

[Pentoming on 16 PEs

]

read | 183405 [340 %)
answer.value | 183,399 (340 %)
release_exref 165474 (307 %)
unify 2,171 04 %)
threw.goal 2,170 (04 %)
{others) 2,765 (0.5 %)
Total messages 539385
Tolal reduclions 14,735,231
Net execntion time 31,182 (msec) = 168 KRI'S
Time/reductions 214 (psec)
Reductions/messapges 27.3
Messages/sec 17,133

| Destpath on 16 PEs -
read 63385 (281 %)
answer_value 53,476 { 23.7 %]
unify AL600 (184 %)
release_exref 31,688 (14.0 %)
throw_goal 31,688 (14.0 %)
{others) 3863 (1.7 W)
Tolal messages 225,700
Total reductions 4,900,791
Nel execution time 16,426 (msee) = 298 KRPS
Time reductions 3.35 (psec)
Reduction/messages 217
Messages/scc 13,740

Table 1@ Message I'requency and Reductions

They use KL1 pragma to distribute goals over PFs, trying to localize the process
communication while keeping enongh parallelism.

The Pentomino program does an exhaustive search of an OR tree of possible piece
placements. One master PE starts from the root and searches the tree down to a
certain fixed depth, and evenly distributes the subtrees below that depth to all PEs
including itself.)

The execution of the Bestpath problem is divided inte two different stages. The
first 18 distribution of the processes that represent the network nodes. 'L'he second is
communication between sich nodes to solve the problem; the minimum cost informa-
tion known so far is propagated to the adjacent nodes. Only the measurement results
of the latter stages are reported here.

A system with 16 PEs was used for the measurement.

4,2.2 Message Frequency and Network Traffic

Tahble 1 shows the total number of messages in the system. The total number of
reductions? 1s also listed.

In1 Pentomino, the read, answer_value and release exref messages are dominant.
In Bestpath, the unify and throw_goal messages join them. The average frequency
of the messages is 13 to 17 K times/sec. Assuming that the average number of the
message length is 20 bytes and the number of message traveling distance (the number
of haps of the network channels) is 2.5,° the average traffic of a channel is (20 x
2.5% 17K}/ (number of channels)® = 17.7(Kbytes/sec), which is less than 0.35 % of
the channel handwidth of 5Mbytes/sec.

The total message frequency in the system is proportienal to the number of PEs
if the granularity of the distribmted processes is the same as in our evaluation. The
average number of hops is nearly proportional to the square root of the number of
PEs. The number of channels that enlarges the network bandwidth of the system is
proportional to the number of PEs. This means that the average channel traffic can
grow proportionally to the square root of the number of PEs.

We can improve PE performance by a factor of 8 x4 in the PIM system: 8 times by
replacing the PE with a shared memory cluster, in which eight processors with coherent
cache memories are connected by a commen bus; 4 times by using VLS5 technology,
making each processor four times faster than the PE in the Multi-PSI. Therefore, in a
PIM system of 1,600 clusters with a four times faster network, the network traffic would

be (0.35 x 32 x +/100)/4 = 28% of the 20 Mbytes/sec bandwidth, and it would not
be problematic at least with these benchmark programs. However, unless the locality
of the inter-PE communication is considered or unless hot spots in the network are
avolded by program, the network could be saturated quite easily.

4.2.3 Distribution Overhead

Performance of parallel execution on a network-connected multiprocessor like the Multi-
PSI can be degraded by the following factors.

(1) Load imbalance: Cost of not being able to keep PEs in operation

(2} Swnchronization overhead: Cost of suspending processes because of communica-
tion interrupts and cost of resuming them

(3} Communication overhead: Cost of message handling
(1) Network traffic jam: Cost of keeping sender and/ar receiver wait

(5) Losing memory locality: Cache miss penalty caused by increased working set by
interruption

(6) Speculative computation: Cost of the work that would not have been required if
the program had run sequentially,

*The number of commitments.

52 (L —1)-(L+ 1)/(3 L) where L = ./(number of PEs)=4. This is assuming that the mesh
network is a square and that messages are sent randomly between PEs.

84-L.(L—1)=48 when [=4

10

Pentomino

Best work rale

(PE 1)

Average work rate

Worst work rate

(PE 13)

T t 1 T i t L 1 ¥

0 im0 20 30 40 &0 60 YOO &80 90

Bestpath

TR
I’# ','Ir‘f 4

Best work rate o
N

100 (%)

(PE 15)

Avarage work rate

Waorst work rate

(PE 0)

-

intar-PE
communication

B jnira-PE &
oparation

| El cache penalty O jdie

Figure 5: Performance Degradation Analysis

160!%}

Some of them are related to each other. In our evaluation here, we can omit (4)
because the network trafiic is quite low. We can probably omit (6) because the two
programs are known to do only small amount of specu lative computation.

The Multi-PSI has a built-in hardware for counting the number of steps exccuted
at specified micro instructions. We also have calendar clocks in each processors, all of
which are simultancously initialized when the system starts up. By using them and
logging the time of entering and exiting from idle status at each processor, we can
measure the following items.

(a) Operating steps for effective work (regrettably inchiding the overhead of sus-
pending and resuming processcs because the routines for them are common with
normal processing)

(b) Operating steps for inter-PE message handling
(e) Total operating time
{d) Total idling time

The total {net) exeeution time is (¢} + (d), and {d) includes idling time because
of load imbalance or traffic jam. The work rate can be calenlated from (¢)/((c) + (d)).
The difference between (c) and (a) + (b) can be considered as the cache miss penalty.
(B) is the communication overhead without cache penalty.

Figure 5 shows the result of the system degradation analysis with two benchmarks.

In both benchmarks, the average work rates are about 85 % and the ratios of the
intra-PFE operating steps are almost the same.

The inter-PE communication steps in 'entomino occupy 25 % of the operating
steps, a much larger than 10 % in Bestpath. This is because structure data represent-
ing partial solutions are [requently transferred between PEs. In Bestpath, the cache
penalty is very large. It tells that the communications between small grain processes
representing the network nodes requires a very large working set probably in both
intra- and inter-PE processing,.

5 Conclusion

‘I'his paper described the network architecture of the Multi-P5SI and staled the issues
of implementing KT.i on a looscly coupled multiprocessor, the Multi-PSI. This paper
also revealed the cost of the inter-PE communication and analyzed the sources of
performance degradation.

The KL1 distributed system was designed and implemented aiming at minimizing
the inter-PE processing cost which may seriously degrade the system performance.
The export and import tables are introduced to enable local GC. The WEC is used
for incremental inter-PE GC. The export and import hash tables and the structure ID
avold redundant copies of KL1 data.

The cost of one message handling is roughly 10 to 10 times that of an average
reduction. The work rate analysis tells us that even with rather large cost of com-
munication, the overhead for inter-PE communication can be kept within one fourth
of the operating steps, by considering ihe locality of the process communication. The

12

e
[

network traffic is very low and the topology is not limiting the system performance in
the current system with these benchmarks.

At least two programs are proved to run in much scaled-up systems built on the
principles of the current system. We believe that this will apply for wide area of
application programs.

A cknowledgments

T would like to thank the ICOT Director, Dr. K. Fuchi, and the chief of the fourth
research laboratory, Dr. S. Uchida, for giving me the opportunity to conduct this
research. [would also like to thank the researchers of ICOT and the cooperating
companies, who have worked with me in designing and implementing the KT.1 system
on the Multi-PSI/V2. Lastly, I appreciate the help of Mr. Onishi and Mr. Tmai in
analyzing the evaluation data and making figures in this paper.

References

[Chikayama #7] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat
GIC. In Proceedings of the Fourth International Conference on Logic Progremming,
1987,

[Goto 88] A. Goto, M. Sato, K. Nakajima, K. Taki and A, Matsumoto. Overview ol the
Parallel Inference Machine Architecture (PIM). In Proceedings of the International
Conference on Fifth (Feneration Compuler Systerns, ICOT, Tokyo, 1988,

[Ichiyoshi 87] N. Ichiyoshi, T. Mivazaki, and K. Taki. A Distributed Implementation of Flat
GHC on the Multi-PSL. In Proceedings of the Fourth International Conference on
Logic Programming, 1987,

[lehiyoshi 88] N. Ichiyoshi, K. Rokusawa, K. Nakajima and Y. Inamura. A New External
Reference Management and Distributed Unification for KL1. In Proceedings of the
International Conference on Fifth Generation Computer Systems, IOOT, Tokyo, 1988,

[Nakajima 89] K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Hokusawa and T. Chikayama.
Distributed Implementation of KL1 on the Multi-PSI/V2. In Proceedings of the Sixzth
International Conference on Logic Propmmming, 1989,

[Nakashima 87] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential
Inference Machine : PSI-T1. In Proceedings of 1987 Symposium on Logic Programming,
Sept. 1987,

[Rokusawa 88] K. Rokusawa, N. lchiyoshi, T. Chikayama and H. Nakashima. An FEfficient
Termination Detection and Abartion Algorithm for Distributed I'rocessing Systems.
In Proceedings of the 19848 International Conferenee on Parallel Processing, Vol. 1,
1088,

[Takeda 58] Y. Takeda, H. Nukashima, K. Masuda, T. Chikayama and K. Taki. A Lead
Dalancing Mechanism for Large Scale Multiprocessor Systems and its Implementation.
In Proceedings of the Inicrnational Conference on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988,

[Taki 88] K. Taki. The Parallel Software Research and Development Tool: Multi-PS1 sys-
tem. Programming of Future Generation Computers, Elsevier Science Publishers BV,
(North-Holland), 19388,

[Ueda 86] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programining Language with
the Concept of a Guard. 'T'echnical Report TR-208, ICOT, 1986.

13

[Watson 87] P. Watson and I. Watson. An Efficient Garbage Collection Scheme for Paral-
lel Compuier Architectures. In Proceedings of Parallel Architeetures and Languages
Furope, June 1987,

14

