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Abstract

This paper presents a nnified framework for analyzing Prolog programs. The framework
iz based on a hybrid of the top-down and the bottom-up interpretations of Prolog programs.
An execution-time property of Prolog goals can be analyzed when the goals are execunted
using an interpretation that is obtained by abstracting the hybrid interpretation according
io the property. Due to its hybrid character, the execution neither dives into infinite loop noz
wastes time for irrelevant goals. In addition, the behavior of the abstract hybrid interpreter
is very close to the way human programmers usually analyze the property in their mind.
Type inference, depth-abstracted term inference and mode inference are exemplified as the

anelysis of Prolog programs when different abstraction is employed.
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1. Introduction
(1) What is Abstract Interpretation?

Automatic analysis of the execution-time properties of programs from their texts is
useful not only for human programmers to find program bugs but also for meta-processing
systems to manipulate programs effectively. For example, the information of data types some-
times plays an important tole in the verification of Prolog programs [15]. The information of
the form of Prolog goals appearing in their successfull execution can eliminate unnecessary
backiracking from the Prolog execution [24]. The information of modes provides the Pro-
log compiler with a chance to generate optimized codes [21]. Besides these properties, the
functionality and the termination properties are of special importance [9],[17],[18].

But, why can we analyze such execution-time properties of programs without execuling
them? The answer of the abstract interpretation approach is that we can analvze such
properties by approximately execuiing them in greater or lesser degree. The framework of
the abstract interpretation approach can be depicted schematicaily as below:

standard interpreter abstract interpreter
i ..--"""__-__H_—\-"'
(stanr]a[d domain ( abstract domain
e

Figure 1.1 General Iden of the Abstract Interpretation Approach

The left half of the figure shows the standard domain of data to which the usnal execution
(the standard interpretation) is applied, while the right half shows the abstract domain for
which some approximate execution (the ahstract interpretation) is defined. The abstract
interpretation approach executes programs in the abstract domain to extract useful informa-
tion about the execution in the standard domain by utilizing the correspondence between
the standard and the abstract domains.

For example, let the standard domain and the standard interpretation be the set of
integers and the multiplication of integers, and let the abstraclt domain and the absiract
interpretation be the set of signs {+,0,—} and the multiplication of signs as below:

multiplication of integers multiplication of signs

the set of integers
{-..,—2,-1,0,1,2,...}
--\-__'_""'_-\—__-___-_r-l-.’

the set of signs

{-I-,[I,—]-
e

Figure 1.2 A Simple Example of Abstract Interpretation

Then, without exactly calculating ithe result 4221, we can know that (—13) x (=17} is
positive hy abstracting the signs of the multiplicand and multiplier and by cenducting the
multiplication of signs (-} x (=) = (+).

Though the example above is too trivial, it gives us some flavor of the abstract inter-
pretation approach. Then, how is the abstract interpretation approach applied to Prolog
programs?



(2) How Do Human Programmers Analyze Programs?

Before considering the framework for the abstract interpretation of Prolog programs,
let’s first reflect on how we usually analyze Prolog programs in our mind? Suppose that
we are asked: “When the execution of reverse( Ly, Ng) succeeds, what data types of terms
are variables Lp and Ng instantiated to?” Here, following the syntax of DEC-10 Frolog,
“reverse” is defined as below:

reverse([ ][ ]).

reverse([X|L],M) - reverse(L N}, append(N,[X],M).
append([ ],K,K).

append([Y|N],K,[Y|M]) :- append(N,K ,M).

Human programmers can easily answer the question after examining the program for a
while, although they might not be precisely conscions of how they have reached the answer.
Probably, they have done as follows:

1. If the first clanse of “reverse” is used first when the execution of reverse{lg, Nyg)
succeeds, Lo and N are instantiated to [ ], hence Ly and Ny are lists.

2. If the second clause of “reverse” is used first, Lo is instantiated to [X|L;], and Ng to
My, hence we need to answer the question: “When the execution of reverse{Ly, N1),
append( Ny, [X1), M1) succeeds, what data types of terms are [X,|[;] and M; instanti-
ated to?”

3. Now, we first need to answer the question: “When the execution of reverse(L,, N1)
succeeds, what data type of term are Ly and N; instantiated to? Because the question
is identical 1o the original one, we would dive into infinite loop if we repeated the same
process. However, we usually procceed as follows. As far as we know so far, L apd N
are lisls when the execution of reverse(L, N) succeeds. Lel’s temporarily assume il.

4, Then we need to answer the question: “When N; is a list and the execution of
append(N,,[X;], M;) succeeds, what data types of terms are N;,X; and M,
instantiated to?" If the first clause of “append” is used first when the execution of
append( Ny, [X,], M) suceeeds, N, is instantiated to [ ], Xy to Xs, and M; to [X3],
hence Ny is a list, &) may be any term, and M, is a list.

5. If the second clause of “append” is used first, N; is instantiated to [Y3|N;3], X to X,
and M, to [¥3|M;)], hence we need to answer the question: “When N; is a list and the
execution of append( Ny, [X3], M3) succeeds, whal data types of terms are [Y5|N;], X3
and [¥3|3;] instantiated to?”

6. The analysis proceeds in the same way by following the execution in the domain of
types. Afier several steps, we know that Ny needed at step 4 is a list, X; may be any
term, and M, is a list.

7. Hence, Lp and Ny needed at the beginning are lists. Becanse this resnlt has not enlarged
the data types of Ly and Ny temporarily assumed at step 3, we can conclude that Lg
and Ny are lists when the execution of reverse{ Ly, Np) succeeds,

Though we have not emphasized it, note that we needed to propagate the type information.
For example, we needed to know at step 5 ihat, when Ny is a list and N is instantiated to
[Y3| N3], then N is a list. Similarly, we needed to know at step 7 that, when L, is a list and
Ly is instantiated to [Y3|L;], then L; is a list.

(3) What Interpreter is Appropriate for Prolog Abstract Interpretation?

Now, what framework is appropriate if we wonld analyze Prolog programs using the
abstract interpretation approach? The figure below depicts the framework for type inference



when the framework of Figure 1.1 is applied directly. Then, what interpretation should we
employ for the abstract interpretation of Prolog programs?

standard Prolog interpretater abstract Prolog interpreter
f// the set of terms (’ the set of types
{. {[LIXLIX,Y).. .. zere, suc{ zero),. . .} X {list, num,...}

R e

Figure 1.3 Framework for Type Inference by Abstract Interpretation

One Prolog intepreter familiar to us is the top-down interpreter, which starts with a
given top-level goal and repeats the resclution operation continually until an empty goal is
ohtained. However, if we had used the top-down interpretation to approximately execute
the goal in the domain of types, we would have dived into infinite loop in the example just
examined, For example, if we had not made the assumption at steps 3, we could not have
proceeded any further. (In general, due to the ahstraction, the top-down excution in abstract
domains is more likely to dive into infinite loop than the usual one in the domain of terms.
Sensitive readers might have hesitated to make the assumption at step 3 without rigorous
justifications. Making the assumptions is, however, crucial to answer the question at the
beginning.)

The other Prolog interpreter, which is also simple but not so familiar to us as the
top-down interpreter, is the bottom-up interpreter, which starts with the set of all instances
of unit clanses and repeats the generation of the head instances whose body instances are
already generated. However, if we had employed the bottom-up interpretation, we would
have generated many goals irrelevant to the top-level goal. For example, we have considered
only necessary goals to know the data types of Ly and My when reverse( Ly, My) succeeds,
so that, say, a goal of the form append{N, suc{K'), suc(K')) have not been considered in the
example just examined,

Thus, the previous reflection on how we analyze Prolog programs in our mind has shown
the different behavior from both the top-down interpreter and the bottom-up interpreter.
This suggests us that it might be more appropriate to adopt another Prolog interpreter from
the beginning.

This paper presents a unified framework for analyzing Prolog programs. The framework
is based on a hybrid of the top-dewn and the bottom-up interpretations of Prolog programs.
An execution-time property of Prolog goals can be analyzed when the goals are executed
using an interpretation that is obtained by abstracting the hybrid interpretation according
to the property. Due to its hybrid character, the execntion neither dives into infinite loop nor
wasles time for irrelevant goals. In addition, the behavior of the abstract hybrid interpreter
is very close to the way human programmers nsually analyze the property in their mind.
Type inference, depth-abstracted term inference and mode inference are exemplified as the
analysis of Prolog programs when different abstraction is employed.

The rest of this paper is organized as follow: First, Section 2 and 3 show the standard
hybrid interpretation and the abstract hybrid interpretation for “type inference” emphasizing
their correspondence. Next, Section 4 and 5 give their implementations emphasizing their
correspondence again. Then, Section 6 and 7 show that “depth-absiracted term inference®
and “mode inference” can be done using the same framework as “type inference” by modifying
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just 3 steps in its implementation. Last, Section 8 discusses the varions analysis of logic
programs by abstract interpretation according to their interpretation methods and their
targel properties, and suggests that “functicnality detection” and “termination detection”
can be done as well based on our framework by enriching the abstract domains appropriately.

2. Standard Hybrid Interpretation

In this section, we will first present an example of standard hybrid interpretation [27],
then formalize the notions of the standard hybrid interpretation, and last point out the

correspondence between the standard hybrid interpretation and the standard top-down in-
terpretation.

2.1 An Example of Standard Hybrid Interpretation

Let us first see an example of the standard hybrid interpretation. Consider the following
“graph reachability” program by Tamaki and Sato [27].

reach(X,Y) - reach(X,Z), edge(Z,Y).

reach(X X). a b
edgela,b).
edge(a,c). )
edge(b,a). C d
edge(b,d).

The first clause of “reach” says that node Y is reachable from node X if node Z is reachable
from X and there is an edge from Z to ¥, while the second clause says that any node is
reachable from itsell. The unit clauses of “edge™ gives the edges of the directed graph as
right above, The program is a typical left recursive program so that the execntion of a goal is
likely to dive into infinite loop. For example, the execution of a top-level goal “reach(a, Zo)"
immediately calls “reach(a, Z,)” recursively at the leftmost in the body of the first clause to
repeat the execution of the goal of the same form.
The standard hybrid interpretation was devised by Tamaki and Sato [27] to aveid such

infinite loop. It manipulates

* 4 tree,

s 3 table, and

s pointers connecting from some nodes of the tree into the table,
Roughly speaking, the tree corresponds to the top-down interpretation, the table corresponds
to the bottom-up interpretation, and the pointers connecting them enables us to enjoy the
advantages of the both interpretations. Let us see how the standard hybrid interpreter
returns solutions to the top-level goal ®reach(a, Zp)."

reach(a,Zq)
<>

reach(a,Z) : [ ]

Figure 2.1.1 Standard Hybrid Interpretation at Step 1

First, an initial tree consisting of only the root node labelled with a pair of goal
reach(a, Z5) and an empty substitution <> is generated. (In general, each node of the
tree is labelled with & pair of a goal and a substitution. Due to space limit, the goal and the
substitution are arranged in two consecutive rows in the figure.) There is also generated an
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initizl table containing only one pair of atom reach(e, Z) and an empty list []. (In general,
the first element of each pair in the table is called a key, while the second element a solution
list of the key. The key and solution list are delimited by “:” in the fignre.) No pointer is
generated yet.

reach(a,Zo)
o>
<Ze=, Xi=a>/ \<Zpea, Xasa>
;-ma.ch(m L ), edge(Zy,Y ) O
e < Xi<=a> <Xotsa>

s

reach(a,Y) : rrexch{a.,a.]]

Figure 2.1.2 Standard Hybrid Interpretation at Step 2

Secondly, the root node is expanded nsing the program to generate two child nodes in
the same way as the top-down interpretation. The left child node generated using the first
clause of “reach” is labelled with a pair of “reach(Xy, Z,), edge(Zy,¥1)" and “< X, <=a>".
The edge to the left child node is labelled with the m.g.u. used in the resolution. Note that,
reachia, Z,), the leftmost atom under the substitution, is a variant of reach(a, Z), a key in
the table. Such a node is classified into & Josckup node. {When the root node was generated,
there was no such key in the table. Such a node is classified into a solution node.) A new
pointer connecting from the lookup node to the head of the solution list of reach(a, Z) is
generated. (The pointer is depicted by the dotted line in the figure.) This means that the
solutions in the solution list obtained by solving another atom are to he ntilized for solving
reach(a, Z,) instead of solving itself. The right child node generated wsing the second clause
of “reach”™ is labelled with a pair of an empty goal O and a substitution < Xz<=a>. The
edge to the right child node is also labelled with the mgu. When this node iz generated,
goal reach{a, Z5) has been just solved instantiating Z, to “a™ so that its solution reachie,a)
15 added to the solution list of reachi{a, £). (In general, as for a sclution node, the usual
lop-down interpretation is applied to the leftmost atom under the substituition,)

reach(a,Zg)
<>
/ Y

-reach(X,,Z,), edge(Z,,Y,) o
! <X <=a> <Xae=a>
.= Zye=az|

ll|, Eds‘;’{zl,Yl)

Y < Zi=a>

reachia,7) : [TEﬁﬂh(ar“i]
edge(a,Y) : [ ]

Figure 2.1.3 Standard Hybrid Interpretation at Step 3

Thirdly, the lookup node is expanded using the table to generate one child node. Be-
caunse the solution in the list pointed from the lockup node is an instance of the leftmost atom
nnder the substitution, i.e., reach(a,a) is an instance of reach(a, Z;), the atom reach(a, Z1)
is solved utilizing the solution to generate a child node labelled with a pair of “edge(Z,,Y;)"
and < Z, «=a>. The edge to the child node is lahelled with the instantiation. The pointer
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from the lookup node is shified to the last of the solution list. Because edge(s,Y}), the
lefimost atom under the substitution, is not a variant of any key in the table, the new node
is a solution node so that a new pair of key edge(a,Y) and solution list [ ] is added 1o the
tahble.
reach(a,Zo)
<>
! %,
~teach{Xy,Z,), edge(Z4,Y 1) o
<Xie=a> <XNas=a>
|
edge(Z,,Y,)
h'-'l < 31 —=ax>
VeYiebs/ <Y ise>
Y O O

&

\ <> <>

-
¥,
f

f

1

|

|
|

reach(a,Z) : [reach(a,a), ‘reach(a,b), reach(a,c)]
edge(a,Y) : [edge(a,b), edge(ac)]

Figure 2.1.4 Standard Hybrid Interpretation at Step 4

Fourthly, the generated solution node is expanded further using the program to generate
two child nodes labelled with & pair of D and <>. These two nodes add two solutions
edge(a,b) and edge(a,c) to the last of the solution list of edge(a,Y), and two solulions
reach(a, b) and reach(a,c) to the last of the solution list of reach(a, Z).

reach(a,Zy)
<=
/ A
e reach(X;,Z,), edge(Z,,Y1) 0O

g <X <=a> <Xaea>
. / <Zy=b>| \C Z &>
i edge(Z1,Y1) edge(Z1,Y1) edge(Z1,Y1)
! < =a> < Z,=b> < =
i /oA
v, O (|

- o>

Y

reach(a,Z) : [reach(a,a), reach(a,b), reach(a,c)]
edge(a,Y) : [edge(a,b), edge(a,c)|

edge(b,Y) : []

edge(e,Y) : []

Figure 2.1.5 Standard Hybrid Interpretation at Step &

Fiftkly, the loockup node is expanded using the solution table to generate two child
nodes, since new solutions were added to the solution list of reach(a,Z) so that the list
pointed from the lookup node is not empty, that is, there exist solutions not yet utilized.

[



f
== - = - reach(X,,2,), edge(Z,,Y.)
e <X, =a>
s / |
| edge(Z,,Y,) edge(Z,.Y,)
\ <Zi=a> < =h>
\ A <Vie=azxS \<Vi=d>
\\ 0 @) 0 0
W< <> <> <>

e e e o —— e e m—— L

reach(a,Zp}

<>
\
a
<Xoksa>
\
edge(Z1,Y1)
<iiEc>

reach(a,Z) : [reach(a, a} reach(a,b), reach(a, c} “reach(a,d)]

edge(a,Y) : [edge(a,b), edge(a,c]]
edge(b,Y) : [edge(b,a), edge(b,d)]
edge(c,Y) : []

Figure 2.1.6 Standard Hybrid Interpretation at Step 6

Sixthly, the left new solution node is expanded using the program to generate two child
nodes. This time, goal edge(b, ¥7) has been solved with solutions edge(b,a) and edge(d, d),
and goal reach(a,Zy) with solutions reach{a,a) and reach(a,d), of which reach(a,a) is
already in the solution list of reach(a, 7). Two new solutions edge(b,a) and edge(b,d) are
added to the last of the solution list of edge(a,Y’), and one new solution reach{a,d} to the

last of the solution list of reach(a, 2.

/
_—=m—=======-1each(Xy,2,), edge(Z1,Y1)
R <Xi=a>

/ /A
! edge(Z,,Y,) edge(Z:,Y1) edge(Z:,Y1)
| T = i e=hb> Sl 4=
I, /A /oA
) ] 0 o O
R <> <> <>

reach{a,Zg)
<>
\
]
CXa=a>
N Bye=d>
edge(Z,,Y1)
<0y =ds

reach(a,Z) : [reach(a,a), 1«25.-::h{a.,|:r}f reach(a,c), reach(a, d}]

edge(a,Y) : [edge(a,b), edge(a,c)]
edge(b,Y) : [edge(b.a), edge(b,d]]
edge(c,Y) : []
edge(d,Y) : []

Figure 2.1.7 Standard Hybrid Interpretation at Step 7

Lastly, the looknp node is expanded once more using the table, since the list pointed

from the lookup node is again not empty.

The standard hybrid interpreter stops here, because no solution node is expansible and

the list pointed from the lookup node is empty.
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2.2 Standerd Hybrid Interpretation of Prolog Programs
Let us formalize the notions used in the example just examined.
(1) Term and Substitution

A term is defined as usual, and denoted by s,, possibly with primes and subscripts.
In particular, variables are denoted by X, Y, Z.

An assignment of term 1 to variable X is a pair (X,t), and hereafter represented hy
X 4=t. A substitution is a finite set of assignments such that there is no two assignements
to the same variable, and hereafter represented by

":):1 d=t,,:{2<=12,,.,,x:<=i!},
where Xy, Xs,..., X are distinct variables, called the domair variables of the substitution.
Substitutions are denoted by o, 7, 8, 9. The restriction of o to ihe set of variables V' is a
substitution consisting of all the assignments in ¢ to the variables in V.

The term assigned to variable X by substitution ¢ is denoted by o(X). We assume
that a substitution assigns X itself to variable X when X is not in the domain variables of
the substitution explicitly. Hence the empty substitution <> assigns itself to every variable.

The composed substitution of = and 7, denoted by or, is defined as usual.

{2) Atom and Goal

An atom is defined as usual, and denoted by A, B. Let A be an atom and o be a

substitution of the form
<X, 1:11,.4-.'1.'24212,....,:"-1*":1']}.

Then Ae denotes the atom obtained by replacing each variable X; in A with term 1;. (Note
ihat, when Ar is considered, assignments other than those in the restriction of & to the
variables in A do not matter.) An atom Ar is called an instance of an atom As when there
eXists a substitution @ such that Ar is Aerf. An atom B is called a variant of an siom A
when B is obtained fram A by renaming the variables in A.

A goal is a finite sequence of atoms, and denoted by &, I. An empty goal, ie., an
emply sequence of atoms, is denoted by 0. Go is defined in the same way as Ae.

(3) Unification of Atoms

Two atoms Ae and Br are said to be unifiable when there exists a common instance
of Ae and Br. A most general unification and a most general unifier (m.g.u.) of iwo atoms
Ae and Br are defined as nsual. Let & be an m.g.u. of As and Br. Then Br# is 2 most
general unification of Ao and Br.

(4) Search Tree, Sclution Table and Association

A search tree is a tree satisfying the following conditions:

» Each node is classified into either a solution node or a lookup node, and is labelled
with a pair of a (possibly empty) goal and a snbstitution. (The distinction between
solution nodes and lookup nodes is defined later.)

# Each edge is labelled with a substitution.

A search tree of G is a search tree whose root node is labelled with {G,7). A nodein a
search tree is called a null node when the goal part of the label is 0. When a node in a

g



search tree is labelled with (“4;, Ag,..., 4.7, &), the atom A,c is called the head atom of
the node.

A solution table is a set of entries. Each entry is a pair of the key and the solution
list. The key is an atom such that there is no other variant key in the solution table. The
solution list is a list of atoms, called solutions, such that each solution in it is ar instance of
the corresponding key.

Let T'r be a search tree and Th be a solution table. An association of Tr and T'b is a set
of pointers connecting from each lookup node in T'r into some solution list in T'h such that
the head atom of the lookup node and the key of the solution list are variants of each other.
The tail of the solution list peinted from a lookup node is called the associated solution list
of the lookup nade.

{5) OLDT Structure

An OLDT structure of Ge is a trio (T'r,T'b, As) satislying the following conditions:
o T'ris asearch tree of Go.
¢ Thisasolution table,
s /s is an association of Tr and Th.

(6) OLDT Resolution

A node in a search tree of OLDT structure (T'r, Th, As) labelled with (A4, A5,..., 4.7, 7)
is said to be OLDT resolvable when it satisfies either of the following conditions:

s The node is a terminal solution mode of Tr, and there is some definite clanse “5 :-
By, By, ...,B." (m > 0) in program P such that A and B are unifiable, say by an
m.g.u. #. (We assume that, whenever each clanse is used, a fresh variant of the clanse is
nsed.) The pair of the (possibly empty) goal “Hy, Ba, ..., By, A2, ..., 4,7 and the sub-
stitution o8 (or the restriction of o@ to the variables in “By, Bz, ..., Bm, d2,..., 4a7)
is called the OLDT resolvent.

# The node is a lookup node of Tr, and for some substitntion § (for the variables in
Ae), there 1s a variant of Ae# in the associated solution list of the lookup node. The
pair of the (possibly empty) goal 4z,..., An” and the substitution ¢ (or possibly the
restriction of o0 to the variables in “As,...,A,") is called the OLDT resolvent,

In either cases, the substitution & is called the substitution of the OLDT resolution.

{7) OLDT Subrefutation

An OLDT subrefotation of an atom and an OLDT subrefutation of & goal are paths in
a search tree {not mecessarily starting from the root node) which are simultaneously defined
indunetively as follows:
{al) A path with length more than O starting from a solution node is an OLDT subrefutation
of an atom Ae with solution Ar when
o the initial node is labelled with a pair of the form {*4,G7, ¢), the initial edge
with, say substitution @, and the last node with a pair of the form (“G™, '),
» the node next to the initial node is labelled with a pair of the form (“4;, 42,...,
Ay, G, o), and the path except the initial node and the initial edge is a sub-
refutation of (Ay, A2, ..., A, )0 with solution (A, Az, ..., 4a)87" (n > 0), and
s 7is of7'.



(a2) A path with length 1 starting from a lockup node is an OLDT subrefutation of an
atom Ae with solution At when

» the initial node is labelled with a pair of the form (“4,G7, ), the initial edge
with, say substitution #, and the last node with a pair of the form (“G™, "), and

e T is aoff.

(bl) A path with length 0, i.e., a path consisting of only one node, is an OLDT subrefutation
of O ¢ with solution O e

(b2) A path with length more than 0 is an OLDT subrefutation of a goal (A;, A5,..., A,)e
with solution (4;, 42,...,4.)7 (n > 0) when

» the initial node is labelled with a pair of the form ("A;, As,..., A, A", ), and
the last node with & pair of the form (“H™, &),

» the path is the concatination of a subrefutation of 4; ¢ with solution 4,0m, a sub-
refutation of Asory with solution Aagrymae, ..., 2 subrefutation of A or v ry
with solution A em7Te - Tho1 Ty, and

® TigsaTyTo-- Ta_1Tn.

In particular, a subrefutation of Aw is called a unit subrefutation of Ao.

(8) Initial OLDT Structure and Extension of OLDT Structure

The initial OLDT structure of (Go is the OLDT structure (Try, Tho, Asg), where T'rg
is a search tree consisting of only the root solution node labelled with (G, ), Thy is the
solution table consisting of anly one entry whose key is the head atom of the oot node and
whaose solution list is an empty list [ ], and Asp is an empty set of pointers.

An immediate extension of OLDT strocture (Tr, Th, As) in program P is the result of
the following operations, when a node v of OLDT structure (T'r, Th, As) is OLDT resolvable.

1. When v is a terminal solution node, let C;,Cz,...,Cy (k > 1) be all the clauses with
which the node vis OLDT resclvable, and (G, 7y), (G2, 72),. .., (G4, 73 ) be the respec-
tive OLDT resolvents. Then add & child nodes of v labelled with (Gy, o), (G2, 04), ...,
{(Gk,ox) to v. When v is a lookup node, let Aefy, Acfa,..., Aol (E > 1) be
all (the variants of) the solutions with which the node v is OLDT resolvable, and
(G, o), (Ga,02),...,(Gr, 04 ) be the respective OLDT resolvents. Then add k child
nodes of v labelled with (Gy,04),(G2,02),...,(Gk.0oi) to v. In both cases, the edge
from » to the node labelled with {G;, #;) is Jabelled with 8;, where 8; is the substitution
of the OLDT resclution. A new node is a lockup node when the head atom is a variant
of some key in Th, and is a solution node otherwise.

2. Replace the pointer from the OLDT resolved lookup node with the one connecting to
the last of the associated solution List. Add a pointer from the new looknp node to the
head of the sclution list of the corresponding key.

J. When a new node is a solution node, add a new entry whose key is the head atom
of the new node and whose solution list 15 an empty list. For each unit subrefutation
of atom Ae (if any) starting from a solution node and ending with some of the new
nodes, add its soletion A7 to the last of the solution list of Ae in Tb, if Ar is not in
the solution list.

An OLDT structure (T'r',TH, As') is an extension of OLDT structure (T'r,Th, As) if
(T, TV, As") is obtained from (T'r,Th, As) through successive application of immediate
extensions,

(9) OLDT Refutation
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An OLDT refutation of Ge in program P is a path in the search tree of some extension
of the initial OLDT structure of Ge from the root node to a null node. The solntion of an
OLDT refutation is defined in the same way as that of an OLDT subrefutation.

2.3 Correctness of the Standard Hybrid Interpretation

The readers have probably guessed that the standard hybrid interpretation just avoids
1epeating the same computation in the top-down interpretation by utilizing the solutions of
the atoms of the same form so that, in the execution of any top-level goal, it calls the same
atoms and returns the same solutions as the top-down interpretation. Let us first formalize
the top-down interpretation.

(1) OLD Tree

An OLD treeis a tree such that each node is labelled with a pair of a {possibly empty)
goal and a substitution, and each edge is labelled with 2 substitution. An OLD tree of Go
is an OLD tree whose root node is labelled with (7, 7). A null node and a head atom are
defined in the same way as before.

{2) OLD Resolution

A node of OLD tree Tr labelled with (%A, As,..., As™, o) is said to be OLD resclvable
when it satisfies the following condition:

s The node is a terminal node of Tr, and there is some definite clause “B - By, Bs, ...,
B™ (m > 0) in program P such that Ae and B are unifiable, say by an m.g.u. 8. The
pair of the (possibly empty) goal “By, Ba,..., Bm, A2,...,A," and the restriction of
o8 to the variables in By, Ba,..., Bm,,4s,...,As is called the OLD resolvent.

The substitution # is called the swbstitution of the OLD resolution.

A subrefutation and a wnit subrefutationin an QLD tree are defined in the same way as
those in a search tree. A path in a search tree starting from a node labelled with (“G, H”, ¢)
is called a partial subrefutation of Ge when it does nol contain any subrefotation of Go as
its prefix.

(3) OLD Refutation

The initial QLD tree of Ge is the OLD tree Try consisting of only the root node labelled
with {G, 7).

An immediate extension of OLD tree Tr in program P is the result of the following
operations, when a node v of OLD tree T'r is OLD resolvable.

o Let €1, Ca,...,Ch (k > 1) be all the clauses with which the node v is OLD resolvable,
and (G, 1), (Gz,02),...,(Gk, o1 ) be the respective OLD resolvents. Then add k child
nodes of v labelled with (G, e1),(G2,02),...,(Gy, 0y) to v. The edge from v Lo the
node labelled with (G;, #;) is labelled with 8;, where #; is the substitution of the QLD
resolntion with ;.

An OLD tree Tr' is an extension of OLD tree T'r if Tr' is obtained {rom T'r through successive
application of immediate exiensions.

An OLD refutation of Go in program P is a path in some extension of the initial OLD
tree of G from the root node to a null node. The solution of a refutation is defined in the
same way as that of a subrefuiation.
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(4) Correctness of the Standard Hybrid Interpretation

It is the basis of our abstract interpreration that any OLD extension is subsumed by
an OLDT extension. (It is easy prove the reverse direction so that we will omit it.)

Theorem 2.3 (Correctness of the Standard Hybrid Interpretation)

(2) Let Gpog be a goal, T be an extension of the initial OLD tree of Gyoy, and (T'r, T8, As)
be an extension of the initial OLDT structure of Gyog. If Ae is the head atom of a
node in T', then there exists an extension of {Tr, Th, As) such that the search tree of the
extension contains a node with head atom Ae' which is a variant of As. (Correciness
for Calling Patterns)

(b) Let T be an extension of an initial OLD tree, (T'r,Th, As) be an extension of an initial
OLDT structure, Ao and Ae' be atoms such that As is a variant of As'. I{ T contains
a unit subrefutation of Ae with its solution Ar, and A’ 15 the head atom of a node
in T'r, then there exists an extension of (T'r, T8, As) such that the search tree of the
extension contains a unit subrefutation of A’ with its solution 47" which is a variant
of Ar. {Correctness for Exiting Patterns)

FProof. Although our standard hybrid interpretation is slightly different from the original
OLDT resolution by Tamaki and Sate [27), these differences do not affect the proof of the
following lemma:
(a) Let ¥ be an OLD partial subrefutation of (A4y, Aa, ..., A, ) ending with a node whosa
head atom is Ar, § = (T'r,Th, As) be an extension of an initial OLDT structure, and
v be a node in Tr labelled with (A1, Az, ..., As, #7, ') such that (4;, 42,..., 4, )r
is a varianl of (A;, As,..., As)e’. Then there exists an extension of (T'r,Th, As) such
that the search tree of the extension contains a node with head atom A’ which iz a
variant of Ar.
(b) Let v bean OLD subrefutation of (A;, Az,..., Ay )o withits solution (41, 4z,..., 4,)r,
& = (Tr,Th, As) be an extension of an initial OLDT structure, and v be a node in
T'r labelled with (%4, Az,..., Aq, J77, o'} such that (A, Az,..., A.)e is a variant of
(A41,Az,...,45)0'. Then there exists an extension of (T'r, T, As) such that the search
tree of the extension contains an OLDT subrefutation of (Ay, A2, ..., 4. )¢ starting
from v with its solution (A, Aa,...,Aq}r" which is a variant of (4;, 4,,..., 4,)r.
Then, the theorem is an immediate consequence of the lemma by letting H be O and v be
the root node for the part (a), and by letting n be 1 for the part (b). The proof of the lemma
is almost the same as that of the lemma in Theorem 3.3. See Section 3.3.

Theugh all solutions were found under the depth-first from-left-to-right extension strat-
egy in the example of Section 2.1, it is not always the case in general, that is, some solution
might not be found forever. The reason is two-fold. One is that there might he generated
infinitely many different solntion nodes (hence possibly infinitely many lookup nodes). The
other is that some lookup node might generate infinitely many child nodes so that exten-
sions at other nodes right to the lockup node might be inhibited forever. {However, when
this hybrid interpretation is applied to the abstract domain with finite elements, it always
terminates under any strategy. See Section 3.3.)

3. Abastret Hybrid Interpretation for Type Inference

The readers have probably noticed the similarity in the behavior between the type
inference in Section 1 and the standard hybrid interpretation in Section 2.
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2.1 An Example of Type Inference

Let us first re-examine the type inference process in Section 1 using the notions similar
to those in Section 2. Recall the “reverse” program in Section 1.

reverse([ ],[ ])-

reverse([X|L),M) = reverse(L,N}, append(N,[X],M).
append([ |, K,K).

append ([Y|N],K,[Y|M]) - append(N,K,M).

And suppose that we are asked: “When the cxccution of reverse(Lo, Ng) succeeds, what
data types of terms are Ly and Np instantiated to?”

First, an initial tree consisting of only the root node labelled with a pair of goal
reverse(Lg, Ny) and an empty substitution <> is generated. (In general, each node of
the tree is labelled with a pair of 2 goal and a substitution of data types.) There is also
generated an initial table containing only one pair of reverse(L, N) <> and an empty list
[]. (In general, the first element of the pair in the table is called a key, while the second
element a solotion list of the key.) No pointer is generated yet.

reverse{ Lo, Np)
<

reverse(L,N)<> : []

Figure 3.1.1 Type Inference at Step 1

Secondly, the root node is expanded using the program to gemerate two child nodes.
The left child node generated nsing the first clanse of “reverse” is labelled with a pair of
an empty goal O and an empty substitution <>. The edge to the left child node is labelled
with the m.gu. When this node is generated, goal reverse(Ls, No) has been just solved
instantiating Lo and N to lists so that its solution reverse(L, N) < L, N <=list > is added to
the solution list of reverse(L, N) <>. The right child node generated using the second clause
of “reverse” is labelled with a pair of “reverse(Ly, N1), append( Ny, [X1], M,)" and <>. The
edge to the right child node is also labelled with the m.g.u. Note that, reverse(Ly, N;) <>,
the leftmost atom with the substitution, is a variant of reverse(L, N} <>, a key in the table.
Such a node is classified into a lookup node. (When the root node was generated, there was
no such key in the table. Such a node is classified inte a selution node.) The new pointer
connecting from the lookup node to the head of the solution list of reverse(L,N) <> is
generated.

reverse(Lg,Ng)

<>

{L,Ho*::[]}f \{Luﬁ[xllL]],Nn4=M1}
o - teverse(Ly Ny ), append(Nq,[X,],M;)
<> <>

-

reverse(L.N)<> : [ﬁverse{L,N}{ L, N «<list>]

Figure 3.1.2 Type Inference at Step 2

Thirdly, the looknp node is expanded nsing the table to generate one child node.
Because the solution in the list pointed from the lockup node is more restricted w.r.t. data
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types than the leftmost atom with the type substitution, i.e., reverse(L,N) <L, N &list>
is mere restricted w.r.t. data types than reverse(L, N) <>, the atom is solved utilizing
the solution to generate a child node labelled with a pair of “append(Ny,[X], M;)” and
< Ny «=list >. The edge to the child node is labelled with < L;, N, < list >. The pointer
from the lookup node is shifted to the last of the solution list. Because append( Ny, [X1], Mi)
< Ny 4= Tist >, the leftmost atom with the type substitution, is not a variant of any key
in the table, the new node is a solution node so that a new pair of key append(N,[X], M)
< N «=list> and solution list [ ] is added to the table,

reverse( Lo, Ng)

L
Fy
m] -reverse{Ly, Ny ), append(N4,[X;],M;)
<> : <>
N | <Ly, Ny =list>

S eppend(Ny,[X,],My)
Twe. <Npelisi>

.
-y

reverse(L,N)<> : [reverse(L,N)< I, .:"Ir'-;':[;'s_tztl
append(N,[X],M)< N «=list> ; []

Figure 3.1.3 Type Inference at Step 3

Fourthly, the new solution node is expanded further nsing the program to generate two
child nodes labelled with pair (O, <>) and pair (append(Na, Ka, Ma), < Na, Ko <list>. The
left node adds a solutions append(N,[X], M) < N, M <=list> to the last of the solntion list
of append({N,[X], M) < N < list>. (T'he solution reverse(L, N) < L, N < list > is already
in the solution list of reverse(L, N) <>.) The right node is a solution node so thal a new
entry i added to the selution table.

reverse( Lo, Ng)

<>
A
] reverse(Ly, Ny}, append(N [X,] M)
<> <>
[
[ append(Ny,[X;],M;)
e < Ny «=list>
I )
4 <Ny =[], X1 =X, My [Xa], Kz [Xa] >/ N Ny <= [Va|Na), Xy = X5, My < [Ya| M), K= [X] >
S o append{Ny,K3,M3)
T <> < N3, Ky«=hist>

—— e s e

———— e

append (N, [X] M)< N <list> : [append(N,[X]| M}< N, M =liat>]
append (N K M)< N <list> : []

Figure 3.1.4 Type Inference at Step 4
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Fifthly, the new solution node is expanded forther using the program to generate two
child nodes labelled with pair (O, <>) and pair (append( Ny, Ky, M3), < N5, Kg<list>>. The
left node adds a solutions append(N, K, M) < N, K, M «<list> to the last of the solution list
of append( N, K, M) < N, K «<list>. (The solutions append(N,[X], M)} <N, M «=list> and
reverse(L, N) < L, N < list > are already in the solution lists.) The right node is a lookup
node so that the new pointer connecting from the lookup node to the head of the sclution
list of append(N, K, M) <N, K <[ist > is generated.

reverse| Lp, Ng)

<>
! Y,
] _-reverse{Ly Ny ), append(N1,[X;1].M;)
<> )7 <>
4 |
,"l append({N,,[X;],M;)
i <Ny «=list>
, ! !
! o append(N3,Ka,Ma)
\ <> < N3, Ky =list>
W <Nse=[] Ky Ko, Mo Ka>/ \< N3 = [Ys|Ns], K3e= Kg, M3 <= [Ys|Ms]>
T D append(Ns, K5 Ms) =~._
Tl <> < N5, Ks«=list> .

i

e e
———————

reverse(L,N)< > : [reverse(L,N)< L, N ¢ list }]
append(N,[X],M)< N «=list > ; [append(N,[X] M)< N, M <= list>]
append(N K, M}< N, K <= list> : [append(N K M}{N KM -::hs!‘:-]

s s e e,
—_——

Figure 3.1.5 Type Inference at Step 5

b
1
]
i
F

reverse{ Lo, Ng)

<
! b
o . reverse(Ly Ny ), append(N, [X;],M;)
<> / <>
| I
! 1PPEﬂd(H1rF':1]>M1]
| < Ny<=list>
\x / \
N ] append(Na Ka,Ma)
\‘\ <> {NEIKS“:@}
~. I \
"\N 0 npthﬂ[Ns,Ku.Mﬁ} m=—
‘\"\‘ o {NE*HE';hﬁ"} "
M‘H.. | < Ms<=list > {
. 0 g
Y Fs
“‘1 <> L
reverse{ L, N}<> : [reverse(L N)< L, N &= list >] 0

append(N,[X],M)< N «list > : [append(N,[X],M)< N, M <= list>]
append(N,K,M)< N, K «list> : [append(N,K,M)< N, K, M «=list>]

Figure 3.1.6 Type Inference at Step 6
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Lastly, the lookup node is expanded using the solution table to generate one child node
labelled with pair (03, < Ny, Kg, My <= i3> ), since the list poinied from the lookup node is
not empty, that is, there exist solutions not yet utilized. (Although append{ Nz, Ki, M) <
Na, K3 <= list >, append(N,,[X;]), M) < Ny <= list > and reverse(Lo, Ng) <> have been
solved when this node is generated, their solutions are already in the solution lists.)

The type inference stops here, because no solution node is expansible and the lists
peinted from the lookup nodes are all empty.

1.2 Type Inference for Prolog Programs
Let us formalize the notions nsed in the example just examined.
(1) Type and Type Substitution

A type defirition is a set of definite clanses enclosed by type and end satisfying the
following conditions:

# The head of cach definite clause is an atom with its predicate p and with its argument
either a constant b or a term of the form e[ X1, Xa,..., X)), where the unary predicate p
is called a type predicate, b a bottom element and ¢ a constructor of the type predicate.

» The body of each definite clause consists of atoms whose predicate is a type predicate
and whose argument is X; in the head arguments.

The type ofa type predicate p is the set of all terms 1 such that the execution of p(t) succeeds
without instantiating the variables in it, and denoted by p.

Example 3.2.1 A type predicate “list” is defined by
type.
list({ ).
list([X|L]) =~ list(L).
end.
Similarly, a type predicate “num” is defined by
type.
num(zern),
num(sue({N)) - num({N).
end.
Then list is {[ ],[X],[X.Y]....}, and num is {zero, sue(zera), suc(suc(zere)),...}. Note
that terms in each type are not necessarily ground, since the execution of p{t) sometimes
succeeds withont instantiating the variables in ¢. For example, we include [X] in list, since
the execution of list([X]) succeeds withont instantiating the variable X.

Suppose that there exist & type predicates p;,pa,...,pe in program P such that bot-
tom elements and constructors of each p; are disjoint, henee p,, po, ..., pp are disjoint. (To
make our explanation simple, we will consider the simplest type structure here so that more
complicated type structure, e.g., types with non-empty intersections or polymorphic types
[13), are not discussed.) A type of program P is one of the following k + 2 sets of terms.

any : the set of all terms,

py1 ¢ the set of all terms satisfying the definition of type predicate p;,
pz @ the set of all terms satislying the definition of type predicate pq,

Pr : the set of all terms satisfying the definition of type predicate p;,

@ : the empty set.
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The instantiation ordering of types is the ordering < depicted left below, while the set-
inclusion ordering of types is the ordering C depicted right below:

@ any
A1\ TN\

Pi Pz o Pr Pr Pz Pk
N N\ LS

any i
In genersal, a set of terms T} is smaller than or equal to a set of terms Ty w.r.t. the instantiation
ordering, and denoted by Ty =73, when

o for any unifiable terms ¢y in T} and i3 in T3, their most general unification is in T3, and

e for any term tg in Th, there exists a term 1 in T3 such that tp is an instance of f,.
T} is smaller than T» w.r.t. the instantiation ordering, when T1 = T2 but TofTy. As the
execution of a goal proceeds, the arguments of the goal ascend this instantiation ordering.
(Hence, @ denotes over-instantiation, or failure.) Note that the instantiation ordering of types
is just the reverse of the set inclusion ordering, hence if {3 = fz, then 1, 2 2. {This is not
always the case for some analysis by abstract hybrid interpretation. See Section 7 (3).)

An assignment of type { to variable X is a pair (X, 1), and hereafter represented by
X <1, A type substitution is a finite set of type assignments such that there is no two type
assignements to the same variable, and hereafter represented by

<Xyt Xasly,....Lien>,
where Xy, Xg,..., X are distinct variables, called the domain variables of the iype substi-
tution. Tvpe substitutions are denoted by g, v, A in this section. The restriction of p to the
set of variables V is the type substitution consisting of all the type assignments in 4 to the
variables in V.

The type assigned to variable X by type substitution p is denoted by p(X). We assume
that a type substitution assigns any, the minimum element w.r.t. the instantiation ordering,
to variable X when X is not in the domain variables of the type substitution explicitly.
Hence the empty type substitution <> assigns any to every variable.

The joined type substitution of g and », denoted by pV v, is the type substitution such
that the domin variables is the union of those of g and v, and g Vv #(X) is the least upper
bound of p(X) and #(X) w.r.t. the instantiation ordering for each domain variable X. (In
particular, if »(X) is greater than or equal to p( &) w.r.t. the instantiation ordering for each
domain variable X of , then gV p is the type substitution obtained from g by just replacing
p(X) with »(X) for each domain variable X of ».)

(2) Type-abstracted Atom and Type-abstracted Goal

Let A be an atom and g be a type substitution of the form
<Xyet, ety Kisl >

Then Ap (or pair (A4, p)) is called a type-abstracted atom, and denotes the set of all atoms
obtained by replacing each variable X; in A with a term in ;. (Hereafter, we will consider
only the restriction of g 1o the variables in A when Ap is considered.) A type-abstracted atom
Av is called an instance of 2 type-abstracted atom Ap when there exists a type substitution A
such that Aw is A(pV )). A type-abstracted atom Br is called a variant of a type-abstracted
atom Au when B is a variant of A and » is obtained from g by renaming the variables in
the domain of p accordingly.
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Similarly, Gu (or pair (G, u)) is called a type-abstracted goal, and denotes the set of
all goals obtained by replacing each X; in G with a term in #;.

{3) Unification of Type-Abstracted Atoms

Two type-abstracted atoms Ap and Hr are said to be wnifiable when Ap N Br 3 0.

Let A be an atom, X3, Xs,..., X} all the variables in 4, g a type substitntion

<Xl«=t_1,.‘f,1::tl,,.,,X.-::f_;.,“.}1
B an atom, Y1, Ya,..., ¥} all the variables in B, and v a iype substitution

<l *:-‘-ﬂ,}’;'ﬁzﬂ,... ,]"g'ﬂ:i_j',..-}.
Then, how can we know whether Ap and Bw are unifiable, that is, whether there exists a
umnification of Ae in Ag and Br in Br? And, if there exisis such a unification, what types
of terms are expected 1o be assigned to ¥1,Y3,..., Y] by the unifier?

When two type-abstracted atoms Ap and Br are unifiable, two atoms A and B must
be unifiable in the usnal sense. Hence the unifiability of A and B can be temporarily used as
an easy overestimation of the unifiability of Ap and Bw. (This estimation might be inexact,
e.g., the unifiability of p(X) < X «=list> and p(suc(Y)) <Y <=list>.)

When A and B are unifiable, let g be an m.g.u. of A and B of the form
<Xyl Age=ta,.. = P YVien Yo, Yien>.
The type information of u is propagated to the variables in B through 5. Let's divide the

type propagation through 7 into two phases, inwards type propagation and outwards type
propagation.

When a term ? containing an occurrence of term s is instantiated to a term in £, 2 type
containing all instances of the accurrence of term # is called an inwards type propagation of
t to s, denoted by sf <t<=1>. (Exactly speaking, some notation denoting the occurrence of
# should be nsed instead of term s itself.) It is computed as below:

ft, when s is &
any, when { is any;
sf<ti+=t;>, whentis a type p,
tis of the form c(ty,t2,...,0a),

i = .
s/ <tet>= g ¢ 15 a constructor of the data type p,

the occurrence of 5 is in f;, and
1; 1s the type assigned to the i-th argument ¢;
L@, otherwise.

Example 3.2.2 Let t be [X|L] and 1 be list. Then

Xf < [X|L]<=list >=any, L] < [X|L]<list >= list.
Let t be [X|L] and  be num. Then

X/ <[X|Lj¢num >=0, L/ <[X|L]<num>=0.

When each variable 7 in term s is instantiated to a term in A(Z), a type containing
all instances of s is called an outwards type propagation of A to s, denoted by s/X. It is
computed as below:
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(i, A Z) =0 for some Z in s;

Ms), when s is a variable;

P when s is 2 bottom element b of a type p or
sfA =1 B when s is of the form e{s;,%2,...,3a),
¢ is a constructor of a dala type p and
sifX, s2fA ... 54 /A satisly the type conditions;
| any, otherwise.

Example 3.2.3 Let s be [X|L] and A be <X <=any, L<=list>. Then

S‘fl = list.

Let s be [X|L] and A be <« X <any, L4=any>. Then

s/A = any.

Let 4, X1, X2,..., X4, i, B, ¥1,¥5,..., % and v be as before. Then, we can overesti-

mzte the unification of Ap and Br as follows:

1,

4,

First, we can check the unifiability of Ag and Br by the unifiability of 4 and B. If 4
and B are not unifiable, Ap and Hv are not nnifiable. Otherwize, let  be an m.g.u. of
A and B of the form

Xy et Kosmta, o A=, Y125, Yo=8q,..., Y =5 >,

. Next, for each occurrence of a boltom element & in t3,13,..., 1, We can compnte the

type assigned to the occurrence using the inwards type propagation of g. Similarly,
for each occurrence of variable & in 1y,%2,...,1;, we can compute a type coniaining all
instances of the occurrence using the inwards type propagation. By taking their least
upper bound w.r.t. the instantiation ordering for all the occurrences of 2 in i, we can
compute a type containing all instances of 2. 1f
# the type assigned to some occurrence of the botiom element is not the type of
the bottom element, or
= the type assigned to some variable is @,
Ap and By are not unifiable, Otherwise, we can compute the type substitution A for
all the varables in #;,13,...,1s by collecting these type assignments for the variables,
Then, we can overestimate the type s} assigned to s; using the outwards type propa-
galion of A, hence, we can oblain a type substitution »'
< chﬁ,}’g-::s' pee Xid=a)
by collecting the types for all variables ¥3,Y>,..., Y in B.
Last, Au N Br is overestimated by By v »').

The type substitution ¥ ¥ »* is called the propagated type substitution from p to v throngh

n n

7, and denoted by “p — " or *r — p.?

Note that, even if & assigns two terms containing a common variable to two different

variables in A for some Ag in Ap, B(p > ¥) is a superset of Au N Br. For example, let
Ap be p( X, X2) <> and Be be p(V,,¥2) <« ¥y <=list>, (Hence pis, g, < X; =¥, K+
¥Yo») When p(Z, Z) in Ap and p([ ]|, W) in Br are unified, their nnification p{[ |,[]) is in
p(Ys, ¥a) < 11, Yo < list >, which is still included in B(p ~ v), ie., p(¥1,¥3) <V &= list >,
Thongh the fact that ¥5 has been instantiated to [ ], i.e., the type assigned to ¥3 has ascended
w.r.t. the instantiation ordering, is not precisely reflected in the computation of “p Loy
the final estimation B(p = v) is a superset of Ap N By, since 2 = 1.

{4) Search Tree, Solution Table and Association for Type Inference
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A search tree is a tree satisfying the following conditions:
e Fach node is classified into either a solution node or a lookup node, and is labelled with
a pair of a (possibly empty) gcal and a type substitution. (The distinction beiween
solution nodes and lookup nodes is defined later.)
e Each edge from a solution node is labelled with a substitution, and each edge from a
lookup node is labelled with a type substitution.
A search tree of (G, ) is a search tree whose root node is labelled with (G, u). A node:
is called a null node when the goal part of the label is 0. When a node is labelled with
(“Ay, Az, ..., Ag", i), the type-abstracted atom A, p is called the head type-abstracted atom
of the node.

A solution tableis a set of entries. Each entry is a pair of the key and the solution list.
The key is a type-abstracted atom such that there is no other variant key in the solution
table. The solution list is a list of type-abstracted atoms, called solutions, such that each
solution in it is an instance of the corresponding key.

Let T'r be a search iree and Th be a solution table. An association of Tr and Th is a set
of pointers connecting from each lockup node in T'r into some solution list in T'b such that
the head atom of the label of the lookup node and the key of the solution list are variants of
each other. The tail of the solution list pointed from a lookup node is called the associated
solution list of the lookup node.

{5) OLDT Structure for Type Inference

An OLDT structure of G is a trio (T'r, Th, As) satisfying the following conditions:
s T'ris a search tree of Gp.
» Tbis a solution table.
» Asis an association of Tr and Th.

{6) OLDT Resolution for Type Inference

A node in a search tree of OLDT structure (T'r, T, As) labelled with (“A, Az, ..., 4.", p)
is said to be OLDT resolvable when p(X) # 0 for any variable X in A, As,..., Ay, and Ap
satisfies either of the following conditions:

e The node is a terminal solution node of Tr, and there is some definite clause “B -
Bi,Ba,...,Bn” (m > 0) in program P such that A and B are unifiable, say by an
m.gu. 7. (We assume that, whenever each clause is used, a fresh variant nf the clause
is used.) The pair of the (possibly empty) goal “By, Ba, ..., B, Az,...,A," 2and the
type sahstitution “p v (g 2,<%)" (or possibly the restriction of “p V {,u gy
to the variables in By, Fa, ..., Bm, A2, ..., An”) is called the OLDT resolvent. The
guhstitution n is called the substitution of the OLDT resolution.

s The node is a lookup node of T'r, and for some type substitution X (for the variables in
A), there is some variant of A(g V A) in the associated solution list of the lookup node.
The pair of the (possibly empty) goal “Az,...,A." and the type substitution "p v A"
(or possibly the restriction of “g V A" to the variables in “Az,..., A.") is called the
OLDT resolvent. The type substitution X is called the type substitution of the OLDT

resolu tion.

(7) OLDT Subrefutation for Type Inference
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An OLDT subrefutation of a type-abstracted atom and an OLDT subrefutation of a
type-abstracted goal are paths in a search tree (not necessarily starting from the root node)
which are simultaneously defined inductively as {ollows:

{al) A path with length more than O starting from a solution node is an OLDT subrefutation
of a type-abstracted atom Ag with solution Ar when
o the initial node is labelled with a pair of the form (“A, G7, k), the initial edge
with, say substitution n, and the last node with a pair of the form (*G”, p'),
s Lhe node next to the initial node is labelled with a pair of the form (“Ay, Ag, ...,
A, C", “av{p L<>)), and the path except the initial node and the initial edge
iz a subrefutation of (A4, Az,..., As ) g L«:}) with solution (Aq, A2, ..., 4. )0
(n > 0), and
o pis Sp el W
(a2) A path with length 1 starting from a lookup node is an OLDT subrefutation of a
type-abstracted atom Ap with solution Ar when
e the initial node is labelled with a pair of the form (*A4,G", ), the initial edge
with, say type substitution A, and the last node with a pair of the form (“G”,
p'}, and
o visp VA
{b1) A path with length 0, i.e., a path consisting of only vne node, is an OLDT subrefutation

of O p with solution O p.

(b2} A path with length more than 0 is an OLDT subrefutation of a type-abstracted goal

{41, Az, ..., Aa)p with solution (A, Az, ..., A )¥ (n > 0) when

s the initial node is labelled with a pair of the form (“Ay, Az, ..., 4., H", &), and
the last node with a pair of the form (“H™, p'),
s the path is the concatination of a subrefutation of A, with solution A;(p V),
a subrefutation of Az(p v »,) with solution Aa(p Vv »y V ug), ..., a subrefuiation
of An(gV i Vi V---Vig_1) with solotion Ay (Ve Ve V- Vi, V), and
@ pis gV VPV Vb VI,
In particular, a subrefutation of Ap is called a unit subrefutation of Ap.

{(8) Initial OLDT Structure and Extension of OLDT Structure for Type Inference

The initial OLDT structure of (G, g) is the OLDT structure (T'rg, Thy, Asg), where

Trg is a search tree consisting of only the root sclation node labelled with (G, g), T'by is the

solution table consisting of only one entry whose key is the head type-abstracted atom of Gp
and whose solution list is an empty list [ ], and Aso is an empty set of pointers.

An immediate extension of OLDT structure (T'r, Tb, As) in program P is the result of

the following operations, when a node v of OLDT structure (T'r, Th, As) is OLDT resolvable.

1. When % is a terminal solution node, let 5, (Ta, ..., C (k > 1) be all the clauses with

which the node vis OLDT resolvable, and (Gy, g1 ), (G2, p2), . .-, (Gi, pi) be the respec-

tive OLDT resolvents. Then add k child nodes of v labelled with (G, gy ), (G2, p2), .. -,

(G, pr) vo v. The edge from v to the node labelled with (G, ;) is labelled with 5;,

where 7; is the substitution of the OLDT resolution. When v is a Jookup node, let

Avy, Avs,..., Ary (k = 1) be all (the variants of) the solutions with which the node v

is OLDT resolvable, and (G, 51), (G2, #t2), - - -, { G, ) be the respective OLDT resol-

vents. Then add k child nodes of v labelled with (Gy, gy, (G2, p2), ..., ( Gy k) to v.

The edge from v to the node labelled with (G, i) is labelled with A;, where A; is the

type substitution of the OLDT resolntion. A new node is a lookup node when the head

type-abstracted atom is a variant of some key in T'b, and is a solution node otherwise.
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2. Replace the pointer from the OLDT resclved lookup node with the one pointing to the
last of the associated solution list. Add a pointer from the new lookup node to the
head of the solution list of the corresponding key.

3. When a new node is a solution node, add a new entry whose key is the head type-
abstracted atom of the new node and whose solution list is the empty list. For each unit
subrefutation of atom Ag (if any) starting from a sclution node and ending with some
of the new nodes labelled with [(5;, g;), add its solution Ae to the last of the solution
list of Ag in Tb if Ar is not in the solution list, and update the type substitution part
i; of the new node to p; V v,

An OLDT structure (T'r', TV, As") is an extension of OLDT structure (T'r,Th, As) if
(Tr', TV, As") is obtained from (Tr,Th, As) through sunccessive application of immediate
extensions,

(9) OLDT Refutation for Type Inference

An OLDT refutation of Gu in program F is a path in the search tree of some extension
of the initial OLDT structure of G from the root node to a null node. The solution of an
OLDT refutation is defined in the same way as that of an OLDT subrefutation.

3.3 Correctness of the Type Inference

FProbahly, the readers have already guessed that this type inference is safe, ie., will
not miss any atoms atl calling time and exiting time during the top-down execution. More
precisely, the correcteness is stated as Theorem 3.3 below. The proof of the theorem crucially
depends on the fact mentioned before that B{u v) iz a superset of Au N Br.

Theorem 3.3 (Correctness of the Type Inference)

{a}) Let Goog be a goal, Gopo be a type-abstracted goal such that Gaop is in Goug, T be
an extension of the initial OLD tree of Goog, and (T'r, T, A2} be an extension of the
initial OLDT structure of Gapg. If Ae is the head atom of a node in T, then there
exists an extension of (T'r,T'b, A=) such that the search tree of the extension contains a
node with head type-abstracted atom Ag which includes Ae. (Correctness of the Type
Inference for Calling Patterns)

(b) Let T be an extension of an initial OLD tree, (T'r, T'h, As) be an extension of an initial
OLDT structure for type inference, A be an atom and Ap be a type-abstracied atom
such that Ae is in Ap. I T contains a unit subrefutation of Ae with its solution Ar,
and Ap is the head atom of a node in T'r, then there exists an extension of (T'r, T'h, As)
such that the search tree of the extension contains a unit subrefutation of Aa with
its solution Aw which includes Ar. (Comrectness of the Type Inference for Exiting
Patterns)

FProof. The theorem is an immediate consequence of the following lemma by letting H be O
and v be the root node for the part (a), and by letting n be 1 for the part (b).

(a) Let ¥ be an OLD partial subrefutation of (41, Aa,..., 44 )r ending with a node whose
head atom is Ar, § = (T'r,T'h, As) be an extension of an initial OLDT structure for
type inference, and » be a node in Tr labelled with (*4,, As,..., 4., H", g) such
that (A4;, Az, ..., 4.)e is in (4, 4z,...,4.)¢. Then there exists an extension of
(T'r,T'b, As) such that the search tree of the extension contains a node with head
type-abstracted atom Av which includes Ar.
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(b) Let v be an OLD subrefutation of (A1, Az, ..., A, )o with its solution (43, Az, ..., Aq )T,
S5 = (Tr,Th, Ag) be an extension of an initial OLDT structure for type inference, and
o be a node in Tr labelled with (4, A2, ..., A, H”, p) such that (A3, Az,..., 4s)
o is in {A;, As,..., Ag)p. Then there exists an extension of {Tr,Th As) such that
the search iree of the extension contains an OLDT subrefntation of {4y, A, ..., Aq)u
for type inference starting from v with its solution (4, Aa,..., 4. Jv» which includes
(J‘il,ﬂgr... ,A“)T.
The structure of the proof of the lemma is the same as that of Lemma 3.17 in Tamaki
and Sato [27) pp.93-94, which is by induction on the trio (7,8, v), ordered by the following
well-founded ordering : (7,5, v) precedes (', 8',v") if and only if
o |y] <ol or
o || = |+'|, and v is a solution node, but v' is a lookup node,
where || means the length of the path y.
Base Case : When |v| = 1, the lemma is trivial since Ar is A;e for the part (a), and + is a
subrefutation of a null clanse for the part (b).
Induction Step : When |4] > 1, we will consider two cases depending on whether the node
v is a solution node or a lookup node.
Case 1 : When @ is a solution node, let = and +* be the first node and the remaining path
of the (partial) subrefutation v, and C be the definite clause in P nsed in the first step of
the subrefutation 7. Then 7' is a subrefutation of (Hy, Az,..., An)e’, the OLD resolvent
of (Ay,Aa,..., Ag)e and €. By the assumption, the label (“Ay, A2, .., Aa, H”, p) of #
is also OLDT resolvable by ¢, and the OLDT resolvent (“Ify, Az,... A, H",4") is such
that (Hy, Az, ..., Aq)e’ is in (Hy, Ag,..., A,)p" due to the praperty of © L. Extending
S (if necessary) by the OLDT resolution for type inference on the node v, we can get an
OLDT stractire &' in which v has a child node o' labelled with (“Hy, Aa,..., A., 7, w').
The part (a) is immediate from the induction hypothesis for (4,8, v'). As for the part
{b), by the induction hypothesis, we have an extension 5" of 5" which contains a subrefu-
tation &' of (Hy, Ag,..., Ax)u" with solution (Hy, Ag, ..., A, )¢" starting from v' such that
(Hy, Azyevry Agle’ is in (Hy, Az, ..., An)v'. The path in 8" starting from v and followed by
&' constitutes the required subrefutation of (A1, Aa,..., A,)p due to the property of “l

ﬂ:{“AhA._:J___'A"rG”r.ﬂ'] “:{.‘LAI.:AE]“HA»;H“:F}
| |
Wi (“Hy, Aa, ..., An, G, 0") o't (“Hy, Aa, ..., An, H?, 1)
| F3
[J—;GJ:’ a_]r} (GH’HJ 'uif}

Figure 3.3.1 Correctness of the Type Inference (Case 1)

Cose 2 : When v is 2 lookup node, there is a corresponding solntion node vg in T' labelled
with (A, Ho", uo) such that A, p is a variant of Apg.

When + does not contain a unit subrefutation of A;0 as its prefix, the part {a) is
immediate from the induction hypothesis for (7,8, vg) by letting n be 1. (This is not the
case for the part (b), since any OLD subrefutation of (A, A2,... 4ds)e contains a unit
subrefutation of A,o as its prefix.)

When + contains a unit subrefutation of A;e as its prefix, let  be divided as concate-
nation of a subrefntation 71 and a (partial) subrefutation ¥ so that ¥; is a subzefutation of
Ao with its solution Aymy. Since |1] < |y], and A1 is in A;p, hence A0 s 1n Apg, by
the induction hypothesis, we have an extension .S’ of S such that &' contains a subrefutation
of Apg with its solution Apy, starting from wo such that Ay is in Awy. By the operation
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at step 3 of the definition of the OLDT strncture extension, the solution list of Ap' in 5’
includes the solution Apy.

Now consider the label (“4;, Az,..., 44, H”, §) and the solution Aw,. Since (“Ay, As,
ooy Ag”, o) and unit clanse Ayny have an OLD resolvent (“Aa,..., 4,7, '), the label
(“Ar, Az,.ooy Ag I, ) and Awy also have an OLDT resolvent (“Aa, ..., A,, H”, u') such
that (Az2,...,4n)e’ isin (As,..., Ax)¢'. This means that &' can be extended (if necessary)
to 5" by the operation at step 1 in the definition of the OLDT structure extension, so that
the node v has a child node o' labelled with (“As,..., A, F™, n').

Since 7z is a (partial) subrefutation of (As,..., 4, )on and |2 < [v], The part (a) is
immediate from the induction hypothesis fur (y2, 8", v'). As for the part (b), again by the
induction hypothesis, we have an extension ™ of §" which contains an OLDT subrefutation
bz of (Ag,..., A, )u" with its solution (A4, ..., A, )v starting from v" such that (Aa,..., A.)r
isin (Aa,..., 4,)v. The path in & starting from v and followed by the subrefutation &,

constitutes the required subrefuation of (A5, Az, ..., Aq)p.
o (uﬂhﬂ:,. ..TAH,G”, ﬂ'_} L (RA].TAEJ' *-:Anr H”: .ﬂ} L (‘:AlHﬂnT Fﬂ}
I 16, i
u' i (“Ag,..., 4,,G", ') o't (%Az, ..., An, HT, pt) (“Ho™, pp)
|',I‘2 Iaz
(‘G o) ("B, ")

Figure 3.3.2 Correctness of the Type Inference (Case 2)

Note that any extension of the initial OLDT structure of (G, 4) in program P generates
only finite number of nodes, because program P is assumed to be a finite set of definite
clauses, hence the conditions of Konig’s lemma are satisfied as follows:

e The number of type-abstracted atoms is finite, since the atom part of each type-
abstracted atom must be an atom in the bodies of the definite clauses in P or an
atom in (7, and the number of type-substitutions for the variables in the atom is also
finite. Henee, the extensions at solation nodes oceur only finite times, since the number
of head type-abstracted atoms is finite. Therefore, the length of each label is bounded
by Maz = “the number of the extensions of solution nodes® x “the maximum length
of the bodies of the definite clanses in P” + “the length of G,” since the extensions
at lookup nodes only generate child nodes with shorter label. Thus, the length of each
path is finite, siuce the number of solution nodes on it is finite, and there can’t be
infinite lookup nodes on it.

« Each solution node can be a parent node of only finite nodes, since program Fis a finite
set of definite clauses. Each lookup node can be a parent node of only finite nodes,
since the number of type-abstracted atoms, hence that of solutions is finite. Thus, the
number of branches at each node is finite.

Due to the finiteness, the process of extension nunder the depth-first from-left-to-right strategy
(or any other strategy) always terminates. The theorem above implies that any maximally
extended OLDT structure for type inference in finite steps covers the atoms at calling time
and exiting time during the top-down execution of the goals in Gp.

4. Implementation of the Standard Hybrid Interpretation

The readers might have felt that the processing of unit subrefutations is troublesome in
the standard hybrid interpretation of Section 2. To make the conceptual presentation of the
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hybrid interpretation simpler, the details of how it is implemented have not been mentioned
intentionally. In particular, it is not obvious in the “immediate exten gion of OLDT structure”
e how we can know whether a new node is the end of a unit subrefutation starting from
some solution node, and
+ how we can obtain the solution of the unit subrefutation efficiently if any.
In the actual implementation, we will nse the following modified framework. (Although such
redefinition might be confusing, it is a little difficult to grasp the intuitive meaning of the
modified framework without the explanation in Section 2.)

4.1 Modified Standard Hybrid Interpretation of Prolog Programs
(1) Modified OLDT Structure

A search tree is a tree such that each node is classified into either a solution node or 2
lookup node, and is labelled with a pair of a generalized goal and a substitution. {We have
said “generalized,” because it might contain non-atoms called call-exit markers. In general,
the goal part of each label is either D or a sequence “A, g, ..., 0,7 where o; is either an
atom or a call-exit marker of the form [H,7]. The edges are not labelled with substitutions
any more.) A search tree of G is a search tree whose root node is labelled with (G,o). A
solution table and an association are defined in the same way as before. An OLDT structure
is a trio of a search tree, a solution table and an association.

(2) Modified OLDT Resolution

A node in a search tree of OLDT structuze (T'r, Th, As) labelled with (“4,03,..., 2,7, @)
is said to be OLDT resolvable when it satisfies either of the following conditions:

e The node is a terminal solution node of T'r, and there is some definite clause “B -
By, B, ..., Bn” (m > 0) in program P such that Ar and B are unifiable, say by an
m.g.u. 8.

¢ The node is a lockup node of T'r, and for some substitution # (for the variables in Ae),
there is some variant of Aef in the associated solution list of the lookup node.

The OLDT resolvent is obtained through the following two phases, called the calling
phase and the exiting phase since they correspond te & “Call” (or “Redo”) line and an “Exit”
line in the messages of the conventional DEC10 Prolog tracer. A call-exit marker is inserted
in the calling phase when a node is OLDT resolved using the program, while ne call-exit
marker is inserted when a node is OLDT resolved using the solution table. When there is
a call-exit marker at the leftmost of the goal part in the exiting phase, it means that some
unit subrefutation is obtained.

1. Calling Phase: When a node labelled with (“A,aa,...,0,", ¢} is OLDT resolved, the
intermediate label is generated as follows:
e When the node is OLDT resolved using a definite clause “B = By, By, ..., Bn™
in program P and an m.g.u. 8, the intermediate goal part is “Bi,Ba,..., Bm,
[4,7], @2,...,a,", and the intermediate substitution part 7o is 4.
¢ When the node is OLDT resolved nsing (a variant of) Ao in the solution table,
the intermediate goal part is “az,..., @ ", and the intermediate substitution part
To is of.
2. Exiting Phase: When there are & call-exit markers [4;, 1], [A2,02), --- [k, o] at
the leftmost of the intermediate goal part, the label of the new node is generated as
follows:
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e The goal part is obtained by eliminating all these call-exit markers. The substi-
tulion part is oy -« - Ta2my Ty

e Add Ayeima, Aseseimo, oo Ak oo - @17 to the Jast of the solution lists of 4,0y,
Aada, oo.y Apay, Tespectively, if they are not in the solution lists.

The precise algorithm is shown in Figure 4.1. The processing in the calling phase is
performed in the first case statement, while that in the exiting phase is performed in the
second while statement successively. Note that each node is labelled, say with ( G,r), in
such a way that the following property holds: “the substitution part ¢ always shows the
instantiation of atoms to the left of the leftmost call-exit marker in G When there is &
call-exit marker [4;, o] at the leftmost of goal part in the exiting phase, we need to update
the substitution part by composing ¢; in order that the property above still holds after
eliminating the call-exit marker. The sequence ry, 73,...,7; denotes the sequence of updated
substitutions. In addition, when we pass a call-exit marker [4;, #;] in the while loop above
with substitution 7;, the atom Ajr; denotes the solution of a unit subrefuiation of Ajoj.
The solution A;7; is added to the solution list of A;e;.

OLDT-resolve((*A,a5,...,2,", &) : label) : label ;
i:=0;
case
when & solution node is OLDT resolved with “B -~ By, B5,...,B,," in P
let # be the m.g.u. of Ar and B |
let Gg be a generalized goal “By, Bs,..., B, [4, 0], 04,...,0." ;
let rp be the substitution # ; — (A)
when a lookup node is OLDT resolved with “Aef™ in T
let Gy be a generalized goal “aq,...,¢," ;
let 75 be the substitution ## ; — (B)
while the leftmost of (5; is a call-exit marker [A4;4,,0;,,] do
let Giy) be G other than the leftmost call-exit marker ;
let 741 be oy ; — (C)
add Aipi7ipr to the last of 441041 solution list if it is not in it ;
ii=3i+1;
return (G, 7).

Figure 4.1 Modified OLDT Resolution for Standard Hybrid Interpretation

A node labelled with (%A, aq,...,0,", 7} is a lookup node when a variant of Ae already
exists as a key in the solution table, and is a solntion node otherwise.

(3) Modified OLDT Refutation

The initial OLDT structure and extension of OLDT structure are defined in the same
way as before. An OLDT refutation of Go is a path in the search tree of some extension of
the initial OLDT structure of Go from the toot node to a null node. Let 7 be the substitntion
part of the null node. Then the solution of the refutation is Gr.

Note that we no longer need to keep the edges, the non-terminal solution nodes and
the null nodes of search trees.
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4.2 An Example of the Modified Standard Hybrid Interpretation

Let us show an example of how the modified standard hybrid interpretation works.
Consider the example in Section 2.1 again. The modified standard hybrid interpretation
generates the following OLDT structures of reach(a, Za).

reach(a,Zq)
<>

reach(a,Y) : [}
Figure 4.2.1 Modified Standard Hybrid Interpretation at Step 1

First, the initial OLDT structure above is generated.

reach{a,Zg)
<>
/ Y
o reach(X1,7Z1), edge(Z1,Y1), [] O

£

i <=1, X140 < Fgt=a>
i

¥
reach{a,Y) : [reach(a,a)]

Figure 4.2.2 Modified Standard Hybrid Interpretation at Step 2

Secondly, the root node (“reach(a, Z5)”,<>) is OLDT resolved using the program to
generate two child nodes. The intermediate label of the left child node is

(“reach(Xy, Z,),edge(Zy, Y1), [reach(n, Z),<>]", <Zo=11, X140 >).
It is the new label immediately, since its leftmost is not a call-exit marker. {Due to space
limit, the call-exit markers are represented by [] in the figures hereafter.) The intermediate
label of the right child node is

(“[reach(a, Zo), <> |, < Zo+=a,Xz24&0a>).
By eliminating the leftmost call-exit marker and composing the snhstitutions, the new label
is (0, < Z5 = a >). (We have omitted the assignments irrelevant to the top-level goal
reach(a, Zo).) During the elimination of the call-exit marker, reach(a,a) is added to the
solution table.

reach(a,Zg)
<>
! %,

,-reach(Xy,Z1), edge(Z1,Y1), [] O
I,’ {Endzﬂi}fld:a:* < Fpe=a>

! edge(Z,,Y:).[]
W, <ZoeY K1 a0

=

reach{a,Y) : [Ieach[;,;j]
edge(a,Y) : [ ]

Figure 4.2.3 Modified Standard Hybrid Interpretation at Step 3

Thirdly, the left lockup node is OLDT resolved using the solution iable to generate
one child solution node.

Fourthly, the generated solution node is OLDT resolved using 2 unit clause “edge{a,b)”
in program P to generate the intermediate label
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(“[edge(Z:, Y1), < Zo =Y, X1 a0, Z1=a> |, [reach(a, Zo), <> |7, <Y1 =b>).
By eliminating the leftmost call-exit markers and composing substitutions, the new label is
(O, € Zo<=b>). During the elimination of the call-exit markers, edge{a, b) and reach{a,b)
are added to the solution table.

Similarly, the node is OLDT resclved using a unit clause “edge(a,¢)” in program P to
generate the intermediate label

(“[edge(Z1, Y1), < Zo= Y1, X1 4=a, Zy =a> ], [reach(e, Zo), <> |7, <Yi4=c3>)
By eliminating the leftmost call-exit markers and composing substitutions similarly, the new
label is (O, < Zg<=c>). This time, edge(a,c) and reach(a, ¢) are added to the solution table

during the elimination of the call-exit markers.
reach(a,Zs)

<>
/ A

.-reach{X;,Z;), edge(Z:,Y1 ), [] o
f {znﬂﬂiﬁ'1¢=ﬂ} < Zp4=a>

i

! edge(Z:, Y1 L[]

' < Zoe¥, X1 <=a, 20>
' / \

\ O o

L]
NS dgeb> < T

reach(a,Y) : [teuh{a,;}:ﬂreachfa,,b'j, reach(a,c)]
edge(a,Y) : [edge(a,b), edge(a,c)]

Figure 4.2.4 Modified Standard Hybrid Interpretation at Step 4

The extension proceeds similazly to obtain all the solutions as in Section 2.1
4.3. Correctness of the Modified Standard Hybrid Interpretation

This modified standard hybrid interpreter is a correct implementation of the standard
hybrid interpreter in Section 2, hence the same theorem as Theorem 2.3 holds.

Theorem 4.3 (Correctness of the Modified OLDT Resoclution)

{a) Let Ggog be a goal, T be an extension of the initial OLD tree of Goog, and (T'r, T'h, As)
be an extension of the initial OLDT structure of Gpeg. If A is the head atom of a
node in T, then there exists an extension of (T'r, Th, As) snch that the search tree of the
exiension conlains a node with head atom Ag" which is @ variant of Ae. (Correctness
for Calling Fatterns)

(b) Let T be an extension of an initial OLD tree, (T'r, Th, As) be an extension of an initial
OLDT structure, Ao and Ae’ be atoms such that Ao is a variant of A¢'. I{ T contains
a onit subrefutation of Ar with its solution Ar, and A’ is the head atom of a node
in T'r, then there exists an extension of (T'r,T'6, Az} such that the search tree of the
extension contains a unit subrefutation of Ae' with its solution A" which is a variant
of Ar. (Correctness for Exiting Patierns)

FProol. To prove the theorem, it suffices to show that there exists an extension of an initial
OLDT structure of the standard hybrid interpreter in Section 2 if and only if there exists an
extension of an initial OLDT structure of the modified standard hybrid interpreter in Section
4 satislying the following correspondence:
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(a) The corresponding search trees have the identical form and satisfies the following con-
ditions:
o The goal parts of the corresponding nodes are identical except for call-exit mark-
ers (if any).
e The head atoms of the corresponding nodes are identical (although the substitu-
tion parts are not necessarily identical ).
¢ The computed solutions of unit subrefutations are identical.
(b} The corresponding solution tables are identical.
(¢) The corresponding associations are identical.
Due to space limit, we will omit the details of the proof.

5. Implementation of the Abstract Hybrid Interpretation for Type Inference

The abstract hybrid interpretation for type inference is modified as well according to
the modification of the standard hybrid interpretation.

5.1 Modified Type Inference for Prolog Programs
(1) Modified OLDT Structure for Type Inference

A search tree, a solution table and an associstion for type inference are defined in the
same way as the modified standard hybrid interpretation in Section 4 except that call-exit
markers are of the form [B, v, 7]. An OLDT structure for type inference is a trio of a search
tree, a solution table and an assoclation.

QLD T-resolve((“A, ag,...,an", p) : label) : label ;
1:=0;
case
when a solution node is OLDT resolved with “B :- By, Ba,...,Bm" in P
let 7 be the mg.u. of A and B ;
let Go be & generalized goal “By, Ba,..., B, [4,8,7], 02,...,
let vp be “u Lgnr — (A)
when a lookup node is OLDT resolved with “A(p v )" in Th
let Gp be a generalized goal “az,...,0." ;
let vg be “p VA" — (B)
while the leftmost of (7; is a call-exit marker [Aig1, pig1,mi41] do
let G;41 be G; other than the leftmost call-exit marker ;
let Mg be “ﬁ.‘_}l = " : — {G}
add A;p1#is1 to the last of A;pqpisq’s solution list il it is not in it ;
ti=14+1;
return (G;, 1)

s

Figure 5.1 Modified OLDT Resolution for Type Inference

(2) Modified OLDT Resolution for Type Inference

A node in a search tree of OLDT structure (Tr, Th, As) labelled with (“4, a2,..., 057, #)
is said to be OLDT resolvable when p{X) # 0 for any variable X in 4, Aa,..., Ay, and Ap
satisfies either of the following conditions:
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# The node is a terminal solution node of T'r, and there i1s some definite clause “B :-
By, Bz,...,Bn" (m > 0) in program P such that A and B are unifiable, say by an
m.g.u. f.

* The node is 2 lookup node of T'r, and for some type substitution A (for the varialles in
A), there is some variant of A(p v A) in the asseciated solution list of the lookup node.

The precise algorithm of OLDT resolutnion for type inference is shown in Figure 5.1.
Note that only the operations at steps (A), (B) and (C) differ from those in Figure 4.1.

A node labelled with (%A, @2,...,a,7, ) is a lookup node when a variant of Ap is a
key in the solution table, and is a solution node otherwise.

(3) Modified OLDT Refutation for Type Inference

The initial OLDT structure, extension of OLDT structare and OLDT refatation for
type inference are defined in the same way as in Seclion 4.

5.2 An Example of the Modified Type Inference

Let us show a different example from the one in Section 3. Consider the following
program defining “mult™ and “add.”

mult(zero,Y,zero).

mult(suc(X),Y.Z) - mult(X,Y W), add(Y,W,Z).
add(zero,Y,Y).

add(sue(X),Y sue(Z)) :- add(X,Y,Z).

Then the type inference of mult( Xy, Yo, Z0) <> proceeds as follows:
First, the initial OLDT structure below is generated.

mult(Xs,Ys,%a)
>

mult{X,Y,2)<> : []

Figure 5.2.1 Modified Type Inference at Step 1

Secondly, the root node (“mult(Xg, ¥y, Z0)",<>) is OLDT resolved using the program.
The left child node gives a solution mall{ Xa, Yo, Zo) < Xg, Zo < num >, The right child node
is a lookup node.

mult(Xe,Yo,Z0)
<
/ !
u] L mult(Xa,Ya,W2), add(Y2,W2,Z2), 1
<Xp, Zg&num> <>

-d."

mult(X,Y,Z)<> : [leﬂff{x, V,Z) < X, Z < num>]
Figure 5.2.2 Modified Type Inference at Step 2

Thirdly, the lookup node is OLDYT resolved using the solution table. The generated
child node is a solution node. Fourthly, the solution node is OLDT resolved further nsing
the program. The left child node gives two solutions add(¥5, Wa, Z3) <Y¥5, Wa, 2 <=num >
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and mult(Xo, Yo, Z0) < Xou, Yo, o = num >. The right child node is a lookup node, Fifthly,
the looknp node is OLDT resolved using the solution table.

mﬂt{xu |Yl:hzﬂ}

Lo
! \
| ,fmﬂt{}:2|¥3:w'2)1 &dd{Yg,WQ,z}j, I]
< Xp, Zp=num> 7 <
¥
i |
! add(Y2,Wa,Z2).0
i < Wy <num >
: P
l'l. m| i-dd(?i:whzi]! [Ir[l -
' < Xg, Yo, Zo+=num> <Wi<num> ’
\ | K
o 0 \
T < Xo, Yo, Za=num> '
4

¥
mult(X,Y,2)<> : [malt{X,Y 2)< X, Z =num?>, mult(X,Y,2)< X, Y, Z < num >| ;
add(Y,W,Z)< W < num> : [add(Y,W,Z)<Y, W, Z < num >] /!

Figure 5.2.3 Modified Type Inference at Step 5

Sixthly, the first lookup node is OLDT resolved using the new solution. The generated
child node is a solution node.Seventhly, the generated solution nede is OLDT resolved using
the program. The left child node gives a new solution add(¥y, Wy, 2y <Yy, Wy, Za=num >,
The right child node is a lookup node. Lastly, the lookup node is OLDT resolved using the
solution table. Because the generated child node gives no new solution, the extension process

stops.
mu lt{ x-I:I :Yﬂ |E‘ﬂl:|

7 57
) . mull[]‘-{g,':’z,W;], add[&;z,whz-;:l, I]
< Xp, fp=nam> _-7 <>
/ Y,
E'dd{Y‘R |w2 !Iz E}L[I a'dd'{ Yz IW“ lZ 2] l[l
<Woe=num > <Yy, Was=num>
P : TN
o add(Ys,W4,Ze). 0100 m} add(Ye, We,Zs),[1.1 -
< Xg, Yo, o= num > <Wysnum> 1 <Xg, Yo, Zo=num> <Yy, Wg=num >
| . [
O a
< Xo, Yo, Zo = num > < Xo, Yo, Zo=num>

a——

mUlt(X,Y.Z)<> ¢ [mult(X,Y,Z)< X, Z < pum >, mult(X,Y,Z)< X, Y, Z & nam>]
add(Y,W,Z)< W s num > : [add(Y,W,Z)<Y,W,Z &num>] "~
add(Y,W,2)< Y, W <num> : [add(Y,W,2)<Y, W, Z <num3] °

Figure 5.2.4 Modified Type Inference at Step 8

This problem is not so trivial as one might think at first glance. For example, Suppose
that the predicate “mul{” is defined by

3

A
[]
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mult(zero,Y,zera).

mult{suc(X),Y,Z) - mult{X,Y,W), add(W,Y,Z).
by exchanging the first and the second arguments of “add.” Then, one of the exit pattern of
mult (X,¥Y,2) <> is mult(X,Y,Z) < X < num >, hence, we can’t conclude that the third
argument is a number. For example, mult(suc(zera), ¥, V) succeeds for any V.

5.3. Correctness of the Modified Type Inference

This modified type inference is a correct implementation of the type inference in Sec-
tion 3, hence the same theorem as Theorem 3.3 holds.

Theorem 5.3 (Correctness of the Modified Type inference)

(a) Let Goog be a goal, Gopg be a type-absiracted goal such that Goeog is in Gopg, T be
an extension of the initial OLD tree of Gyeg, and (T'r, T8, As) be an extension of the
initial OLDT structure of Gopp. If Ar is the head atom of & node in T, then there
exists an extension of (T'r, T'h, As) such that the search tree of the extension contains a
node with head type-abstracted atom Ap which includes Aeg. (Correctness of the Type
Inference for Calling Patterns)

(b) Let T be an extension of an initial OLD tree, (T'r,Th, As) be an extension of an initial
OLDT strueture for type inference, Ao be an atom and Ap be a type-abstracted atom
such that Az isin Ap. If T contains a unit subrefutation of Ae with its solution Ar,
and Ag is the head atom of a node in T'r, then there exists an extension of (T'r, T'h, As)
such that the search tree of the extension contains a unit subrefutation of Ap with
its solution Avr which includes Ar. (Correctness of the Type Inference for Exiting
Patterns)

Froof. It suffices to show that there exists an extension of an initial OLDT structure for
the type inference in Section 3 if and only if there exists an extension of an initial OLDT
sirzcture for the modified type inference in Section 5 satisfying the same correspondence
conditions as the proof of Theorem 4.3, Again, due to space limit, we will omit the details
of the proof.

6. Depth-abstracted Term Inference for Prolog Programs

The type inference is the problem of describing supersets of terms assigned to the
variables in the atoms at calling time and exiting time in terms of data types. In general, we
call it goal pattern inference to describe supersets of terms assigned o the variables in the
atoms zl calling time and exiting time during the top-down execution of a given top-level
goal. In this section, we will show the implementation of another goal pattern inference.

Suppose that a top-level goal is executed with its argnments instantiated 1o terms of
specific form. Then, how can we know what form of arguments the atoms have when they are
invoked or they sncceed during the top-down execution of the top-level goal? In particular,
can we say that some predicate is always invoked or succeeds with its argument instantiated
to some instance of a specific term? We will reformulate the work by Sato and Tamaki [24]
from the viewpoint of abstract hybrid interpretation.

(1) Depth-abstracted Term and Depth-abstracted Substitution

The depth of term { is defined as follows:
o When t is a variable, the depth of ¢ is 0.
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e When t is a constant ¢, the depth of  is 0.
e When 1is a term of the form f{ty,12,...,1,), the depth of 1 is the maximum of the
depths of f1,12,... 1, plus 1.
A depth d abstracted term is a term whose depth is at most d, and denotes the sel of all its
instances. Note that the set of all depth d abstracted terms is finite for any given d, because
program P is a finite set of definite clauses, hence there appear only finite function symbols.

A depth d abstracted substitution is an expression of the form
<X ti_th =1z, LAEL e,
where 13,1a,..., 1 are depth d abstracted terms. Depth-abstracted substitutions are denoted
by p,#, X in this section.

(2) Depth-abstracted Atom and Depth-abstracted Goal

Let A be an atom and g be a depth d abstracted substitution of the form
{}:1 4:=i]_ng¢fg,.. .,Xrt:_:}.
Then Ap (ot pair (A4, p)) is called a depth-abstracted atom, and denotes the set of all atoms
obtained by replacing each X; in A with a term in t;. An instance and a variant are defined
in the same way as nsnal atoms.
Similarly, G (ot pair (G, )} is called a depth-abstracted goal, and denotes the set of
goals obtained by replacing each X; in G with a term in {;.

(3) Unification of Depth-abstracted Atoms

A term 1is a Jlevel 0 subterm of titself. £;,1z,... 1y are Jevel d 41 subterms of f, when
f(t1,12, ... ta) is a level d sublerm of t. A term obtained from term 1 by replacing every
level d non-variable non-constant subterm of ¢ with a newly created distinct vatiable is called
the depth d abstraction of t, and denoted by [t]a.

Example 6 Let { be a term f(g(X,a),Y,b) and U,V be fresh vasiables ([24] p.642). Then

Hr when d = U'_
[t]a = {I{V, Y,b), whend = 1;
t, when d > 2,

Note that ¥ and b are not replaced with new variables when d = 1, and neither are X and
a when d = 2.

Let @ be a substitution of the form
c Xyt Xas=ty,... , Xis=l >
Then the substitution
<X <= [11]1 .Xgﬂ[tg]g, F 1 '1=[f|]d >
is called the depth d abstraction of 8, and denoted by [8]a-

Two depth-abstracted atoms Ap and By are ¢aid 1o be unifiable when Apn Bv # 0.
When Ap and By are unifiable, atoms Ap and By are unifiable in the usual sense. Let 8 he
an m.g.u. of Ap and By, Then B[vf]s is a superset of Ay Bu.

(4) OLDT Resolution for Depth-abstracted Term Inference

The search tree, solution table, association and OLDT structure for depth-abstracted
term inference are defined in the same way as the modified type inference in Section 5.
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A node in a search tree of OLDT structure (T'r, T'h, As) labelled with (“A, az,..., 0.7, &)
is said to be OLDT resolvable when it satisfles either of the following conditions:

» The node iz a terminal solution node of T'r, and there is some definite clause “B :-
By, Ba,...,Bxn™ (m > 0) in program P such that Ag and B are unifiable, say by an
m.g.u. f.

» The node is a lookup node of T'r, and for some substitution # (for the variables in Ap),
there is some variant of Aud in the associated solution list of the lockup node.

In either cases, the substitution @ is called the substitution of the OLDT resolution,

The precise algorithm of OLDT reselutuion for depth-abstracted pattern enumeration
is shown in Figure 6. Note that only the operations at steps (A), (B) and (C) differ from
those in Figare 5.1,

OLDT-resolve({“A4, ag, ..., w,", g} : label) : label ;
i =0
cRSe
when a solution node is OLDT resolved with “B - By, Ba,..., Bp"in P
let # be the m.g.u. of Ax and B ;
let G be a generalized goal “By, o, ..., Bm, [4, 1), o0, ... 0"

let wp be [8] —(A)
when a lookup node is OLDT resolved with du@ in T8

let (7p he a generalized goal “ma,... 0,7 ;

let vy be pd ; — (B)

while the leftmost of G; is a call-exit marker [Aiy1, pis1] do
let (G;4q be & other than the leftmost call-exit marker ;
let w4y be [piganla ; —(C)
add A;4irigr to the last of A;4 4% solution list if it is not in it ;
tm=i1+41;
return (G, ).

Figure 8 OLDT Resolution for Depth-abstracted Term Inference

The initial OLDT structure, extension of OLDT strocture and QOLDT refutation for
depth-abstracted term inference are defined in the same way as the modified type inference
in Section 5.

7. Mode Inference for Prolog Programs

In this section, we will show one more goal pattern inference by onr abstract hybrid
interpretation. Suppose that a top-level goal “reverse(Lg, Mg)” is executed with its first
argnment Lg instantiated to a ground term. Then, the first argument of “reverse” invoked
from the top-level goal is always a ground term at calling time, and the second argnment is
always a ground term at exiting time. Similarly, so are the first and the second arguments
of “append” at calling time and the third argument at exiting time. How can we show it
mechanically? We will reformulate the work by Mellish [21],[22] and Debray and Warren [10]
from the viewpoint of abstract hybrid interpretation.

(1) Mode
A mode is one of the following 3 seis of terms:
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any : the set of all terms,

ground : the set of all ground tetms,

B+ the emptyset of terms.
The instantition vrdering of modes is the ordering < depicted left below, while the set-
inclusion ordering of modes is the ordering C depicted right below:

0 any
| [
grownd ground
| |
any 1]

Again, the instantiation ordering and the set-inclusion ordering are the reverse of each other.
{To make our explanation simple, we will consider the simplest maode structure first. A little
more complicated mode structure is discussed in Section 7 (5).)

A mode substitntion is an expression of the form
<Xy d=my, Xo -:=m,...,}{¢~::ﬂ:>,

where my,mg,...,my are modes, Mode substitutions are denoted by g, v, A in this section.
We assume that a mode substitution assigns any, the minimum element w.r.t. the instantia-
tion ordering, to variable X when X is not in the domain of the mode substitntion explicitly.
Hence the empty mode substitution <> assigns any to every vatiahble.

The joined mode substitution of two mode substitntions u and », denoted by pv o, is
the substitution such that g v »(X) is the least upper bound of p(X} and v{X) w.r.t. the
instantiation ordering.

(2) Mode-abstracted Atom and Mode-abstracted Goal

Let A be an atom and g be a mode snbstitution of the form
<X, #m,xgﬁm_g,...,x;-.:ﬂ}.
Then Ap (or pair (A, p)) is called a made-abstracted atom, and denotes the set of all atoms
obtained by replacing each X; in A with a term in m;. An instance and a variant are defined
in the same way as type-abstracted atoms,
Similarly, Gu (or pair (G, p)) is called a mode-ahstracted goal, and denotes the set of
goal obtained by replacing each X in & with a term in m;.

{3) Unification of Mode-abstracted Atoms

Two mode-abstracted atoms Ag and By are said to be uaifiable when Ap 0 By # 0.
Similarly to the type inference, it suffices to define the inwards mode propagation and the
outwards mode propagation. They are defined as below:

s/ <tem>=m.

@, A(X) =0 for some X in &;
Als) when s is a variable;

/A = ground, when AMX) = ground for every variable X in s;
any,  otherwise. :
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The propagated mode substitution “g Lo v” (or “v ++ p")is defined using the inward
mode propagation and outwards mode propagation in the same way as the type inference.
Again, note that B(u = v) is a superset of Ap N By,

(4) OLDT Resolution for Made Inference

The search tree, solution table, association and OLDT structure for mode inference are
defined in the same way as the modified type inference in Section 5.

A node in a search tree of OLDT structure (T'r, T8, As) labeled with (“A, o2, ...,@,7, p)
is said to be OLDT resolvable when p(X) is not @ for any variable X and Ap satisfies either
of the following conditions:

s The node is a terminal solution node of T'r, and there is some definite clanse “B :-
By, Bs,...,B.,"” (m > 0) in program P such that 4 and H is unifiable, say by an
m.g.u. q.

» The node is a lookup nede of T'r, and for some mode substitution A (for the variables
in A), there is some variant of A(p v A} in the associated solution list of the lookup
node.

The precise algorithm of OLDT resoluntion for mode inference is shown in Figure 7.
Note that only the operations at steps (A), (B) and {C) differ from those in Figure 5.1.

OLDT-resolve({“A4,az,...,@,", g) : label) : label ;
t=10;
Case
when a soluiion node is OLDT resolved with “B :- By, By,..., B, " in P
let 7 be the m.g.u. of A and B ;
let Gp be a generalized goal “By, Ba,..., B, [4, 1,7), @2y ... @a™ ;
let vg be “p <>"; —(A)
when a lookup node is OLDT resolved with “A(p v X)™ in T
let Gy be o generalized goal “og,..., 0,7 ;
let vy be “p v A7 — (B)
while the leftmost of G; is a call-exit marker [4is1, pigr, Mi41)] do
let (741 be G; other than the leftmost call-exit marker ;
let wiyy be “pigpy = w” —(C)
add A4;11viey to the last of A; 4y pi41 "% solution list if it is not in it ;
t:=t41;
return (G, ;).

Figure 7 OLDT Resclution for Mode Inference (3 Modes)

The initial QLDT structure, extension of OLDT structure and OLDT refutation for
mode inference are defined in the same way as the modified type inference in Section &.

{5) Mode Inference with 4 Modes

The mode siructure with 3 modes we have considered is the simplest one. For more
complicated mode structures, we are sometimes unable to ignore the possibility that two
variables are bound to shared structures, as was pointed out by Debray and Warren [10].
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Suppose that a mode is one of the following 4 seis of terms:
any : the set of all terms,
ground : the set of all ground terms,
pariable @ the zet of all variables,
@ : the emptyset of terms,
Then, the instantiation ordering and the set-inclusion ordering are as below:

]
! any
ground ! %
o ground wrariable
any A /
I @
varighle

Note that the instantiation ordering and the set-inclusion ordering are not the reverse of
each other, e.g., variable < ground, but varigble 7 ground. Similarly, variable < any, but

variable 7 any.

A mode substitution is defined in the same way as before. This time, we assnme that a
mode substitution assigns variable, the minimum element w.r.t. the instantiation ordering, to
variable X when X is not in the domain of the mode substitution explicitly. Hence the empty
mode substitution <> assigns variable to every variable. The joined mode substitution of

g and », denoted by p WV », is defined in the same way as before.

If the propagated mode snbstitution were defined in the same way as before, the mode
inference with 4 modes would not work safely. The reason is that we no longer enjoy the
property that “if m; = mg then m; 2 m2.” To make the mode inference with 4 modes safe,
we need to infer the possibility that two variables are bound to terms with shared structures.

P{XmYD.En]
{I}
qf_Kl;YlL T[KI}'.- 5[Y1|-zl)p D
{I}
I{x].]! !{er-‘!rll l]
{]}
SEYI rYJ.J1I]
< X, =ground >

I
]

< Xp<=ground >

p(X,Y,Z) <> : [p(X,Y,Z) < X <= ground >]
g(X,Y) <> : [g(X)Y) <>]

i(X) <> @ [1(X) < X <=ground>]

s(Y,2) <> : [s(Y,Z) <]

Figure 7.2 Wrong Mode Inference with 4 Modes
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Example 7 The following is a slight modification of the example given by Debray and Waz-
ren [10]. Let the given program P be

p(X,Y,2) == q(X,Y), (X)), s(Y,Z).

q(X,X).

r{a).

s(Y,Y).
If we had not the additional information about the sharing between variables, the mode
inference of p(Xg, Yo, Zo) <> by our abstract hybrid interpretation would proceed as in
Figure 7.2. Though ¥; must not be a variable when the goal s(Yy, Z) is called, it is not
correctly inferred, because the sharing of structures between the variables X; and Y; caused
by the unification of g(X,;,Y1) and ¢{Z, Z) is not considered. Similarly, Yy must not be a
variable when the goal p( Xo, Yo, Zo) suceeds.

A sharing is an equivalence relation on the set of variables Xy, Xs,..., X1, where
Xy, Xa,..., X are distinct variables, called the domain variables of the sharing. Sharings
are denoted by M, N, L. A sharing M says that, if (X,Y) is not in M, then X and ¥ are
never bound to terms with shared structures. The restriction of M to the set of variables V
is the sharing consisting of all the pairs in both M and ¥V x V. The identity sharing, denoted
by 1, is the identity binary relation.

The joined sharing of A4 and A, denoted by M v A, is the transitive closure of the
wnion of M and N

Let g,v he mode snbetitutions, and A4, A be sharings. The join of pM and »A,
dencted by gM v pN, is AL such that

any, when p{X) is variable, and there exits ¥ such that
AMX) = (X, Y)isin MV AN and (g Vv »)(Y) is any or ground;
(pvi)(X), olherwise.

L=MWVN,

Let A be an atom, ¢ be a mode substitution of the form
<Xi&my, Agem ,...,ng:ﬂ:s,

and M be a sharing on variables X;, X3,..., X, Then ApAM (or trio (A4, g, M)) is called a
mode-sharing-abstracted atom, and denotes the set of all atoms obtained by replacing each
Xiin A with a term in m; without contradicting M. {We will consider only the restriction
of 4 and M to the variables in 4 when ApM is considered.) A mode-sharing-abstracted
atom AvN is said to be an instance of a mode-sharing-abstracted atom ApM when Ap is
an instance of Ap and A is a superset of M as binary relations. A mode-sharing-abstracied
atom BvA is called a variant of a mode-sharing-abstracted atom ApM when B is a variant
of A and » and A is obtained from g and M by renaming the variables in the domain of p
and M accordingly.

Similarly, GuM (or trio (G, g, M)) is called a mode-sharing-abstracted goal, and de-
notes the set of all guals obtained by replacing each X; in A with a term in m; without
contradicting A4,

Two mode-sharing-abstracted atoms ApAM and BeA are said to be unifiable when
ApMnn BeN # 0. Let A be an atom, Xy, Xa,..., X all the variables in 4, g a mode
substitution

<Xye=my, Xaema,. .., Apemy,...0>,
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M a sharing on Xy, Xo,..., Xs,..., B an atom, ¥;,Y2,..., ¥} all the variables in B, v a
moade subsiitution
<Yy en, Yosng, o YiEn,.. 2
A a sharing en Yy, Ya, ..., ¥i,..., and  an m.g.u. of A and B. Then, the propagated mode-
sharing from pM to N through 7, denoted by “pM I vN™ (o1 “vN < pM®), is defined
as follows:
1. Let &' be the propagated mode substitution from g to <> through g computed in the
same way as the mode inference with 3 modes.
2. Let A" be the sharing on ¥;,¥5,..., ¥ such that (¥;,Y;) is in A” if and only if
o 7{X,) and n(¥;) contains an identical variable for some X,
s 7(Xm) and y(¥;) contains an identical variable for some Xy, and
e (Xo, Xm)isin M,
3. Then, “pM — wA™ is v N v 'A.
Note that B(uM T wA) is a superset of ApM N BrN.

An OLDT structure for mode inference (with 4 modes) is defined in the same way as
before, except that
s the label of each node in a search tree is of the form (G, pA) and a call-exit marker is
of the form [B,vA, 9], and
¢ each key and each solution are of the form ApM.
The OLDT resolution for mode inference (with 4 modes} is defined in the same way as before,
except that the operations at steps (A), (B) and (C) are modified as follows:
o let wgAp be “pM L<>17
o let s be “pM v AL™
o let yipa Ny be “pia Mg AT
Then, the initial OLDT structure, exiension of an OLDT structure and OLDT resclution
are defined in the same way as those with 3 modes.

8. Discussion

Although it had been known that seemingly different ad hoc methods for analyzing
properties of programs can be accommodated into a single framework called sbstract in-
terpretation by Cousot and Cousot [7],[8], their framework was a little complicated due to
the semantics of the conventional imperative programming langnages on which their frame-
work focused its attention. The research on the abstract interpretation of logic programs
started at the beginning of the 1980% by several researchers taking advantages of the simple
computation mechanism of logic programs [22)[14],[16],[6],[19]. We will discuss the various
approaches according to two dimensions, interpretation method and target property.

{1} Interpretation Method

The first dimension of the classification is what type of interpretation the abstract
interpreter is based on. As was mentioned in Section 1, some operation which is botiom-up
in nature is inevitable, although the program properties when the top-down interpreter is
employed are to be analyzed. According to how the bottom-up operation is integrated, the
framewaorks of the abstract interpretation are classified as follows:

The pure bottom-up abstract interpretation approach is based on the bottom-up in-
terpreter, ie., hyper-resolntion. This approach was applied to type inference by Kanamori
and Horiuchi [15], and generalized by Marriott and Sendergard [20].

a9



The kybrid abstract interpretation approach is based on both the top-down interpreter
and the bottom-up interpreter. [Depending on how these two interpreters are combined,
the approach is divided into the two-phase hybrid abstract interpretation and the one-phase
hybrid abstract interpretation,

The two-phase abstract hybrid interpretation was proposed by Mellish [22] in order to
give a theoretical foundation to his practical techniques for analyzing determinacy, modes and
shared structures [21]. His approach derives simultaneous recurrence equations for the sets
of goals at calling time and exiting time during the top-down execution of a given top-level
goal, and obtains a superset of the least solution of the simultaneous recurrence equations
using a bottom-up approximation. The reason of the separation into two phases, simulating
the top-down execution and solving by the bottom-up approximation, is two-fold. Owne is
that, by simulating the top-down execution, we can focus on just the goals relevant to the
top-level goal. The other iz that, by solving by the bottom-up approximation, we can obtain
solutions without diving into infinite loop.

The one-phase abstract hybgid interpretation is the one we have presented in this
paper (cf. [12],/30]). The approach differs from the two-phase approach in that it starts with
the standard hybrid interpreter from the beginning. The standard hybrid interpreter can
compute solutions of a given top-level goal without either diving into infinite loop (unlike the
usnal top-down interpretation) or wasting time for goals irrelevant to the top-level goal (unlike
the usual bottom-up interpretation), so that the corresponding abstract hybrid interpreter
achieves the same effects as Mellish’s approach without the separation into two phases. (As
was shown in Section 1, the behavior of our abstract interpreter is very close to the way human
programmers usually analyze the properties in their mind by approximately simulating the
behavior of goals, so that it has a similar flavor to the “gualitative reasoning™ in artificial
intelligence. In fact, the example of Figure 1.1 has been used as an introductory explanation
of the qualitative reasoning.)

Similar approaches have been proposed indpendently by several researchers. To intro-
duce the operation bottom-up in nature, Bruynooghe [4],[5],[6] employed sbstract AND-OR
graphs, Mannila and Ukkonen [19] generalized the techniques of the data flow analysis of the
conventional programs, and Debray and Warren [9],[10] utilized extension table in database
query processing.

(2) Target Property

The second dimension of the classification is what properties of Prolog programs are
analyzed. The properties range from rather simple ones e.g., type inference (or type synthesis,
type derivation etc.}, depth-abstracted term inference (or success pattern enumeration etc.},
mode inference (or mode declaration derivation etc.) and sharing inference (or possible
shared structure detection, compile time garbage collection, dependency calculation ete.), to
& little complicated ones, e.g., functionality (or determinacy) detection, termination detection
and computational complexity analysis. Although the exact analysis of these properties are
undecidable in general, even the safe analysis is useful for manipulating programs (cf. [29]).

The type inference for Prolog programs was investigated by Kanamori and Horiuchi [15]
for the bottom-up approach, by Kanamori and Kawamura [16], by Bruynooghe, Janssens,
Callebaut and Demoen [4],[5] for the one-phase hybrid approach, and by others [1],[23].
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The depth-abstracted term inference for Prolog programs was first studied by Sato and
Tamaki [24]. The connection with abstract interpretation was pointed out by Kanameoeri and
Kawamura [16) for one-phase hybrid approach.

The mode inference for Prolog programs was investigated by Mellish for the two-phase
hybrid approach, by Debray and Warren [10], (with some safety condition for the case with
4 modes), Kanamori and Kawamura [16], Mannila and Ukkonen [19], and Bruynooghe and
Janssens [5] for the one-phase approach.

The sharing inference was investigated by Mellish [21], Jones and Spndergaard [14],
Bruvnooghe, Janssens, Callebant and Demoen [4], Mannila and Tkkonen [19], and utilized
for safe mode inference with 4 modes by Kanamori and Kawamura [16].

The functionality detection is the problem of detecting the possibility of returning
iwo different solutions. The functionality detection based on abstract interpretation was
investigated by Debray and Warren [9] and Kanamori, Kawamura and Horiuchi [17].

A mode-abstracted atom Ap is said to be functional, if, when any goal 4s in Ap
succeeds with its solution A7, the atom Ar is unique uwp to renaming of variables, that is,
the input form (the form at calling time) Ae uniquely determines the output form (the form
at exiting time) Ar. A mode-abstracted atom Ap is said to be relational otherwise. To
detect the functionality for a given mode-abstracted atom, we need to simultanecusly count
the number of solutions somehow during the mode inference (with 3 modes) in Section 6.
But, it is difficult to exactly count the numbers of solutions. Moreover, it is unnecessary
for functionality detection to know whether the solution number is 2 or 3. QOur additional
domain of abstract interpretation consists of the following thiee elements:

2 : more than 2

1:1

0:0
for which three operations +, ¥ and maz are defined. During the mode inference, we will
compute some expressions using the solution number of each mode-abstracted atom, x,+
and maz, which overestimate the numbers of each solution in the solution table.

The determinacy detection is the problem of detecting the possibility of backtracking.
The determinacy detection based on abstract interpretation was investigated by Mellish [21].
The ecent approach by Sawamura [25] is close to the abstract interpretation approach.

The termination detection is the problem of detecting the possibility of infinite compu-
tation. The termination detection for Prolog programs was investigated by Frances, Gram-
berg, Katz and Pnueli [11], Shapiro [26], Ullman and Van Gelder [28] and by Baudinet [2).
The termination detection based on abstract hybrid interpretation was investigated by
Kanamori, Horiuchi and Kawamura [18]. (Cf. Boyer and Moore [3] for Lisp programs.)

Becanse variables in Prolog programs are freely instantiatable, we need to define the
termination property of Prolog programs with the mode (or some other) information. An
atom A is said to be terminating when there is no infinite execution path in any OLD tree
of A, i.e., it sncceeds or fails finitely. A mode-abstracted atom Ap is said to be terminating
when any atom in the mode-abstracted atom is terminating.

A mapping m is called a measure of atom A, when it satisfies the following conditions:

« m is a mapping from the set of atoms to a well-founded set (W, <).

« For any atom B and any substitution 8, m(B#) < m(B) .

« Suppose that there is a path in the OLD tree of A starting from a node with its leftmost
atom p(ty,tg,...,t, ) and ending with a node with its leftmost atom p(51, 82, 8. )

Let 0,0, ....8; be the labels of the edges on the path, and & the composed substitution

8102 0;. Then m(p(sy,52,...,5.)) < m{p(ts,t2,... 1, )0).
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An atom A is said to be terminating by M when M is a set of all A’s measures. In particular,
when an atom A is terminating by {}, it is said to be diverging. Then, it is not difficult to
prove that an atom A is terminating if and only if there exists a measure of 4.

Hence, existence of measure is a necessary and sufficient condition for guaranteeing
termination. Termination of a given mode-absiracied atom can be detected by finding a
measure in some class for each mode such that it always decreases in recursions.

9. Cenclusions

We have presented a unified framewark for logic program analysis and its applications Lo
type inference, depth-abstracted term inference and mode inference. Functionality detection
and termination detection can be done as well based on our framework by enriching the
abstract domain appropriately. This approach was implemented in onr system for analysis
of Prolog programs “Argus/A” from April 1986 to March 1988 [16],[17).[18].
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