ICOT Technical Report: TR-481

TR-481
GHC-A Language for a New Age

of Paraliel Programming

by
K. Furukawa & K. Ueda

June, 989

L 19K9, ICOT

Mita Kokusa: Bldg. 21F (03) 456-3191-5

I l D I 4=28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

GHC — A Language for a New Age of Parallel Programming

Koichi Furukawa and Kazunori Ueda

Institute for New Generation Computer Technology
4-28, Mita 1-Chome, Minato-ku, Tokyo 108, Japan

Abstract

A parallel logic programming language GHC, proposed by Ueda (1985), is now
playing a very important role in the Fifth Generation Computer Project. It
is a successor of Relational Language (Clark and Gregory 1981), Concurrent
Prolog (Shapiro 1983) and Parlog (Clark and Gregory 1984). Since GHC is
totally based on parallelism, it provides a genuine tool for parallel program-
ming. It encourages programmers to write parallel algorithms and therefore
gives a foundation of parallel programming. We have also developed a program
transformation technique for GHC programs which preserves the external be-
haviour of the original programs. To show the validity of the transformation
technique, we have developed a formal semantics of possibly non-terminating
GHC programs. The highly parallel prototype hardware of our project 15 now
being developed to support the efficient execution of GHC programs.

1, Introduction

The Fifth Generation Computer Project started in 1982 to develop an entirely new
computer system for knowledge processing. There are two significant technical charac-
teristics of the project: the adoption of logic programming as the central concept of the
system and the pursuit of highly parallel computer architecture for the very fast execu-
tion of logic programs. At the beginning, we provisionally chose Prolog as the project’s
kernel language, since there were no other realistic logic programming languages. We
appreciated the potential ability of Prolog as a very high level user language for devel-
oping knowledge processing application programs. However, we noticed a major defect
of the language in its expressiveness for parallel situations: It is very hard to write an
operating system in Prolog because it has no concurrency concept.

In 1981, an entirely new logic programming language, called Relational Language,
was proposed by Clark and Gregory (1981). It is a logic programming language with
the concept of concurrency, but without the concept of backiracking. To introduce
concurrency, they adopted the notion of “guarded commands” proposed by Dijkstra
(1975). Each clause has a guard which must be satisfied in order to be seclected as
the subsequent computation branch. They also introduced the notion of suspension for
synchronisation.

After that, there appeared two successors of the language: Concurrent Prolog by
Shapiro (1983) and Parlog by Clark and Gregory (1984). We selected these two lan-
guages as candidates for the kernel language of our project, and started very careful
studies on both of these languages from various viewpoints including expressive power,
semantics and ease of implementation. As a result, Ueda (1985) developed another
parallel logic language, called Guarded Horn Clauses (GHC). GHC turned to be a good
compromise of Concurrent Prolog and Parlog. For ordinary programs, it is as expressive
as Concurrent Prolog and as efficient as Parlog. Moreover, GHC is both syntactically
and semantically the simplest of them.

Flat GHC (FGHC), which is a simplified version of GHC, has been selected as
the core of the FGCS kernel language, KL1, which interfaces parallel software and the
highly parallel prototype hardware, the Parallel Inference Machine (PIM).

2. GHC — A Brief Introduction

GHC is a general-purpose parallel language for programming with communicating
Processes.

Although both Prolog and GHC are based on input resolution and unification, the
purposes of the languages are quite different. Prolog is a (restricted) theorem piover
for Horn-clause logic, while GHC is not directly aimed at theorem proving that involves
searching. The primary design goal of GHC is to provide a simple way to describe a
process that may interact with other processes and the outside world. This has been
achieved by regarding a goal as a process.

A process is defined in terms of other processes. Interprocess communication is
realised by the information transfer caused by unification. The result of a GHC com-
putation is the history of its interaction (i.e., the observation and the generation of
substitutions) with the outside world, while the result of a Prolog computation is an
answer substitution returned upon success.

A GHC program is a set of guarded Horn clauses (also called (program) clauses) of
the form

h:-G| B

where h is an atomic formula called the head and G and B are multisets of atomic
formulae. Each element of the multisets is called a goal. A non-empty multiset with n
atomic formulae is written as g1, g2, - - . » gn, and an empty multiset is written as true.

The commitment operator ‘|’ divides the clause into two parts: the left-hand side
is called the guard and the right-hand side is called the body. The head h is part of
the guard. Roughly speaking, each clause describes a conditional rewrite (or reduction)
rule for goals. The head is the template of a goal to be rewritten; the rest of the guard
specifies the additional conditions for rewriting; and the body specifies the multiset of
new goals that replaces the old goal.

The execution of a program begins with the initial multiset of goals specified by a

goal clause of the following form:
= B

2

Each goal (say ¢) in B rewrites itself using one of the program clauses unless it is a
predefined unification goal of the form ¢, ={,. A unification goal ¢; =t, unifies t, and 15,
and the generated substitution, if any, is applied to all the goals running. Goals run in
parallel.

The clause used for rewriting a goal ¢ is determined by executing the guards of the
program clauses in parallel. For g to execute the guard & :- & of a program clanse €
means to execute g=h and G in parallel. The important rule is that the execution of
g=h and G cannot instantiate g. The fragment of computation that would instantiate
g 1s suspended. The suspended fragment of computation can be resumed when g gets
more instantiated by other goals running in parallel with g. This rule is called the rule
of synchronisation, because it is used for the synchronisation of goals running in parallel.

If the goal g succeeds in solving the guard of C, it can commit to C and replace
itself by the body goals of €. When ¢ can commit to two or more program clauses, g
selects one of them and commits to it. This rule is called the rule of comnmitment and
the mechanism is called commatied-choice nondeterminism. A goal g is said to succeed
if it becomes an empty multiset of goals by repeated rewriting.

Let us consider a ticket reservation counter with two windows, T'wo queues will be
formed, one for each window. We assume that the requests from the two queues should
be serialised behind the counter to gain access to a single shared resource. The serialiser
can be defined in GHC as a process merge (Xs, ¥s, Zs) which merges two queues Xs and
Ys nto a single queue Zs:

My: merge([XIXs],Ys,Zs) :- true | Zs=[X|Us], merge(Xs,Ys, Us).
My: merge(Xs,[YlYs],Zs) :- true | Zs=[Y|Us], merge(Xs,Y¥s,Us).
Mjz: merge([],Ys,Zs) :- true | Zs=Ys.
My: merge(Xs,[],Zs) :- true | Zs=Xs.

The first argument of M;, [X|Xs], means that M, is waiting for a request from the first
window. Similarly, M; is waiting for a request from the second window. M, and My
handle the cases where no more requests will arrive at the first and the second windows,
respectively.

The following is a simple example using the merge program:
= queuel(As), queue2(Bs), merge(As,Bs,Cs), serve(Cs).

The goals quenel(As) and queue2(Bs) create two queues As and Bs, which are merged
into Cs and served by serve(Cs).

Suppose neither queuel(As) nor queue2(Bs) has generated a queue of requests,
or, both As and Bs are uninstantiated. The process merge(As,Bs,Cs) will attempt to
unify As with the first argument [X[Xs] of M;, but this attempt 1s suspended because
it would instantiate As. Suppose now queuel(As) has instantiated As to [john|Rest].
Then the suspended unification becomes [john|Rest]=[X|Xs], which can now succeed
without instantiating As. Thus, the guard of M; will succeed, and merge(As,Bs,Cs)
can commit to it. After commitment, the goal Zs=[X|Us], which has now become
Cs=[john|Us], will run and the first element of Cs will be determined. The remaining

—

body goal of M,, merge (Rest,¥s,Us), merges the rest of the first queue and the second
queue.

If merge (As,Bs,Cs) finds that both As and Bs have been instantiated to non-empty
queues, it will commit either to My or to My, but not to both.

3. Programming in GHC

Processes play a very important role in GHC programs. “Process” is a synonym
of “goal” in GHC. A process, defined using subprocesses, reduces itself into the subpro-
cesses and terminates when all the subprocesses terminate.

For example, four processcs, queuel, quene2, merge and serve, are created at the
beginning of the execution of the last example:

:- queuel(As), gueue2(Bs), merge(As,Bs,Cs), serve(Cs).

The merge process uses cither M; or M, for each reduction while neither the rest of
As nor the rest of Es is known to be empty. A merge subprocess is created in each
reduction, and thus the original merge process will continue to be alive. The original
merge process will terminate and be deleted when either M or M, is selected.

Using the process creation and deletion capability, it 1s possible to realise a flexi-
ble assembly line which dynamically changes its structure during the execution of the
program. We explain a list compaction program which removes duplications as an ex-
ample showing such bchaviour. Let compact(Xs, Ys) be a process which eliminates
duplications from the list Xs and returns the result through Ys. The compact process
is defined in GHC as follows:

Cy: compact([],¥Ys) :- true | Ys=[I.
Cy: compact([X|Xs],¥s) :- true !
Ys=[X|Y=s1], remove(X,Xs,Xs1), compact(¥Xsl,K¥si).

R,: remove(X,[],Us) :- true | Us=[].
R, remove(X,[X|Xs],Us) :- true | remove(X,Xs,Us).
Ry remove(X,[X1|Xs),Us) :- X=\=X1 | Us=[X1]vs], remove(X,Xs,Vs).

The execution of a goal clause
- compact([1,3,2,1,3,1,4,2],Ys).

first creates a single compact process. Sinee this process successfully solves the guard
of Ca, C, is selected and the three processes appearing in the body of C; are created.
Since the remove process is defined recursively, it will continue to be alive as long as
the sccond argument is not empty. Each time the compact process is reduced using Cs,
a new remove process is created, resulting in process proliferation as shown in Fig. 1.
Ease of process creation is very important for parallel programs, because processes are

11,3,2,1,3,1,4,2]
_
13,2,1,3,1,4,2] 13,2,3,4,2]
— —_
[3.2,1,3,1.4,7] O [3.2,3,4,2] [2.431
p{ remove \—— P remove epmpact
1 .a

Fig. 1 Process proliferation in the compact program

search((Key,Value),nt_node(Key,Value,Left ,Right)) :- !,

search((Key,Value) ,nt_node(Keyl,Valuel,Left, Right)) :-
Key<Keyi, !, search((Key,Value},Left).

search((Key,Value),nt_node(Keyi,Valuel,Left ,Right)) :-
Key>Key1l, !, search((Key,Value),Right).

search((Key,Value),t_node) :- Value=undefined.

update((Key,Value) ,nt_node(Key,Valuet,Left, Right),
nt_node(Key,Value,Left ,Right)) :- !.
update((Key,Value),nt_node(Key1,Valuel,Left,Right),
nt_node(Key1,Valuel,Leftl,Right)) :-
Key<Keyi, !, update((Key,Value),Left,Leftl).
update((Key,Value),nt_node(Keyl,Valuel,Left,Right),
nt_node(Keyl,Valuel,Left,Rightl)) :-
Key>Keyi, !, update((Key,Value),Right,Rightl).
update((ﬁey,value),t_nude,nt_nede(Key,Value,t_nude,t_nnde)).

Fig. 2 Ordered binary tree search program in Prolog

the units of parallel execution and easy process creation facilitates the extraction of
parallelism that may vary in the course of computation.

The role of processes in parallel programs corresponds to that of data in sequential
programs and process structures to data structures (Shapiro 1984). Let us consider
binary tree search programs to compare Prolog and GHC. Fig. 2 shows a Prolog program
for searching and updating an ordered binary tree. In the program, ordered binary trees
are represented as terms that are passed through the second and third arguments of
search and update. Each tree is either a constant t_node representing an empty tree
or of the form nt_node(Key, Value, Left, Right), a structure representing a non-empty
tree whose root has a pair of Key and Value and two subtrees, Left and Right.

In the GHC program shown in Fig. 3, on the other hand, each node of an ordered
binary tree is represented by a process and each link is represented by a vaniable shared

— 5 —

nt_node([],_,_,Left,Right) :- true | Left=[], Right=[].
nt_node([search(Key,Value)|Cs],Key,Valuel,Left Right) :-
true | Value=Valuel,nt_node(Cs,Key,Valuel,Left,Right).
nt_node([search(Key,Value) |Cs],Keyl,Valuel,Left, Right) :-
Key<Key1l | Left=[search(Key,Value)|Left1],
nt_nede(Cs,Key1,Valuel, Lefti, Right).
nt_node([search(Key,Value)Cs],Keyl,Valuel,Left,Right) :-
Key>Keyl | Right=[search(Key,Value)|Righti],
nt_node(Cs,Keyl,Valuel,Left,Right1).
nt_node([update(Key,Value) |Cs] ,Key,Valuel,Left, Right) :-
true | nt_node(Cs,Key,Value,Left,Right).
nt_nude([update{ﬁey,Value}iCs],Heyi,?aluel,Left,Right} T
Key<Keyl | Left=[update(Key,Value)|Lefti],
nt_nade{ﬂs,Keyi,valuei,Leftl,Right).
nt_ncde([update(Key,value)ICs],Keyl,?aluel,Left,Right} =
Key>Keyi | Right=[update(Key,Value)|Right1],
nt_node(Cs,Keyl,Valuel,Left,Rightl).

t_node([]) := true | true.

t_node([search(Key,Value)|Cs]) :- true |
Value=undefined, t_node(Cs).

t_node([update (Key,Value) |Cs]) :- true |
nt_node(Cs,Key,Value,Left,Right),
t_node(Left), t_node(Right).

Fig. 3 Ordered binary tree search program in GHC

by two node processes. Instead of the data structure nt_node(Key, Value, Left, Right)
appearing in the Prolog program, the GHC program defines a process of the form
nt_node((s, Key, Value, Left, Right), where Cs is the communication variable through
which messages come from the parent process, Key and Value are the internal states
of the process, and Left and Right are the communication variables leading to their
son processes. While Left and Right in the Prolog program are considered as data
structures representing subtrees, Left and Right in the GHC program can be thought
of as communication channels for passing commands such as search(Key, Value) and
update(Key, Value).

The most significant difference between these two programs lies in their ways of
updating. In the Prolog program, each node on the path from the root down to the
updated node is copied because destructive assignment is not allowed. The GHC pro-
gram, on the other hand, does not copy any data structures. Instead, it passes an
update message along a tree branch to the target process and finally updates the value
by changing the internal state of the process.

As explained above, operations on an ordered binary tree in the GHC program are
designated by a sequence of commands given to the first arguments of nt_node processes
and t_node processes. Thus, this program is considered to follow the object-oriented
programming style.

4. Program Transformation in GHC

It is widely recognised that the program transformation technique provides a pow-
erful, systematic tool for improving programs. Having a set of transformation rules for
GHC programs will be useful for deriving efficient parallel programs from straightfor-
ward ones. Since GHC inherits many aspects of pure logic programming, one may be
tempted to define the set of rules by adapting the unfold/fold rules developed for logic
programs (Tamaki and Sato 1984). However, this is not a simple task because logic
programming and GHC are quite differcnt in their frameworks. We want to use GHC
as a process description language. This means that our rules should preserve the be-
haviour of the processes defined by a program, whereas Tamaki’s and Sato's rules were
designed so as to preserve the least model semantics. Furthermore, we must be able to
handle non-terminating but useful programs.

We have developed a set of transformation rules for Flat GHC programs (Ueda and
Furukawa 1988). The set is based on unfolding and folding, and considers the control
aspect of the language defined by the rule of synchronisation. It consists of four rules:
normalisation, immediate execution, case-splitting, and folding. Nermalisation executes
the unification goals in the guard and the body of a clause as far as possible. The result
is a clause with no unification goals in the guard and normalised unification goals in the
body. Immecdiate execution unfolds a non-unification body goal g, replacing it by the
body goals of a clause to which ¢ can commit. A new clause is created for each clause
to which ¢ can commit. Immediate execution is applied only when the set of clauses to
which ¢ can commit is known statically; it is not applied if there is a clause to which g
cannot immediately commit but some instance g8 of g can. Case-splitfing also unfolds
a non-unification body goal g, but it can promote the guards of the clauses used for
unfolding to the guard of the clause being unfolded. This rule is the most complicated
of the four and will be illustrated in the example below. Folding is very similar to the
folding rule for pure logic programs.

We leave the formal definition of the rules to {Ueda and Furukawa 1988), and
illustrate them using an example of process fusion (Furukawa and Ueda 1985). We
consider a simple program that computes the sequence of the partial sums of an integer
SEUEIICE.

Fi: integerSums(I,N,Sums) :- true | integers(I,N,Is}, sums(Is,Sums).

Fy: integers(I,N,Is) :- I=<N |
Is=[I]Is1], I1:=I+1, integers(I1,N,Is1).
Fi: integers(I,N,Is) :- I >N | Is=[].

Fy: sums(Is,Sums) :- true | sumsi(Is,0,Sums).
Fs: sums1([], _,Sums) :- true | Sums=[].
Fg: sumsi1([I|Isl],S,Sums) :- true |
S1:=I+3, Sums=[51|Sums1], sums1(Is1,S51,Sumsi).

The above program uses two tail-recursive processes, integers and sums1, to com-
pute Sums. Our objective is te obtain an equivalent program with a single tail-recursive

process. We first exccute the second body goal of Fy so that 1t has two tail-recursive
goals:
Fy
Immediate Ezecution
F;: integerSums(I,N,Sums) :- true | integers(1,N,Is), sumsi(Is,0,5ums).

Then we introduce a new clause for the final single process by parameterising the
second argument of sums1 in Fy and leaving Is local. The resulting clause is:

Fy: fused_integerSums(I,N,S,5ums) :- true |
integers(I,N,Is), sumsi(Is,5,5ums) .

The second argument of sums1 has been generalised to a variable 8, and it is included in
the clause head. Now we try to obtain a tail-recursive definition of fused_integerSums
using case-splitting and folding. First, we split Fy by case-sphtting:
Fy
l Case-splitiing
Fy: fused_integerSums(I,N,S ,Sums) :- I=<N |
Is=[I1Is1], I1:=I+1, integers(I1i,N,Isl), sumsi(Is,S,Sums).
Fyp: fused_integerSums(I,N,S,Sums} :- I >N | Is=[], sumsi(Is,S,Sums).

Case-splitting enumerates all the possible ways in which one of the body goals of Fg
commits first. In the case of Fy, it is impossible for sums1(Is,S,Sums) to commit before
integers(I,N,Is), because sums1(Is,S,Sums) requires the valuc of Is, which never
comes through the arguments of fused_integerSums. Therefore, I and Fyp, obtained
by unfolding using F; and Fj, are the only cases we must consider.

For the time being we leave Ijo and work on Fy. Fy can be transformed further,
starting from the execution of the unification goal Is=[I1Is1]:

Fy
l Normalisation
1::‘11-. fused_integerSums(I,N,S,Sums) :- I=<N |
I1:=1+1, integers(I1,N,Is1), sumsi([I|Is1],S,5ums).
J'fmmedmte ezecution

Fiy: fused_integerSums(I,N,S,Sums) :- I=<N I
I1:=I+1, integers(I1,N,Isl),
S1:=I+5, Sums=[31|3umsi], sums1{Is1,51,5uns1).

Now we can fold integers(I1,N,Is1) and sums1(Is1,51,5ums1) using Fy:

Flﬂ
l Folding by Fy

Fis: fused_integerSums(I,N,S,Sums) :- I=<N |
Ii:=I+1, S1:=I1+S, Sums=[S1|Sumsi],
fused_integerSums{(I1,N,S1,5ums1).

Fjo can be simplified also:
Fig

l Normalisation end Immediate ezecution
Fy,: fused_integerSums(I,N,S,Sums) :- I >N | Sums=[].

The remaining task is to express the oniginal predicate integerSums in terms of
the newly introduced predicate fused_integerSums:

Fy
J' Folding by Fy
Fis: integerSums(I,N,Sums) :- true | fused_integerSums(I,N,0,Sums).

The resulting clauses, Fi3, Fi4 and Fis, give a new definition of the integerSums
program. This program has eliminated the intermediate stream Is and the operations
on it.

5. Formal Semantics

There have been several proposals of the formal semantics of parallel logic program-
ming languages (Saraswat 1987) (Gerth et al. 1988) (Murakami 1988). Here, we briefly
introduce a simple semantics of Flat GHC designed for justifying the transformation

rules described in Section 4. A complete description of the semantics will be found in
(Ueda and Furukawa 1988).

The design criteria of our semantics are as follows:

(1) Modelling behaviour: A multiset of GHC goals can be regarded as a process that
communicates with the outside world by observing and generating substitutions.
The semantics should model this behavioral aspect.

(2) Abstraectness: The semantics should concentrate on communication. It should ab-
stract internal affairs of a process such as the number of (sub)goals and the number
of commitments made. It should also abstract how unification is specified in the
source text.

(3) Modelling non-terminating programs: It must be possible to define the semantics
of programs that do not terminate but are still useful.

(4) Modelling anomalous behaviour: Anomalous behaviour such as the failure of a
unification goal in a clause body, the irreducibility of a non-unification goal and
infinite computation without observable substitution must be modelled, because we
have to prove that such behaviour is not introduced by program transformation.

(5) Simplicity and generality: The semantics should be as simple and general as possible
to be widely used. We decided to use standard tools like finite terms, substitutions
defined over them, and least fixpoints. We decided not to use mode systems. We
also decided not to handle discontinuous concepts like fairness.

(6) Usefulness: It should not be just a description; it should be a useful tool at least
for proving the corrertness of the transformation rules.

_g —

The semantics of a multiset By of goals under a program P, denoted [Bo]p, is
modelled as the set of all possible finite sequences of transactions with it. A (normal)
transaction, denoted (a,), is an act of providing a multiset of goals with a possibly
empty input substitution & and obtaining an observable (see below) autput substitution
fA. An output sv“stitution is also called a partial answer substitution.

The first transaction (@, #;) must be made through the variables in By. The above
observability condition for #; can be written as By /) # Bpa;. As a result of the first
transaction, By will be reduced to a multiset By of goals, which represents the rest
of the computation. Then the second transaction (as, ;) must be made through the

variables in Byafy.

The size of a transaction depends on how the outside world observes an output
substitution. Suppose By returns a complex data structure ¢ in response to an input
a1. What should 3y be, or what should the outside world see in one transaction? The
answer is that the outside world can observe any finite template of ¢ (ie., a term of
which ¢ is an instance). In our model, the result of one unification goal may be observed
using two or more transactions, and the result of two or more unification goals may be
observed in one transaction. A transaction is of a finite nature; it is realised by a finite
number of reductions and can return only a finite data structure.

The outside world may not communicate with By at all. This is modelled by always
including € (empty sequence) in [Bp]p. The empty sequence 1s used as a base case in
defining the model of By inductively.

An input a; to By may not necessarily cause a normal transaction as defined above.
First, it may cause failure of a unification goal in a clause body. This is modelled by let-
ting [Bolp 3 {a, T), where T means failure. Second, By may succeed (i.e., be reduced
out) with no observable output. Third, By may deadlock (i.e., be reduced to a multiset
of goals that does not allow further reduction) with no observable output. Fourth, By
may fall into infinite computation that generates no observable output. The last three
cases mean the imactivily of By and cannot be distinguished from outside; so they are
all modeled by letting [Bo]p 3 {a1,1), where L stands for ‘no output’. However, if
necessary, these cases could be distinguished in the model by using L uccessy Ldeadlock
and L giyergence instead of L. Failure and inactivity are called special transactions and
are used as base cases in defining the model of By.

Consider a single clause program
P: p(X) :- true | X=£(Y), p(Y).
and autonomous (i.e., empty input) transactions with 7. Then [p(X)], has

{%, {X—£(X1)}),
(0, {x —£(x1)}) (0, {Xx1 —£(X2)}),
(0, {Xx—£(x1)}) (0, {X1 —£(x2)})(0, {X2 —£(X3)}),

and also

IU

(0, {x—£(£(X2))}),
(0, (X —£(£(£(Xx3)))})),

[p(X)]p has (ﬁ, L} also, because the semantics allows unfair execution in favour of
the recursive goal p(Y).

Our model successfully circumvents the Brock-Ackerman anomaly (Brock and
Ackerman 1981). Let BA be:

d([al_],0) :- true | O=[A,A].

merge([A1X1),Y,2) :- true | Z=[A121), merge(X1,Y,Z1).
merge (X, [A1¥1],2) :- true | Z=[AlZ1], merge(X,Y1,Z1).
merge([],Y,2) :- true | Z=Y.
merge(X,[],2) :- true | Z=X.

pl([AlZ1],0) :- true | 0=[A|01]),p11(21,01).
pii([B|_.]1,01) :- true | O1i=[B].

p2([A,Bl.1,0) :- true | O=[A,B].

g1(1,3,0) :- true | d(I,X), d(J,Y), merge(X,Y,Z), p1(Z,0}.
g2(1,3,0) :- true | d(I,X), d{J,Y), merge(X,Y,2), p2(2,0).

Then, the computation
({1513}, {0 (5101}

belongs both to [g1(I,3,0)]s4 and to [g2(I,7,0)]5, (0" being a fresh variable), but
({11511}, {0~ (5100 })({3« [61.1},{0' (6] })

belongs only to {g1(1,3,0)];, and not to [g2(1,J,0)]p 4-

6. Conclusion

This paper presented a parallel logic programming language GHC. It showed that
GHC is a genuine parallel programming language and hence encourages programmers
to write parallel programs. The paper also described transformation rules for GHC pro-
grams which will help to optimise them. To prove the correctness of the transformation
rules, we introduced a simple formal semantics of Flat GHC programs which allows
non-terminating computations.

In the Fifth Generation Computer Project, we are developing experimental parallel
hardware for FGHC. We are developing two systems in parallel. One is a2 multi-processor
system, called the Multi-PSI, composed of 64 Personal Sequential Inference machines
(PSls). Each PSI enables fast execution of FGHC programs (around 100 KLIPS) by
firmware support of WAM-like instructions for FGHC. The main purpose of the system
is to provide software researchers with a stable tool for developing software systems,
including the operating system for the Multi-PSI itself. Currently, the hardware of the

system is completed and its system software is under development. It is planned to be
completed by the end of this fiscal year.

The other system is a VLSI-based parallel processor called the Parallel Inference
Machine (PIM) which is expected to be our final target. We are planning to connect
about 1000 processing elements (PEs) in the final stage. Before jumping to such a large
scale, we are now developing a smaller scale prototype consisting of around 100 PEs. It
has a hybrid architecture of shared memory and distributed memory. About ten PEs
are connected tightly to compose a cluster of a shared memory architecture. These
clusters are then connected together via a network, resulting 1n a distnbuted memory
architecture. Currently, we are concentrating on the development of a single cluster.

The prototype will be completed by 1939.

Much research 15 required to make our parallel computers truly useful. First, we
need to enhance the cxpressive power of GHC. There have been several significant
achievements in increasing the cxpressive power of Prolog. The introduction of con-
straints in Prolog and efficient algorithms for searching recursive databases are the
most important. To realise the same extended functionalities in GHC has turned out to
be quite difficult due to the lack of a backtracking capability. We need to realise Prolog
variables in terms of GHC data structures. However, this method is expected to cause
a slowdown of one order of magnitude, which we want to avoid.

Second, we need to develop parallel programming technologies for extracting max-
imum parallelism. There are several rescarch subjects. The first is to develop new
programming paradigms appropriate for formulating various application problems. The
second 1s to solve the load balancing problem in the execution of programs on an actual
parallel computer. The third i1s to develop a computation model reflecting the charac-
teristics of real parallel processors such as the non-homogeneous distances among PEs,
and to develop a useful measure of the complexity of parallel algorithms.

Acknowledgments

We wish to express our thanks to Kazuhiro Fuchi, Director of ICOT Research
Center, who provided us with the opportunity to pursue this research. We would also like
to thank Ryuzo Hasegawa, Chicl of ICOT First Research Laboratory, and its members
who contributed a lot to the research reported here.

References

Brock, J. D. and Ackerman, W. B. (1981) Scenarios: A Model of Non-determinate
Computation. In Formalization of Programming Concepts, LNCS 107, Springer-Verlag,
pp. 252-259.

Clark, K. L. and Gregory, 5. {1981) A Relational Language for Parallel Programming. In
Proc. ACM Conf. on Functional Programming Languages and Computer Architecture,
ACM, pp. 171-178.

Clark, K. L. and Gregory, S. (1984) PARLOG: Parallel Programming in Logic. Research
Report DOC 84/4, Dept. of Computing, Imperial College of Science and Technology,
London. Also in ACM. Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1-49.

Dijkstra, E. W. (1975) Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Comm. ACM, Vol. 18, No. 8, pp. 453-457.

Furukawa, K. and Ueda, K. (1985) GHC Process Fusion by Program Transformation.
In Second Conf. Proc. Japan Soc. Softw. Sc. Tech., pp. 80-92.

Gerth, R., Codish, M., Lichtenstein, Y. and Shapiro, E. (1988) Fully Abstract Denota-
tional Semantics for Flat Concurrent Prolog. In Proc. Third Annual Symp. on Logic in
Computer Science. IEEE Computer Society Press, pp. 320-333.

Murakami, M. (1988) A Declarative Semantics of Parallel Logic Programs with Perpet-
nal Processes. To be presented at the Int. Conf. on Fifth Generation Computer Systems
1988, Tokyo.

Saraswat, V. J. (1987) GHC: Operational Semantics, Problems and Relationship with
CP(l.]). In Proc. 1987 Symposium on Logic Programming. IEEE Computer Society
Press, pp. 347-358.

Shapiro, E. Y. (1983) A Subset of Concurrent Prolog and Its Interpreter. Tech. Report
TR-003, Institute for New Generation Computer Technology, Tokyo.

Shapiro, E. Y. (1884) Systolic Programming: A Paradigmn of Parallel Processing. In
Proe. Int. Conf. on Fifth Generation Computer Systems 1984, ICOT, Tokyo, pp. 458-
470.

Tamaki, H. and Sato, T. (1984) Unfold/Fold Transformation of Logic Programs. In
Proc. Second Int. Logic Programming Conf., Uppsala Univ., Sweden, pp. 127-138.

Ueda, K. (1985) Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo
(revised in 1986). Revised version in Proc. Logic Programming '85, Wada, E. {ed.),
LNCS 221, Springer-Verlag, 1986, pp. 168-179.

Ueda, K. and Furukawa, K. (1988) Transformation Rules for GHC Programs. To be
presented at the Int. Conf. on Fifth Generation Computer Systems 1988, Tokyo.

13 =

