ICOT Technical Report; TR-474

TH-474

Distribution of Selections: The Missing Link
hetween Strategies for Relational Databases
and Deductive Databases

by
N. Mivazaki

April. 1959

1989, [COT

Mita Kokusai Bldg. 21F 1031 456-3191 -5

|G DT 4-28 Mita 1-Chome Telex ICOT]32964

Minate=ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Distribution of Selections:
The Missing Link between Strategies for Relational Databases

and Deductive Databases

Nobuyoshi Miyazaki
Oki Electric Industry Co., Lid.
4-11-22 Shibaura Minato-ku Tokyo, 108 Japan

Ahstract

The distribution of selections is a method tw realize the selection-first principle in
relational databases, Although s direet exiensions have been proposed for recursive queries, they are
effective only for certain queries. On the other hand, two methods are emerging as general frameworks
of the query processing straiegy in deductive databases, One is the op-down method, query/subquery
and its gencralizations (Q5Qs). The other is ils counterpart in the bottom-up method, the magic set
and its generalizations (M3s). The correspondence between Q80< and MSs is also being established,
However, the relationship between these frameworks and the distribution of selections is not clear,
although they all realize the selecton-first principle.

This paper discusses the relationship between the distribution of selections and other
methods. A method o distribute sclections for general queries is proposed, and the relationship
between this method and other methods 15 discussed. Tt is shown that there is a guarantee that Q350s
{and MSs) are at least as effective as the distribution of selectons as far as the sclection propagation
is concerned. It is also shown that there exists a variation of MSs that precisely corresponds to the
distribution of selections, Hence, MSs can be regarded as nawral generalizations of the selection-first

principle in relational datahases.
1. Introduction

The selection-first principle is one of the most important principles for query nptimjzaﬁ'on
in relational databases [U1182]. It is realized in two steps:

(1) Transformation of queries by distribution of selections (or pushing selections) based on the
commutativity of selections with other operators of relational algebra.
(2) Performing selection-first evaluation of ransformed gueries.

The extension of this principle was proposed in the framework of bottom-up method for
transitive closure queries in [AU79). Exiensions of the distribution of selections for more general
gueries have been proposed in [ADS8] [KL86] [MHYI88]. Selection-first evaluation can also be
performed in methods for bottom-up computation proposed in [Ban86] [BaR87]. It is known that
the selection is commutative with the least fixpoint operator only for certain positions of constants

in goals even for simple recursive queries. Hence, the direct extension of this principle is not
considered as a general framework of query processing strategy because of its limited
applicability, although it is simpler and more efficient than more general methods for certain
Qqueries,

Meanwhile, two general frameworks of the recursive query processing are emerging, One
is the query/subquery (Q5Q) and 1ts generalizations (referred Q50Qs in this paper} based on top-
down evaluation [VieR6,87 48] | TSY6]. The other 1% 1ts counterpart in bottom-up method, magic
set and its generalizations (reterred MSs) [BMSURE] [RLKR6] [SZRT7] [BeR&7] [Rams8]
IMYHIRBR]. MSs are designed as transformations used before bottom-up computation, and
selection-first evaluation is performed during bottom-up computation. QSQs and MSs ure
considered as general frameworks because they are effective for a broad class of recursive queries.
It 15 known that there are srrong connections between Q50 and MSs, and their correspondences
were discussed in [Vie8K] [SekBY] JULRY]. They perform selectnion-first either in themselves
(Q5Qs) or in the evaluation phase (MSs). However, the relationship of these methods o the
classical distribution of selecrions is not clear, although they realize 4 somehow more general
selection propagation. A framework for the selction propagation that includes both the distribution
of selections and MSs is discussed in [BKBR&7]. Although it gives a complete characterization of
the problem for a class of queries called chain programs, its applicability is limited. The situation is

Ulustrated in Figure | that shows the relationship of these methods.

Relational Darabase Deductive Database Logic
" Programs
Selection-First Recursion ¥ Completeness
Distribution of selections ——# DSs- = » MSs Selection function
L f Bottom-up —:I‘b QSQs -— Prolog
Perform selection first — ——® compiarion

{Top-down evaluation)

— Ceneralization 1355 : smibution of selectons
g Correspondence MSs : Magic set and vaniations
(50s ; QS50 and variations

Figure 1 Relationships between Methods

The framework of guery processing strategies for deductive databases should be a
generalization of the framework of those for relational databases. Figure 1 shows that this
requirement is practically satisfied, because MSs (and QSQs) are effective for a broader class of
queries than the distribution of selections. However, this requirement is not formally satisfied,
because the precise relationship between MSs and the distribution of selections is not known. For

instance, the result of MS8s for non-recursive gueries are not same as the result of the distribution
ol selections, Moreover, the distribution of selections is more efficient than MSs for certain
queies, because it does not introduce additional predicates. Thus, the corresponding link is shown
with a guestion mark in the figure. This paper tries to find the missing link and bridge this gap.
The subject involves two issues:
(1) Generalization of the distribution of selections for a broader class of queries.
(2) Discussion on the relationship between the generalized distribution of selections and other
methods.

The organization of this paper is as follows. Section 2 summarizes methods for the
distribution of selections. Section 3 discusses the generalization and optimization of the
distribution of selections. The relationship between the proposed method and other methods is

discussed in section 4. The result is summarized in section 5.

L

Distribution of Selections for Datalog Queries

The extension of the distribution of selections for recursive queries was first proposed in
[AUT9]. This method is referred as AU in this paper. The following example shows how the
distribution of selections are performed by AL

Let consider a transitive closure query, the ancestor example:

The goal of the query is
-aneestor] X taro).
The clauses defining the ancestor are:
ancestor(2,Y):-parent(X,Y')
ancestor(X.Y):-parent(X.Z),ancestor(Z,Y).
It is known that this query can be expressed in relational algebra:
ANSWET = Tpopareluncestor)
ancestor = flancestor)
= parent '\ 7ty a(parent 1x];.; ancestor)

The answer for this query can be obtained by first computing the ancestor relation as the
least Nixpoint (p) of ancestor = [{ancestor) and then applies the selection, G- Lo the ancestor
relation. However, computing the ancestor relation as the Ifp is ime consuming. The computation
becomes more efficient, if the selection is distributed. The distribution is performed as follows. If
the selection Gi_a, is applied to the fixpoint eguation, il becomes:

T2 1ara(ANCESION) = O el parent my gl parent Ixja-; ancestor))
= O2-qarolparent) W G-l 4{parent Ix|z-; ancestor)))
= Oz=mlparent) W m g(parent x};-y Gz=wrolancestor))).
Thus, the fixpuint equation becomes the equation for Gaoge(ancestor) instead of the equation for
ancestor. Hence, the answer can be computed directly without computing the whole ancestor

relation. Note that this kind of optimization is alwavs possible for non-recursive queries but it is
not possible to distribure the selection for certain recursive queries. For instance, if the constant in
the goal appears in the first argument instead of the second argument, the selection can not be
distributed.

AU can be applied only for queries that satisty well-tvped condition [ADSS]. A
caneralization of the method for more general linear queries was proposed to overcome this
problem in [ADS&&]. This method, referred a3 AD in this paper, transforms linear queries in the
following way. Suppose a query 1s expressed as:

op (Ifp (r={(r)) where [fp is the least tixpont operator.
AD transforms this into the optirmized fonm:

op (Ifp (r==f(oR(r) where the funcuon f remains unchanged.
Note that the selection inside of the 1fp operator is not same as the selection outside, The condition
I can be expressed as:

F=Pwv {v, Cond; | where Cond; refers 1o a simple condition.

An algorithm that determines the strongest condition F was proposed based on the analysis

of a graph that represents how arguments are related in the query. For instance, consider a clause:
p(X.Y,Z.X) :- p(W.X, Y. Z),q(X,Z).
Because this clause is not well-tvped, AH is not able to distribute the selection. However, the
distribution is possible by AD by choosing F as follows:
Suppose that P= (1=v), i.t., the goal s -piv. X, Y. Z). Then,
F={l=viwvi2=viv 3=v) vid=v),

The improvement by ADD can be seen even for simple transitive closure queries. For
instance, suppose that both arguments are constunts in the goal in ancestor query mentioned
above. AU fails to transform this query, because the selection itself is not commutative with the Ifp
operator [ADSE]. However, AD finds that the selection for the second argument is commutanve
and distributes that part into the Ifp operator.

A method called the static filtering, referred as KL in this paper, was proposed based on a
graphical notation in [K1.86]. Selections are considered as filters that blocks the data flow during
the computation using a graph called the system graph similar to the rule/goal graph in [UHE5].
Selections are repeatedly pushed into the graph to obtain every condition that is necessary to
compute the complete answer. Conditions are also expressed in disjunctive forms in K1 KL can
be applied to more general queries than linear queries.

An important contribution of AD and KL is that the selection expressed as a disjunction of
conditions is sometimes commutative with Ifp operator when the original selection itself is not
commutative. However, all methods mentioned above have following problems.

(1) They cannot handle queries with function symbols. Methods other than KL are difficult o
generalize for more complex queries, because they check commutativity before transforming a

query.

{2) They can be used only with certain evaluation algorithms. Hence, it is difficult to combine
these methods with other optimization methods. Moreowver, it is difficult to recognize the
relationship of these methods to other methiods.

Therefore, a method using clausal notation is desirable. A method called Horn clause
transformarion by substtution (HCT/S) [IMHY B8] gives a partial solution for this problem. A
simpler and more general algorithm than HCTYS is proposed in the next section.

3. Distribution of Selections for General Recursive Queries
3.1 Fundamental Concepis

Definition (Notations)

clavse: A clause means a Horn clause in this paper. [t is denoted h:-B where h is an atom and B is
a conjunction of atoms. Function symbols may be used in clauses.

=: A = Bmeans B is a logical consequence of A.

=: Setinclusion.

body(R): Let R be a set of clauses. body(R) is the set of all atoms that appear in bodies of clauses
in K. |

Definition Let B and C be definite clauses {or atoms). B is more general than C iff there
exists a substitution 8 such that C = B6. B 1s less general than C iff C 1s more general than B. B

is a variant of Ciff B is both more general and less general than C. We treat variants as if they are

identical when we discuss a ser of clauses {or atoms). For instance, [a(3Y), a(V, W)} =

falX, Y1, [|
Definition Let B and C be clauses. B subsumes C iff there exists a substitution © such that
B8 15 a sub-formula of C. It is obvious that if B subsumes C, then [B} = C.]

Definition A database (DB} is a finite set of ground unit clauses. A guery is the set Q =
{:-g) D where g is a goal atom and D is a finite set of definite clauses. A predicate that appear
in the head of a clause in 1s called a derived predicare, and a predicate that appears in the
database 1s called a base predicare.

Let g" be a ground instance of g. The answer of the query istheset G = {g'e BIDw
DB= g'| where B is the Herbrand base of D ' DB. |

We assume thar the set of base predicates and the set of derived predicates are disjoint 1o
simplify discussion.
Definition Let Q and Q' be queries, and ler G and G' be their answers for a database
respectively. Q 2 Q"iff G 2 G' for any database. Q and Q' are equivalent, denoted Q = Q', iff
Q2Qand Q£Q". n

The rclation "=" is an equivalence relation. A slightly more general definition of
equivalence that allows different arities of goal predicates is used in [BeR87] [BKBRE7].
Although we recognize the advantage of the generalized definition, the above definition is used to
simplify discussion. The generalized cquivalence may be used in informal discussions in this
paper.

Definition A guery ransformation is @ mapping from the set of all quenes to itself. Let f be
a query transformation. f is complete iff £(Q) = Q for any Q. [is sound if f(Q) =< Q forany Q.1
is equivalent iff [[Q) = Q for any Q 1

32 Generalized Distribution of Selections

In [BRRAI, it is pointed out that AU and KL can be explained using clausal notation. For
instance, the result of AU and KL for ancestor example for the goal :-ancestor(X taro) is
equivalent to the following set of clauses:

anceston X, turo) -purent{X, taro)

anceston X, taro);- parent(X, Z).ancestor(Z.taro).
Because all instances of the predicate ancestor is essentially the same, these clauses are equivalent
to the original clauses for the goal :-ancestor(X taro). This set of clauses can be directly obtained
by applying the most general unifier (mgu) of the goal atom and the head of original clauses o
substitute variables in these clauses.

What happens if the goal atom is ancestor(jiro,taro) instead of ancestor(Xtaro)? By
applying mgu as a substitution, we obtain the following set of clauses:

ancestor(jiro,taro):-parent(Jiro,taro)

ancestor(jiro,1aro):-parent(jiro, Z),ancestor(Z taro).
However, this set of clauses is not equivalent to the original query, because ancestor(Z,taro)
appears in the body of the second clause. In such case, we can apply the substitution again using
the mgu of ancestor(Z,taro) and the heads of original clauses to obtain:

ancestor(X, taro):-parent (X, raro)

ancestor(X taro):-parent(X, 7). ancestor(Z,1aro).
Clearly this is equivalent to the original query. The first set of clauses obtained by subslitution 1s
subsumed by the second set and can he climinated. Corresponding results for this query can be
obtained by AD and KL.

Next, let us consider again the non-well-typed example in section 2.

-pv, XY, Z).
(X, Y., Z.X) - p(W XY, Z)q(X.7).
By applying substitution, we obtain:
pv, Y. Zv) - p(W W, Y, Z),q(v.2).
Because p in the body is not less general than the head, we apply substitution again to obtain:

p(X Vv, Z.X) - p(W. X v 7) q(X ,Z).
We have to further apply substitution to obtain:

pX, Y VX)) - pOWX,Y V(X V).
We do not obtain other clauses even if this process is further continued. Moreover, the resulting
set of clauses is equivalent to the original query, because subgoals more general than atoms in the
bodies of these clauses do not appear in SLD resolution of the original query. This result
corresponds to the disjunction of conditions in the result of AD.

We can formulate a transformation procedure based on the above observation. The fixpoint
operator can be defined for a set of definite clauses as well as for relational algebra expressions
[Lio®7]). Hence, the procedure defined below can be regarded as a generalization of the
distribution of selections. First, we observe that all clauscs appeared in the above discussion are
obtained by substitution of clauses in the query.

Definition Let Q= [:-g) w D be a query. The extension of (Q is defined as S(Q) = {:-g} v
{C8] CeD A 815 a substitution }. n

It 15 ohvious that S(Q) is equivalent to (), because each clause in 5(Q) is subsumed by a
clause in Q. Thus, the problem of the dismbution of selections is to find the minimal subset of
S(Q) that is equivalent to Q. First, we ignore the minimality problem.

Each step in the above discussion can be formally defined as follows.

Definition Let Q= {:-g} w Dbe aquery and R be a subset of 5{Q). A mapping Fg from the
power set of 5(Q) to itself is defined as follows.
F(R) = {:- g} [CBI Ce D A 3r e bady(R) A8 = mgu (r, head(C))}. ||

It is obvious that if R is a subset of S(Q), so is Fo(R). The mapping Fg distributes
selection conditions in body(R) to clauses whose heads are unifiable with elements of body(R).
We can repeatedly apply it to distribute selections until an equivalent query is obtained.

Lemma 3.1
(a) The power set L = 25(Q) of the extension of Q is a complete lattice under set inclusion. The
bottom (L) is &, and the top element is S(Q).
(b) Fg is monotonic, i.e. Fg(R1) 2 Fp(R2) for R1 D R2.
(c) Fg is continuous, i.e. Fg (lub(X)) = lub(Fg(X)) for every directed subset X of L. Here, Fo(X)
means [FoCl Ce X1

Proof (a) and (b) are obvious. (c) is proved as follows. Let X be a directed subset of L,
and let Fg(R) = [CBl Ce D A 3r e Body(R) A8 = mgu (r, head(C))}. If Fg is continuous, so is
Fg because Fo(R1) = {:- g)w Fig(R1).

Ce Fg (lub(X))

iff C=0C8 A {CeD A Jr € body(lub(X)) A0 = mgu (r, head(C))

iff for3le X, C=CH A ({CeD » 3re body(l) A8 = mgu (r, head(C)),

because X is directed.
iff Ce Fg()for3le X

iff Ce lub(FglX). u
Definition Let L be a complete lattice, and let T be & monotonic mapping from L to L. Then

we define

TTo=1

TTe =T(TT{a—1)), it o 15 a successor ordinal

TTo = lub{(TTP: P<a), if @ is a limit ordinal. o

We abtain the next lemma from lemma 3.1, The proof is the same as proposition 5.4 in
[Llo®7] and is omited.

Lemma 3.2 There exists the least fixpoint of Fg denoted ltp(i-g), and lip(Fg) = FQTm where
@ is the smallest ordinal next w (. Hence, ifp(Fg) 1s the limit of Q4 = Fo(Qi, Qo=@
|

Lemma 3.3 Let Q be u fixpoint of F. Then, Q' = Q.

Proof Q= Q' is clear because Q' is a subset of 5(Q) = Q. Q' = () can be proved by
inspecting SLD tree of QQ, because there exists an aiom in a body of a clause in Q' that is more
general than each subgoal in the tree, and every clause in Q that can be unitfied with the subgoal is
included in Q" in a substituted form. |

The following theorem is obtained from lemmata 3.1, 3.2 and 3.3.

Theorem 3.4
(1) Fqu = lfp(Fg) = Q.
(b) Q' = Q for any Q' such that 5(Q) = Q' = Hp(Fg). .|

Thus, the procedure that computes 1ip(Fg) disrributes selections for general recursive
queries. This procedure is also a generalization of the distribution of selections in relational
databases, because Fg distributes sclections based on essentially the same principle as
commutativity of selection with other relational algebraic operators and the procedure produces
essentially the sane result as the algebraic transformation for non-recursive queries. The result of
the procedure may be infinite and the procedure may not terminate, although the termination is
guaranteed for Dataloy queries. We can modify the procedure by using the concept of the least
generalization in order to guaraniee the termination for general querics [MHYIES].

The above procedure distributes selection conditions embedded in predicates. In relational
algebra, conditions are expressed as combinations of "atmmibute 8 value” and "attribute B attribute”.
If 8 is =, the conditions can be converted to those in embedded form in clausal notation. For other
types of conditions, we have to modify the definition of Fy in order to distribute selections. If
there are such conditions attached to an element of bady(R), we can modify Fg to atach these

conditions 1o substituted ¢lauses along with conditions expressed as the mgu.

[P
h
L]

Optimization of the Transformed Result

The procedure in the previous section can distribute selections for general recursive
quenes, but the result, p(Fg), may contain redundant clauses as shown in the ancestor example at
the beginning of the section. The result even contains Q itself, if the procedure fails to produce a
better result. For instance, the result includes original clauses for the goal, :-ancestor(jiro,X), in
ancestor example. Hence, we have to consider some optimization procedure,

We may define the optimal form of a ransformed query as follows:

(1} It i& non-redundant, i.e. it does not contain a clause that is a logical consequence of other
clauses,

(2} Tt gives the smallest least model for any database. Or, it does not contain a clause that does not
contribute to the answer,

Although we can obtain optimal results for linear queries [ADB&], the problem is

undecidable for general recursive quenes {Sag87]. Hence, we restrict our atrention to special cases
of redundancy.
Definition A query Q = {:-g} W D subsumes another query Q' = {:-g} «w D' iff each
element of D' is subsumed by a clause in D. A subset Q' of Q is called a subsumption cover (s-
cover) of Q iff Q' subsumes Q. An s-cover of (15 called a minimium s-cover of (Q iff there is no
proper subset of it that is an s-cover of Q.

Clearly there exists a unique minimum s-cover for any Q, and the covering problem is
decidable for finite Q. The function that maps a query Q to its minimum s-cover, mscv((2), can be
regarded as a mapping from 25 1o jtself. |

Lemma 3.5
{a) msev(S(Q)) = msev(Q).
{b) mscv 18 monotonic.
(¢) The composition of Fy and mscv, i.e. (F*mscv)(R) = msev(Fg(R}) is monotonic.
{d) Fy*mscv has a least fixpoint Itp(Fp*mscv).
(e) Ifp(Fg*mscv) = Fo*msevTa for any ordinal a. Furthermore, there exists an ordinal p such
that B<y implies Fo*mscv Ty = ifp(Fo*mscv).

Proofl {a), (b) and (c) are obvious by the definition of mscv, (d) and (e) are consequences
of (¢} as shown in propositions 5.1 and 5.3 in [LI0o87). m '

The composition, Fg*msev, can be used 1o define an improved procedure for the

distribution of selections.
Lemma 3.6 Let Q' be a fixpoint of Fo*msev. Then, Q' = Q.

Proof Same as proof for lemma 3.3 |
Unfortunately, mscv is not continuous, because msev(Q1 W Q2) # msev(Q1) U msev(Q2).

However, we can prove that Fo*mscvTa = Ifp(Fg*msev).

Theorem 3.7
() Fo*mscvTe = Ifp(Fo*mscv) = mscv(Ifp(Fq))

{b) Q' = Q for any Q' such that 5{Q) = Q' lfp(Fg#*mscv). | |

The proof is shown in appendix 1. The procedure that computes 1fp(Fg*mscv) can be
regarded as the improved procedure that distributes selections. The above theorem also implies the
elimination of redundant clauses by subsumption can be performed any time during the

trunsformation.
4 The Relationship of the Distribution of Seleciions to Other Mcthods
4.1 The Relationship of the Distribution of Selections to Top-Down Methods

The following theorem is a direct consequence of the equivalence of the distribution of

selections.
Theorem 4.1 Let Q= {:-g) w D, and DB be a darabase. Let QF = liptFg) = {-gl w D,
let Q" = Ifp(Fg*msev) = [:-g) w0 D7, let S_Ans be the set of all answers for subgoals in a SLD

ree of Qw DB, and let model(R) denote the least Herbrund model of R, Then,
maodel(D W DB) = model{D' W DB) = madeitD” w DB) 2 S_Ans, for any (@ and DB.

Proof model(D v DB) = model{l)’ «» DB} is obvious, because Q' is subsumed by (.
model(D' w DB) = model(D" W DB), because 1fp(Fg*mscv) = msev(lfp(Fg)) by theorem 3.7.
model{D w DB} = S_Ans is proved by the same way as lemma 3.3, [|

This theorem guarantees that a top-down method based on SLD resolution is at least as
efficient as the combination of the distribution of selections and the bottom-up computation, if
performing selection-first is property used in the top-down method. Because QSQs use the
selection function (corresponds 10 computation rule in SLD resolution) to realize selection-[irst
evaluation [Vie86], they are at least as efficient as the distribution of selections. Because of the
correspondence between QS5Qs and MSs [VieR&] [SckR9] [U1189], the theorem also implies that
MSs is ar least as cfficient as the distribution of selections if we neglect the overhead inroduced by
magic predicates. Note that it does not guarantee that all top-down methods are at least as efficient
as the distribution of selections.

The following examples illustrate the meaning of the theorem. Let consider the mansformed
result of ancestor example.

reancestor X tarn)

ancestor{ X tarok:-parent{ X, taro)

ancestor(X, taro)-parent(X,Z)ancestor{ Z,taro}).
The query can be efficiently evaluated by bottom-up computation if the second clause is evaluated
from right to left (selection-first evaluation). A top-down evaluation of the original query is as
efficient as bottom-up computation if the body of the second clause is evaluated from right to left.

]U

However, a Prolog-like top-down evaluation with left to right evaluation srategy 1s inefficient for
this query.
Next, let consider a slightly different query. Suppose that parent is defined in terms of two

relations, father and mother. The transformed query by the distribution of selections is:

-ancestor{X,taro)

ancestor{ X taro):-parent(X,1aro)

ancestor(X, taro):-parent{X,Z),ancestor(Z,taro).

parent(X,Y) :- father(X,Y)

parent(},Y) - mother(X,Y)
The selection cannot be distmibuted for parent. Hence, the evaluation by bottom-up computation 18
not efficient, because whole parent relation must be computed. Thus, the distribution of selections
may not be effective even for non-recursive derived predicares. However, a top-down method
with an appropriate computation rule (and MSs) can process this query efficiently. Another way to
process it efficiently is eliminate parent by another transformation discussed in [CGL&6] [MHISS]
IMHYI88]. The ransformed query is:

-ancestor(X, taro)

uncestor(X taro):-father(X taro)

ancestor(X taro):-mother(X, aro)

ancestor(X taro):-father(X,Z) ancestor(Z,taro).

ancestor(X,taro):-mother{ X, Z),ancestor(Z,taro).
It is easy to see that this query can be efficiently processed by bottom-up computation. We can
further improve the result by eliminating the second argument of ancestor, because its all instances
are the same [BKBRE7]. The resulting query is:

ANC_ gl X)

anc_yarol X :-father(X taro)

anc_ ol X)i-mother(X.taro)

anc_yarp(X):-father(X,Z),anc_aro(Z).

anc_ paro(X):-mother(X,Z),anc_r(Z).
The above query is not equivalent according to our definition, but it is easy to see the equivalence
by considering that the second argument exists implicitly. Reducing arities of predicates improves
the performance as discussed in [BR86].

4.2 The Relationship of the Distribution of Selections to Magic Sets

We show that there exists a variation of MSs that corresponds to the distribution of
selections. First, we summarize basic concepts of Horn clause transformation by restrictor
(HCT/R). HCT/R is a transformation that maps a clause r- R to clause(s) of the form r--r*,R
where r* is called a restricior. Because of the existence of restrictors, the transformed query has a
smaller least model than the original query. The mransformation gives an equivalent query if clauses

- 11 —

for restrictors are defined properly. The conditions for equivalence are found in [MYHIEE]. There
are two versions of HCT/R, the methaod that uses (full} restrictors and the method that uses partial
restrictors. The full restrictor predicate has the same arity as the predicate it restricts. The partial
restrictor has smaller arity with proper adornment like the magic set method. Ways to obtain semi-
optimal results are also discussed in [MYHIRR]. The framework of the partial restrictor version is
more general than other similar methods proposed in [BMSUS86] [SZ87] [BeR87] [Ram88] in the
sense that they can be formulated in the framework of HCT/R. A special case of the full restrictor
version is used in this section.
Definition A transformation cailed sraric HCTIR 15 defined as follows:
Let Q = {+-g} w D be s guery. The trunsformed query (' = st_herr(Q) 15 obtained by following
steps.
i1y Let C = - rq,....T, be a clause in D. Repluce each C by the following clause:
% 11,...,fn Wwhere 1 is un atom having a new predicate symbol corresponding to 1 and the
same arguments as the head pom.
(2) Add a unitclause, g%, having the sume argument as the goal atom.
(3) For cach ri-r*,ry,....rp generate following clauses and add them:
For cach 1, generate a clause, t*;-r%, if the predicate of 1j is a derived predicate. |

Static HCT/R is the simplest form of HCT/R. The equivalency of static HCT/R can eusily
be shown by the theorem for the equivalency of the transformation in [MYHISE]. The equivalency
can also be directly proved by comparing SLD-trees of the original and the transformed queries.
The following example illustrates how static HCT/R works. Let consider the ancestor query again.
Goal: :-ancestor(jiro.X).
Rules: ancestor(X.Y) : parent(X.Y)

ancestor(X.Y) -parent(X,Z),ancestor(Z.Y).
Magic set method generates the following set of clauses as the transformed result. Here, ancestor *
is the magic predicate (called resmctor predicate in HCT/R).
Goal: - ancestorPl(jiro, X)
Muodified rules: ancestor®(X,Y) - ancestor* M X), parent(X,Y)
ancestor™(X,Y) ;- ancestor*bf(X) parent(X,Z),ancestor®(Z,Y).

Seed: ancestor*M{tiro)
Magic rule: ancestor*P(Z) ;- ancestor*bl(X),parent(X.Z).

This result can be rewritten as follows, if the adomments of predicates are eliminated, and
implicit arguments of magic predicates corresponding to f are explicitly shown:
Goal: - ancestor{taro, X)
Modified rules: ancestor(X,Y) :- ancestor* (X, Y),parent{X.Y}

ancestor(X.Y) - ancestor*(X, Y) parent(X,Z) ancestor(Z,Y).

Seed: ancestor*(taro,X).
Magic rule: ancestor*(Z,Y) :- ancestor*(X,Y) parent(X.Z).

This result may be practically meaningless, because it violates the safety condition of
queries [BR86]. Note that the seed is a nonground unit clause, and it violates the safety condition.
However, it is theoretically meaningful, because the safety of queries and the equivalence of
queries are independent concepts, i.e., we may consider equivalent ransformation even for unsafe
queries. Moreover, this result has an interesting property. The resulting set of clauses is equivalent
to the original query for any types of goals, by changing only the seed. For instance, it is
equivalent for the goal, :-ancestor(X taro), if the seed is changed to ancestor*(X,taro). It is also
equivalent for the goal, :-ancestor{jiro,taro), if the seed is changed 1o ancestor*(jiro,taro). This is
an important property of the full restrictor version of HCT/R. Note that all clauses have to be
changed in the usual magic set, if the type of binding in the goal is changed.

What happens if parent(X,Z} in the body of the magic rule is eliminated? The result is
shown below, and this set is the result of static HCT/R defined above.

Goal: - ancestor{taro, X))
Modified rules: ancestor(X,Y) - ancestor*(X, Y),parent(X,Y)
ancestor{ X,Y) - ancestor®*(X,Y), parcnt(X.Z),ancestor(Z,Y)
Seed: AnCestor®(taro, X)
Magic rule: ancestor*(Z,Y) ;- ancestort (X, Y).

This result is still equivalent to the original query, because the form of modified rules
guarantees the soundness of the ransformation, However, the resulting set of clauses has clearly a
weaker effect than the original result in restricting the computation space, because the binding
propagated by parent(Z,Y) cannot be propagated. Moreover, the effect is exactly same as that of
distribution of selections discussed in section 3. For instance, binding on the first argument
vanishes for the goal, :-ancestor(jiro,X), because the first argument of the head of the magic rule
does not appear in the body. If the goal is :-ancestor(X,taro) the binding is propagated by the
magic rule. If the goal is :-ancestor(jiro,taro), only the binding on the second argument is
propagated. Thus, static HCT/R has the same effect as the distribution of selecrions for the
ancestor gquery. The remaining part of this section shows that this observation is valid for all
queries.

We need several definitions to show the correspondence between the distribution of
selections and static HCT/R. The following is the definition of a mapping used to define fixpoint
semantics of logic programs [L1087].

Definition Let D be a set of definite clauses. Let B be the Herbrand base of D, and let 2B be
the power set of B. A mapping Tp from 2B 10 2B is defined as follows. Let I be an element of 2B,
Tp(l) = (r € Bl r:- ry,r2,...,In is & ground instance of a clause in D
and r1,r9,....Ty are elements of 1. |
We need a mapping that produces nonground instances. Thus, we define another mapping.

13 —

Definition Ler D be a set of definite clauses. Let U be the set of all unit clauses (that are
possible in the underlying language). Let 2U he the power sct of U. A mapping T*p from 2U to
2U s defined as follows. Let | be an element of 2V,
T+pil)= {r'e Ul (r'is a unit clause in D) v
(r- 11 eendn e DA 3prpoe.appe I
2 = mgulr;,pi) A 0 =8182.....0, A r'=rt) }. [|

The difference is that the result of T+p(1) may contain uninstantiated instances. The

following lemma shows the properties of Ty
Lemma 4.2
() 2V is a complete lattive under set inclusion. The bottom (L) is &, and the top element is U,
{h) T+ s monotonic,
ic) T is conrinuous,
(d) There exists a least fixpoint of T+p. and Ifp(T*p) = T*pTo

IProof {a) and (h) arc obvious. (¢} is proved by the same way as proposition 6.3 in
[LIo®7]. (d) 15 a consequence of (). (b) and (¢} |

The following lemma shows the correspondence between THp and Tp.

Lemma 4.3 Let T be a subset of U, and let ground(I) be the set of ground instances of
elemnents of 1.
(1) ground(T+p(1)) = Tpfground(D) for any 1.
(b} ground{fp(Trp)) = 1p(Tp).
Proof {a) is obvious. {b) can be proved using (a) as follows.
() ground(T*pT0) = TpT0 = @.
(11) Assume ground(T+pTi) = TpTi for i=j. Then, ground(T*pTj+1=ground(T+p(T+pTj))

=Tp(ground(T*pTi) = To(TpTi) = TpTj+l.
Therefore, ground(T+p Ti) = TpTi for i<w by mathematical induction.
Hence, ground(Ifp(T+p)) = gmundiT*uTm} = gmund{lubﬁ*DTﬁ: Bew))

= Eub{gmund('l*"DTﬁ}r fem)= = lubTpTR: Bew) = TpTw = Up(Tp). [|

The following theorem shows that the result of the distribution of selections can be
obtained by transforming the result of static HCT/R. It also shows the correspondence between the
least Herbrand models of the transformed results.

Theorem 4.4 Let Q= [:-g)w D, and let Q = st_hewr(Q). Q' can be divided to Q' = {:-g) W
D' D* where D' is the set of clauses obtained in step 1 of st_hctr and D* is the set of clauses
obtained in steps 2 and 3.
{a) Let D¥* = {1 3(r:- r*ry,r2...0m) e D' A Jpre Hp(THp=la

8 is mgu(r*,p*) ~ ' = (r - r;.,r2,...,70)8}}.

Then, Ifp(Fg) = {:-g} « D", forany Q.

—]"- —

(b) Let DB be a database, let D1 = (Ifp(Fg) - {:-g)) v DB, and let D2 = D' w D* w DB. Let

denote model(D) instead of Hp(Tp) to simplify notation,
‘Then, model{D)1) = model(D2) — model(D*), for any Q and DB. n

The proof is shown in appendix 2. Theorem 4.4 shows the precise correspondence
between the distribution of selections and static HCT/R. Because static HCT/R is a special case of
MSs, MSs can be considered as generalizations of the distribution of selections. The following
descriptions summarize how the distribution of selections and MSs are related.

(1) AU: The dismmbution of selections in relational databases is based on the commutativity of
selections with other operators. This method can be generalized for transitive closure queries.
(2) AD and K1.: For more complex queries, the distribution of selections can be generalized by

introducing dispuncrions of conditions.

{3) Generalized distribution of selections (in section 3): The distribution of selections can
be generalized for general recursive queries. This method also uses disjunction of conditions
extracted onlv from queries. However, it fails to optirmze queries when extracted conditions are
ineffective.

(4) MSs: A possible way to improve the above method is to extract conditions from databases as
well as from gueries. Because it is inefficient 1o extract conditions from databases before the
fixpoint computation, it should be performed during the computation, Magic predicates are
used as storage for these conditions. Note that magic sets can be regarded as disjunctions of
conditions if each of its element is considered as a simple condition. Static HCT/R is a vanation
of MSs which extracts conditions only from gueries, and thus corresponds to the generalized
distribution of selections.

Thus, the difference between the distribution of selections and MSs is that the former only
uses conditions extracted from gueries, and the latter extracts conditions from databases as well as
from the queries. Because it seems necessary 1o introduce new predicates in order to storc
conditions extracted from the databuse, we can conclude that MSs are natural generalizations of the
selection-first principle in relational databases.

Theorem 4.4 also suggests that we can improve MSs using the above correspondence. The
following is the possible but not exhaustive directions for the improvement. '

(1) Elimination of magic predicates after the transformation.

(2) Application of the distribution of selections before MSs. The arities of predicates may also be
reduced. The effectiveness of the distribution of selections is difficult to check before the
transformation, but the effectiveness of static HCT/R is easier to check using its partial
restrictor (i.e., adorned) version.

We also notice the similarity between the distribution of selections and the rectification algorithm

proposed as a transformation before MSs in [U189)]. Investigating thesc possibilities is a topic of

future research.

15

5 Conclusions

This paper discussed the gencralization of the selection-first principle to recursive gueries,
A generalization of distribution of selections was proposed, and its relationships o other methods
was discussed. We have shown that QSQs and MSs can be at least as efficient as the distribution
c® selections. We have also shown that there exists a variation of M3s that corresponds o the
distribution of selections. As a result, the relationship between general frameworks of query
processing strategies for relational databuses and deductive databases becomes clearer. The revised
relationship is illustrated in Figure 2. We only discussed queries expressed by a goal and definite
clauses. The generalization of our result for smranfied queries is possible, because both the

distribution of selections and static HCT/R produce stratified results for a stratified query.

Relational Datahse Deductive Database Logic
- Programs
Static HOT/R
Selection-First . 1 J _
Recursion Camplofeness
Distribution of selections —# DSs MSs = Seleciion function
Boltom-up > ()S()s <4 Prolog

Perform selection firs —_— i - :
electic t _ compuration (Top-down evaluation)

— Ceneralization D% - Distribution of selections

4——- Correspondence MSs : Magic set and variatons
QS5Qs : Q5Q and variations

Figure 2 Revised Relationships between Methods

Acknowledgement

This work is a part of knowledge buse rescarch in the Fifth Generation Computer Systems
Project. 1 would like to thank to members of KBMS PHI group at ICOT and Oki for the
development of HCTs, Special thunks are due to Catriel Been and Kazumasa Yokota for valuable

discussions on the general frameworks of query processing.
References

[AD&8] Agrawal, R. and Devanbu, P., Moving Selections into Linear Least Fixpoint Queries,
Proc. 4th Intl. Conf. on Data Engineering, 1988.

- IE_

[AUT9] Aho, A.V., and Ullman, J.D., Universality of Data Retrieval Languages, Proc. 6th ACM
Symp. on Principles of Programming Languages, 1979,

[BaR87] Balbin, I. and Ramamohanarao, K., A Generalization of the Differential Approach to
Recursive Query Evaluation, J. of Logic Programming, 1987,

[BMSURG] Bancilhon, T, Maier, D., Sagiv, Y., and Ullman, J.D., Magic Sets and Other Strange
Ways to Implement Logic Programs, Proc. of 5th ACM PODS, 1986.

[BRE6] Bancilhon, F. and Ramakrishnan, R., An Amateur's Introduction to Recursive Query
Processing Strategies, Proc. ACM 51IGMOD, 1986,

[Ban&6] Bancithon, I, Naive Evaluation of Recursively Defined Relarions, in M.L. Brodie and J.
Mylopoulos (eds.) On Knowledge Base Management Systems, Springer-Verlag, 1986.
IHKBIRET] Beeri, C.. Kanellakis, P, Bancilhon, F. and Ramakrishnan, R., Bounds on the
Propagation of Sclection into Logic Programs, Proc. 6th ACM PODS, 1987,

[BeR87] Beeri, C. und Ramukrishnan, R., On the Power of Magic, Proc. 6th ACM PODS, 1987.
[CGLE6] Cen, 5., Gottlob, G. and Lavazza, L., Translation and Optimization of Logic Queries:
An Algebraic Approach, Proc. 12th VLDB, Aug. 1986,

[KLE6] Kifer, M. and Lozinskii, E.L., Filtering Data Flow in Deductive Databases, Proc. ICDT,
1986,

[L1o87] Lloyd, J.W., Foundations of Logic Programs, 2nd edition, Springer-Verlag, 1987.
|MHISR] Miyazaki, N., Haniuda, H. and Itoh, H., Horn Clause Transformation: An Application
of Partial Evaluation in Deductive Databases, Trans. IPS], Vol. 29, No.1, 1988 (in Japanese).
IMHYI88] Mivazaki, N., Haniuda, H., Yokota, K. and Itoh, H., A Principle of Query
Transformations in Deductive Databases, [ICOT TR-377, 1988. (submitted for publication)
[MYHIBR] Miyazaki, N, Yokota, K., Haniuda, H. and Itoh, H., Horn Clause Transformation by
Resrrictor in Deductive Databases, [COT TR-407, 1988, (submiited for publication)

[Ram&8&] Ramakrishnan, R. Magic Templates: A Spell Binding Approach to Logic Programs,
Proc. 1st Intl. Conf/Symp. on Logic Programming, 1988,

[RLKE6] Rohmer, ., Lescocur, R. and Kerisit, .M., The Alexander Method - A Technique for
the Processing of Recursive Axioms in Deductive Database, New Generation Computing, Vol. 4,
pp.273-285, 1986,

[SZ87] Sacca, D. and Zaniolo, C., Implementation of Recursive Queries for a Data Language
Based on Pure Horn Logic, Proc. ICLP, 1987.

[SagR7] Sagiv, Y., Optimizing Datalog Programs, Proc. 6th ACM PODS, 1987. also in
Foundations of Deductive Databases and Logic Programming, edited by J. Minker, 1988.

[5ek89] Seki, H., On the Power of Alexander Templates, Proc. 8th ACM PODS, 1989,

[TS86] Tamaki, H. and Sato, T, OLD Resolution with Tabulation, Proc. of 3rd Intl, Conf. on
Logic Programming, 1986,

[UNE2] Ullman, J.D., Principles of Database Systems, Computer Science Press, 1982.

—]T -

[ULI85] Ullman, J.D., Implementation of Logical Query Languages for Databases, ACM TODS,
Vol. 10, pp 289-321, 1985

[U1189] Ullman, 1.D.. Bottom-up Beats Top-down for Datalog, Proc. &th ACM PODS, 1989,
[Vie&6] Vieille, L., Recursive Axioms in Deductive Databases: The Query/Subquery Approach,
Proc. 1st Intl, Conf. on Expert Database Svstems, pp. 179-193, 1986

[V'ic87] Vieille, L., Database Complete Proof Procedures Based on SLD Resolution, Proc. 4th
Intl. Conf. on Logic Programming, pp.74-1{13. 1987,

[Vie8%] Vieille, L., From QSQ towardy Cosald: Giobal Oprimization of Recursive Queries, Proc.
of 2nd Intl. Conf. on Expert Datahase Svstems. pn 421-436, [988,

Appendix 1 Proof of theorem 27
Theorem 3.7
(a) Fq*mscvfm = lfp(Fgp*mscv) = msev(iplhoi
(b) Q' = Q forany Q such that S{Q) o Q"> 1ip(Fy*mscv).
Proof {b) 15 abvious by lemma 3.6, The proof of (1) is shown in three steps.
(I} msev(itp(Fr)) 2 fp(Fo=msev). This i proved as follows. Let Q be a fixpoint of Fy. Then,
msev(Q) = msev(F(Q) o msovilnimseviQ))), Because FpimseviQ')) o mscwv (),
mscv(F(msev(Q')) 2 mscvimsev(Q) = msev(Q'). Hence, mseviQ)) is a fixpoint of Fg*mscv,
Thus, msev(lfp(Fg)) is a fixpoint of Fg*msev, and therefore msevilfp(Fg)) o 1ip(Fo*mscv).
(1) Fg*msevTa = mseviFo Tae) for o < @, This is proved by mathematical induction,
(1) Fo*msevT0 = msev(FoT0) = @ for =10,
(2} Assume Fy*msevTa = mseviFoTu) foro =i
FQ*I’!’IHE\-'Ti-l-! = F*mscv(Fg* msev i) = Fo msevl mscv(FqTi}F
m:ccv{FQ[mscv(FqT't]}] =mseviFol FQTi 1= ms-:v{FqTH 13,
Thus, (b) can be proved by (1) and (2) using mathematical induction.
{110 Fq*msf.‘va =1LI|.'.5{FQ'*II'.ISCVTEI: @ < o) = lublmsev(FoTa): a < w} >
msev{lub{FoTa: o < @}) = msevilip(Fg)) o Ifp(Fg*msev).
Because fp(Fo*rmsev) D Fg*msevTo,
Fq"’mscv'rm = Ifp(Fo*mscv) = mscv(tp(Fgl). [|

Appendix 2 Proof of theorem 4.4
Theorem 4.4 LetQ = [:-g) w D, and let Q' = st_hctr(Q). Q' can be divided 1o Q' = [i-g} W
D'w D* where D' is the set of ¢lauses obtained in step 1 of st_hctr and D* is the set of clauses

obtained in steps 2 and 3.
(@) Let D* = [r'| 3(r- r*r.ra...Ipde D' A Ip* e Ip(THpein
B is mguir*,p*) A 1 =(r:rir2...md}
Then, Ifp(Fg) = (:-g) v DY forany Q.

18 —

(b) Let DB be a database, let D1 = (ifp(Fg) - {:-g}) v DB, and let D2 = D" D* v DB. Let
denote model(D) instead of 1fp(Tp) to simplify notation.
Then, model(D1) = moedel(D2) — model(D*), for any Q and DB.
Proof
(1) We note that step 3 of st_hctr generates following set of clauses.
Onginal clause: ri-1q,...,Ty
Generated clauses: ry™:-r*
ra*r®
ty-r* {except for base predicates).
(I) First we prove the following property. Let body"(R) be the subset of body(R) that corresponds
to predicates which uppear in the head of R. Then, Ifp(T+ps) = body"(Ifp(Fg)) except for the
difference in corresponding predicate symbols.
We prove this by showing TnsTi= b{:-d}f"quTi] for i< by mathematical induction. Because
both Ifps correspond to @, the property holds if this equation holds.
(1) T+p«T0 =2

FoTo=@
T T1 = (g*)
FQTI ={=-g}

Thus, T+p=T1 = body"(Fo T1) if we neglect * attached to restrictor..
(2) Assume T*psTi = body"(FoTi) for i=j.
TpeTisl = THp=(T+peTj) =
fr'e Ul(r"is a unit clause in D¥) v
{rt:-q*e D* Adp*e T*n-Tj ~ 8 =mgulg*,p*) ~ r'=r*g)}
= (g*} v [r'e Ulr*- q* e D* A 3p*e T*p«Tja
B = mgu(q*,p*) A r'=r*8)]
=[g*)w |r'e Ulirt-g*e D* A dp*e body"(FgTi) A
0 = mgu(q*,p*) A r'=r*i)]
Foli+l = Fo(FgTi)
= (- g]u {COI Ce D A 3r e body(FqoTi) AB = mgu (r, head(C))}
Thus, T*p=Ti+1 = body"(FoTi+1).
(IT) Next, we prove (a).
D¥ = [r'] n-r* 1, € D A Jp*e Hp(THps)a
0 is mgu(r*,p*) A ' =(r - r.02....0)0)).
= [} r-r*rr2..me D' a 3p* e body"(Ifp(Fo)a
8 is mgu(r*,p*) A ' =(r - 102,00 |-
= {r'l &-11,12...fn € D A 3p e body"(lip(Fg)ia
8 is mgu(r,p) A ' =(r:- rp.r...méh

Therefore, Ifp(Fg).= {-g} w D%
(b} M = model(D2) = model (D'w DB w D*).
Because D* does not depend on other part, it can he separately evaluated. Thus,
M = model(D'w DB W Iip(THp#)).
Because D¥ is a transformed form of D' using the information on Ifp(T*p+).
M = model(D* U DB U lfp(Ttpy)).
Because D¥ w DB and Ifp(T+p+) are not related, they can be independently evaluated, and we
obtain
M = model(D¥ U DB) w model{1{p(T+pe))
M = model(D¥ o DB) w model{(Ip{T+p 1)
= madel{D1) W model{(1ip(T+p~1
= model{I) w model(DF). [|

— a0 —

