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Research and Development of the Parallel Inference Machine
i the FGCS Project

Atsubire GOTO*
[nstitute for New Geueration Computer lechnology (1COT) !

Absirnet

As part of the FGOS project. we are developing parailel mference machine {FIM) svstems
based on a Jogic programming framewnrk. The research and development of PIM ineludes the PIM
hardware architectures and the parallel implementation of K11

KLL has been designed as the PIM kernel language, so that both PIM applications and the
parallel aperating system (PIMOS) can be written in KLE The characteristics of KL are used
W osolve kL1 parallel inplementation problems. such as distributed TEROMECE Management, goal
scheduling and distribution. memorny management, and distribated unification. They have heen
romdensed inta the abstract machine instenetion set. KLI-B

I designing the hardware architecture of the PIM pilot machine. a Lierarchical configuration
has heen introdueed 1o connect more than 100 processing cloments A new istruetion architecinee
for KL1 is provided for the processing elements. A coherent cache protocol has been designed 1o
make hugh- performance clusters, cach of which inclucdes eight processing elements connected with
shared memory. These clusters will be connected by a multiple hyper-cube network

1 INTRODUCTION

Plee research and development (R&D) of the parallel inference machine (PIM) iz one of the most
important targers o the PFGOS project. The PIV will be the pioneer of paraliel provessing in knowledge
iformanion processing svstem | K115 application fields.

The principal aim of parallel processing is to increase the execution performance so that nsers will
be able to solve hig application programs. The PIM should have many more features than conventjonal
general-purpose machines, For example, pallern matching operations are lnportant in many KIPS
applications. However, it is insufficient to increase the elficiency of only limited functions in KIPS
applications. I other words. development of the PIM should strive to develop more general and
powerful machines than conventional ones. The PIM should alsn cover the functions of conventional
computers. hecause Al machines are not simply gamie tree searching machines,

During he initial stage | (082 1o 19%4) of the PGCS project, the elementary mechanisms of the
PTM were studied from vanons standpoints [12]. One of our most important policices in the RED of the
PIM system iz to build up a total systom based ou logic programming. so that the system designers
of the PIM can casily look through all levels of the system in a logir programming framewark. This
15 an important way to solve The < mastin gup argument: application and implementation are closer,
therefore execution is faster. Therefure. the RED of the current PIM. started in 1985 [13. 11]. is being
conducted with the design and implementation of the kernel tanguage (K11} and the PIM operating
system (PIMOS) 6], which is written in KLl as a self-contained operating svstem, We set the following
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goals aiming at the PIM system shown iv Figure 1

First. we hope 1o realize a very high exec ution performance for logic programming iu KL]. We
Leliove 1hat more than 100 times the performance of curvent machines will be pecessary to eithance
boic programming application research. Next. we aim to bkl practival svstems that will be available
as posearel tools i the final stage of the project. This is essential for application pescarch, In addition,
the dovelopment of total and practical syslems stresses the importance of meory managewent and
program control in parallel processing svstems, and it also reveals the hidden problems in parallel
processing. Finally we are trving to build the PIM svstemn using K11 The language features of K11
are used 10 Uhe Tull in the parallel architecture design.

This report describes the K11 parallel implementation and the hardware architecture of the PIM
pilat tachine. Section 2 introduves KLT with its meta-programming capability using shoen. Section 3
deserihes sehoduling of kLT goais within a clnster, Section | deseribes inter-cluster distribntion of goals
and therr management using the shoen Facilitv. Section 5 discusses how to reduce Lhe voninieation
cost T inter-eluster distributed unifications, Section G describes the incremental garbage collection
meelanism embodded in the parallel KLT implementation. The above schemis for the WL parallel
implementation are condensed into an abstract instroetion set called KL1-B [16]. KE1-B interfaces
PIMs and B L1 just as WAM [24] interfaces Prolog and sequential machines, Section 7 overviews the
KLI H features,

The hardware architecture of the PIM pilot machine is described in seclion #. We introduced a
hierarchical confignration iute the PIM hardware architecture (shown in Figure 21, which is assumed in
e discussions about kL1 paraltel implementation, Several PEs form a cluster with a shared memory,
‘I'hese clusters are intercounected by a communication network.

The Multi- 'S [25] svstem has been built to enhance the research for the KL1 parallel implemen-
Lation and the PIMOS design. The Multi-PSI is a collection of the PST machines [I¥] connected hy



fast mesh netwerk (270 Most of the KL1 implementation issues in distributed environments have been

studicd through the design of the Multi-PSI system [17].

2 The Kernel Language KL1

2.1 FGHC: Base of K11

KILT was initially specified as Flat Guarded Horn Clauses (FOHC) [23], taking efficient implementation
into consideration. The major reasons for choosing FGHO as the basis for K11 are as follows, GHC
lias clear and simple semantics as a concurrent logic programming language, by which programmers
can express important concepts in parallel progranuuing, such as inter-process communication and
synchronization. In addition. FGHC is an efficient langnage, in the sense that we can specify the
maching level lanouage,

POGHO is a langnage based on orn clavses of the form: # - . G| By, .., B.. where His the
hiead of the clause, & are guards, " is the commit. and B; are the body goals. In FGHC, as in
Prolog. procedures are composed of sets of clauses with the same name and arity. Unlike Prolog, there
are no nondeterminate procednres. Execution procecds by attompting unification between a poal (the
callert and a clawse head (the callea). If unification sucreeds, execulion of the guard goals is attempted.
These goals can only be systeni-defined built-in procedures. e.g.. arithmetic comparison. If the guard
sueceeds, the procedure eall "commits” to that clause. ie. any other possibly good candidate clauses
are dismissed. If the head or guard fails. another candidate clause in the procedure is attempted (if
all clauses lail. the program fails ). There is a third possibility however: that the call suspends.

FGHC restricts unification in the head and guard (1he “passive part” of the clanse) to be input
unilication only, 1.e.. bindings are not exported. Output unification can be performed only in the
body part {the “active part™). These restrictions allow AND parallel execution of body goals and
even OR-parallel execution of passive parls during a procedure call (the implementation discussed
here exccutes passive parls sequentially and executes body goals in a depth-first). Synchronization
between processes js inherentiy performed by the requirernent that no output hindings can be made
in the passive part. If a hinding is attempted, the call pofentielly suspends. If none of the clauses
succesds. and one or more potentially suspend, then the procedure call suspends {possibly on multiple
variabiles),

When any of the variables vo which an export binding was attempted are in fact hound (by another
process ). the suspended call 15 resumed. These semantics permit stream AN D-parallel execution of
the program. e, incomplete lists of dala can be streamed from one parallel process to another in
a producer-conswmer relationship, For example, when a stream runs dry, the consumer receives the
unbonnd tail of a list and suspends. When the producer generates more data., the consumer is resumed
and continues processing the transmitted data.

2.2 Meta-programming Capability Using Shéen

Starting from FGHC, KL1 has been extended so that it has becomne a practical language with the
features required fur the PIMOS design®,

In GHC and FGHC, all goals compose a logical conjunction, so that the failure of a certain goal
ranses a global faillure. However, the relation between the operating svstem and user programs must
be that of & mets-level progrant and object level programs, where the meta-level program controls
or monitors the object-level programs, Therefore, it is necessary to introduce a weta-programming
capability into KLIL.

'Chikavama et al. [6] describe the svatem programming features in KL
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cxecuted goals look like smiall-grain threads of control (processes). a shoen defines a larger-grain
computational anit, Leo the concept of @ job or a task. [t deals with execution control ol programs,
resonree matageinent wnd cxception handling.

A shoen way clade clild shovos, so thal we can see WL goals form a tree-like strodture (shoen
tree) whose nodes are shoens and whose leaves are KL1 goals. Tn this case, when the execution in an
mitsde {or parent | shiosen stoges, all evecution moan wside [ehild i shoen atops allt('r[]l.%ﬂjt':‘l."}'. When
Vhe ot side execution i= restarted, inside execntion i also restarted

Computing resonrces can be managed e each shoen to avoid, or exanple, infinite execution of
TR IR =N A (TEN The managenwnt of |'1_+|u|r||‘.'|||:’-I PEROHI MO0 15 r'mmhl}' i1ll[]|i-‘|l|4'l'|11’-'{] as low nmny ol
reductions can he performed within @ shoen, The inside shaen can consume the comprting resources
witlhin the amount of 1the resonrees that The ootsile shown b,

A shoen b= created b owoeall 1o b built-in predicate ¢ raewle Jh
exeende { Coond 4 vantvod Be et Min, Wz, Wesie ]

Ciond specifies the nitial goul. thar s, the predicate gaoe and s arginments to execote I the shoen,
AN forked goals Trom the given Gl belong 1o the saome <hoen. Waw and Yar are the minimmme and
IR LTI [mﬁnihiv prioriies of :_in‘.u£|| seheduling allowed fu the shoen, [see seetjon 30200

{enadvend andd K l,un-.-.l'.‘ are 4 he contral sd e CHe[arer streams, | he rontrol steeam 1= g=ecd to st1art,
shopr or abiort 1l showen Trann oobsiche. Thee I||l'Jn§1u|i||5 prcess Cad L indisrrned of evonts within a
shaen such as the end of execution and exceptions through the report steesn, Exceptions that have
ocenrred 1 the shoen or are delegated from one of the child shoens are reported as a message Lo the
report stream. Wausk is a bit patters for deternining wlich exceptions should be handled in this shoen.
The THONITGEITE Process can subslinagre o new I.',cua] [wr the ;_:,qmt that hies given rise to e r-xcr-],ﬂ.inu.
An important thing o note (s that there 5 no failure inoa shoer, Auy kind of Tailuee is treated as
an excephion. Phe logical conjunetion between kL1 goals 15 maintained within each shoen, In other
words, Ir_;uilln e shoea doopor forme s conjouction with goals owtside the shoen, W ith the above
niela- proogrammming capabiliiv, we can deseribe pol orly the PIAL applications bet also the A5,

wlhich controls parallel processes,

3 Goal Scheduling

3.1 Goal Reduction by Register Machines

While any unification of KL ean be doge in parallel upder the seranties of GHO 28] we did not adopr
this fine-grained parallelism. but. instead. the parallelism between goal reductions. This is hecanse (1}
itnifications are granules tliat are too small to implement in parallel. and (2) we can extiract cnough
paraliclizm hetween goal reductions,

A st of candidare elanses for the sane predicate is compiled 1o KLET-T code as shown in section 7.
executed by a single thread of conteol from guard 1o body. No parallelism is cxpected within each
goal reduction. Tach passive and active unilication can be done by diserete kLB instroctions as
register memory or repister-register nperations, so thal we can expect optimization by (he compiler

suwel as in register allocation.

3.2 Goal Scheduling on the Processor

A goal can be a ready goal (RO a saspended goal (SG) or a currend goal (CG ), as shown in Figure 3.
The ready goals are linked into a list forming a rendy=gond-stact, T principle, a currean goal i= popped
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Figire 3 Goal State Transition and KL1-B Instructions

from the ready-goal-stack. then the moal reduction is performed by the KL1-D code corresponding to
the goal predicate,

When any unification suspends. the goal is linked as a suspended goal [rom the variable which
caused the suspension [14. 22]. Here. the non-busy waiting method has been adopted. That is, the
suspended goel js not scheduled until the variable will be instantiated. When a suspended goal is
resumed. it is linked to the ready goal-stack again.

Depth-first scheduling is. in principle, adopred for bodv goals, A left-most body goal can he
executed without pushing it 1o the ready-goal-stack (see figure 3), while other hody goals are linked
i the ready-goal stack.

The priority of goal scheduling can be controlled by specifying praginas [25]. While each shien
is created with the masximum and mdninuem priority (see section 2.2}, the pragmas can specify the
relative priority within the range allowed for the shoen. The ready-goal slack is managed with the
priority ol goals. The forked goal speeified with priority is linked to the specified position. Otherwise,

the same prionty as with the current goal is adopted,

4.3 Goal Distribution within a Cluster

How 1o keep the processing load well-balanced is a kev issue in making the best use of parallel
processing resources. Currently, the following strategies are provided in the KT.1 implementation on
FIM.

In a cluster, we provided an individual ready-goal-stack with prierity to avoid conflicts of access
to the compon goul-stack [22]. New ready goals with higher priority than the current highest priority
are possibly born in a cluster, or sent from other clusters. These higher priority goals are distributed
gradually to aeep the processor loads in pood balance. We found on-demand distribution ta he
an effective way to realize a good balance within a cluster while reducing the amonnt of wasteful
conumunication among processors 2], In the on-demand scheme, an idle processor, or a procussor
executing low priority goals. sends a request Lo a busy processor executing higher priority goals. On
receiving the request, the busy processor sends the goal from its readyv-goal-stack to the idle processor.
This communication should be done efficiently within a cluster, su we designed a coherent cache and
au inter-processor signaling by slit-checking lor the PIM pilot machines. (See section 8.2.)

-
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4 Distributed Goal Management

4.1  Inter-cluster Goal Distribution

['he Joad among clustors should be distributed carefully becanse the conmunication cost = pore
expensive than within a cluster. Therefore, we provided pragmas by which users can indicare load
distribution while we plau 1o mplement s dynamic load balancing wechauizm.

The pragmas for load distribution are of the form goalMnade( O L) attached 1o bady goals as
sulfizes and throw KL soals 10 a certain cluster, A body goal goelGrade O Ly is thrown by a
teesate e toca cluster ©F when the clanee containing the bodv goal & committed to. The
semantics ol prograns with pragioas is the same as that withont them, The node (more preciselyv. a
certain processing element in the cluster €0 ) that received the ®throe message links the goal to its

2

roadvomoal-stack as well as o the foster-parent < ax described e Che nexi section,

4.2 Shoen and Foster-Parent Scheme

The wain role of a shoen 15 to control the execution under the shoen, e, the shoen status s checked
in each soal reduction, Within a cluster, processing elements can share the shoen status, so that the
bardware mechanism s colorent cache, soe seetion %00 can reduce the rost of l."lll"fL'-III!!,' the shoen
statns o every poal redoction. In inter-cluster parallel processing. the shaen Iree crosses memary
space houndaries of clusters. Iowe siiply represented a link of a shoen tree using an external reference
link. the rate of inter-cluster operations would be very high and the senchrowzation would be very
complicated. We provided a shaen and foste repeorend sehe meé to avoid this [11].

In the shisen and foster-parent scheme, a foster-parent for a certain shoen is croated, il necessary,
in a cluster. The foster-parent works as a branch of the shoen within the ciuster. The foster-parent
manages the child shoens or goals belonging to the shoen in that cluster. ie., it may start, stop and
ahart its children. By this scheme, most cotmuupication hetween the child shaens or goals and the
parent shaen can be performed by the communication between the children and the foster-parent

within a cluster, =n that the inter-¢luster communication traffic cap be peduerd.

“1f there i= no foster parent, cre will be created on the spaol.

{s



Figure 4 shows the lollowing situation. A shen 4 has a child shéen B and several child goals in
clusters, Cluster,, Cluster; and Clustery, Therefore, each cluster includes a foster-parent {4;,4; or
Ap). Shoen B has its child goals, p. g and r. They were created al Cluster; and were linked to the
lster-parent B0 When one goal pis thrown to another cluster, (lustery, a new foster-parent, By, is
created. and the goal pis linked 1o it

4.3 Weighted Throw Count

lermination detection of some ar all processes is one of the principal functions in any system. The
end of a KLI program execution corresponds to the end of the shoen, When all goals in a shoen or
descendant shoens are reduced 1o null. the execution of the shoen finishes.

When all poals under a foster-parent have heen reduced to null, the foster-parent sends a termi-
nation message to the shoen and disappears. The shoen seems to be able to detect the termination
when it receives termination messages [romn all foster-parents, However, there may be moals in transit
as the goal r in Figure 4.

The weighted throw count {W T method was provided to solve this problem [20], where a certain
welght is assigned for the shoen. its foster-parents, and messages. The WTO can be seen as an
application of weighted seforence counling (2. 30].

[ the WTC scheme, a shoen has a certain weight of negative value, and all its foster parents and
messages have a positive weight. The following condition is maintained during their execution:

II-.rJ\r\-fﬂ + E {H.,fvair-'ru'l: '-lﬂ.:' - E [ H:-'rec'saru;;r } =1

For example. when a foster-parent sends a goal to another foster-parent, the sender assigns a certain
weight [romn its own to the goal, then sends the goal with the weight. The receiver adds the weight sent
with the goal into its own weight. When a foster-parent disappears. it sends a termination message
tir the shaen with its weight. When the weight of the shoen becomes zero by adding the weight of the
message. the termination of all goals in the shoen is detectable.

5 Distributed Unification

3.1 Export and Import Tables

A goal is thrown by the $throw message between the clusters, The Fthrow message includes the
foliowing encoded information: the code of the predicate of the goal, the arguments of the goal, and
the shoen to which the goal belongs. The encoding of arguments (or any KL1 data} is called export:
decoding is called meport,

i the kL1 parallel implementation. an external reference. ie.. a reference to non-local data, is
identified by the pair {wede.ent). where node is the cluster number in which the referenced data
resides, and enf is the unigue data identifier in that cluster, We did not choose to take the memory
location directly as the identifier. ent. because that would make it very difficult to perform garbage
collection locally withie one cluster. If the locations of data have moved as the result of marking or
maoving garbage collection [see section H.2). 1t must be announced to all clusters that may reference
the data. Instead. cach cluster maintains an erport table to register all locations that are referenced
frorn other clusters [14]. Each externally referenced cell is pointed to by an entry in the table, and the
entry nnmher is used as the unigue wdentification number. When externally referenced cells are moved
as the result of a local garbage collection, the pointers from the export table entries are updated to
reflect the moverments,
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pieare 5 Export Table and linport Table

Ales. each clustor maintains an inpord fable to register all imported external references,  All
references in a cluster to te sane extergal celorence are represented by internal references lo the
wame ericrnal vefeevnee codle e external reference cell points to the fport table entry and vice
versa, Pxport and import tables are shown iy Figure G0where an external referenee cell s indicated
v the EX cell”,

5.2  Avoiding Duplicated Export/Import

Data ohjects ina cluster mav he exported more than onee. In such cases. parl export tends fo use
export table entries. Tooaddition, i a cluster fnnports the same data strncture wore than onee, the
cluster must wllocate its memary for the same data structure. Lo avold the duplicated exports and
imports, a hash table is attached to the export table. 11 a data ohject s eaported more han onee.
the same export table entry can be retrieved from the object address and vsed in the second and
later export. There is also a hashing mechanism for retrieving an import ta ble entry from an external
veference. 50 that even i a clusier imports the same external reference more than once. oniy one
pvtornal reference coll is allocated,

The introduction of export and import tables help reduce the nunber of inter-cluster reac pegquests
a5 follows, Suppose that @ Taster, exports the same diata X 1wice 1w {Tusier,, as an argument 1o
soals poand o Sinee Vb exported with the same external reference in the two exports (using the
export tabie mechanisnt with hashing ). Clusfer,, allocates only one external reference cell 1o X {using
the import table mechanism with hashing). Even if hoth p and ¢ avtempt 1o read X . only one read
request message s sent o Cluster, o because the fiest read attempt 15 remembered by the external
reference cell and the second attemipt only waits for the return of the value. This mechanism also

prevents { luster, from making daplicate copies of the same external data.

5.3 Unification Messages

In passive unification. the two terms to be unified are read and compared. lo read an external
referonce (EX) cell to Xo & read request is made by sending a message:

Srende X, Netourn ddddvess)

to the referenced cluster. where X is the external reference {n e} in fignre 5. and RelurnAddressis new
export table entry {m.d) for returning the value’,
If the referenced cell has a concrete value 1) it is returned by the Fanswerovalue message:

Fanswer value {Heturn Address V)

YEX rell ie either an EXREF cell or an EXVAL cell The data referenced by an EXVAL vell is known Lo have a concrele
value.
1The Tread and Fanswer_relng messages correspond to the Frewd.value and Wreturn valwe messages in [14]).
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Figure ti: References in the MRB Scheme

I the referenced cell s an unbound variable, the read request is suspended until the variable is
lnstantiated. 103t is an EX cell. a Fread message is passed to the cluster that it references. When the
Honswer_value message returus, the EX cell identified by Return Address is overwritten by the value,
and the inport table entry corresponding to the EX cell can be freed. This is why the cell and the
PHLTY are separale,

When an active unitication tries to unilv an external reference rell X with a term Y.

Funify( X, Y)

s sent to the refercnced cluster. It is a request to unify the data referenced by X with a term Y.
The cluster that receives the above message performs the active unification after translating the two
terms into iuternal representations. Care must be taken with the unifications between two unbound
variables in different clnsters. because they may make reference loops between clusters. This problem
can be solved: first. compare the two cluster identifiers, then wake sure that the reference pointers
point iu the same direction. in descending {or ascending j order of cluster identifiers [15],

6  Memory Management in PTM

6.1 Incremental Garbage Collection by MRB

Wlhile KL1 can describe svnchronization and communication hetween parallel processes without side-
ellects. najve implementations of KL1 as well as ather concurrent logic programming langnages [7.
24, 23| consume memory area very rapidly. For example, whole array clements must simply be
copied when only one element is updated becanse destructive assignment. is not allowed. As a result,
garbage collection (GC) occurs very frequently. In addition. the locality of memory references is not
good during GO by widely used methods, so that carhe misses and memory faults occur often, In
sequential Prolog [29], this problem is not very serious because of the backtracking feature. However,
since concurrent logic programming lauguages have no backtracking. an efficient incremental GO
method is important in their implementation.

I'he multiple reference bit (MRB) method [3] was proposed as an incremental GO method for con-
current logic programming languages”. The MRB method maintains one-bit information in pointers
indicating whether the pointed dala object has multiple references to it or nat. This multiple reference
information makes it possible to reclaim storage areas that are no lomger nsed. By keeping information
m the pointers rather than in the objects that are pointed to, no extra memory access is regquited for
reference information maintenance,

“Another incremental GO method. called lazy refurence connting | LRC) [0]. was designed. LR uses two-word indirect
pointers with a relerence connter



Figare 6 shows the data representation i the MBR scheme. A single-referenced object {a) and a
mltioreferenced obiect (b ean be distinguished by the MR flag on pointers, MEH off by QO and MREB
on by @ . Becanse of the single assigmnent nature of K11 an unhound variable cell nsually has one
reference patl [or instantiating and one or move reference paths for referencing its value, Thevefore.
an nnbound variabie cell with only two seference paths s pointed by MRB off. as in Figure 6{c). On
the other hawd. an unbound variahle with more than two reference paths has only one or no pointer
with MEB ol as in Fiaure fid )

The SR information on vagiables or structare pointers i maintained through their unification.
When a unification constimes @ reference path 1o a single-reforenend data object. 1he srorage area can

he reclatmed aiter the anification. For example, the goal reduction by a clanse:
I YT s trae [yl XUV

i eommmitted when the arewment of the goal peis the pointer 1o cons ool 1= eletents are roirieved
as the argument= X and ¥oof the hody soal . consunting one reference path to the cons cell, [ the
prvnter to the cons coll shows MER off the starags area [or the cons coli can be roclanmed during goal
TTISIFRATSTIN

Although the MRB schere gives np the storage reclamation for the data objects that were ance
mnlti-referenced, the MR scheme can greatly reduce the wuemory consnmmption rate with small v
titne overbead. 1The MEB srheqre also niakes available several n||1i|||if;|'.'||r|| |l'1.'|!|||1;||]r":". ."il]l"h as dile-
structive array element update without wsing the method i Barklomd awd 3ileorle (18710 In ad-
dition, the MR scheme can be used for the export and impors procediies in section 5.2, Hecause
single-relerenced data objocts may not be exported more than onee, we intrdnee two Binds of export
and import tables. one each for single-referenced oljects and multi referenced ohjects, While the
export and import 1ables with the hashing function are ased lor npdticreferenced data ohjects that
can b funpd by the MBI acheme in sach cluster, a simipler external relerence meclnnism s nsed for

singleraleranced olijects,

6.2 Garbage Collection within a Cluster

Data structures or variables in KL are stored as shared data v cach cluster menory. The MRB
sclierue enahles storage reclamation for these data structures. Thas. free lists for data strucrures and
variable cells are maintained. Storage allocation and reclamalion are very [requent aperations. 5o
each processing element bias a sot of free lists for frequently used cells. enabling eack free list aceess
Lo be done independently in each processing eloment.

We use another tvpe of garbage collection that is perfornied locally within a cluster accompanied
with the ineremental garhage collaction by MIB, T'his is becanse e MBEB wchieme leaves some garbage,
Ve first implemented a simple garbage collection. the copying seheme, on our esperimental K1
sysTer,

Wi designed a parallel meclianism that enables all processing element= 1o collect garbage i a
clugter, When a cortain processing elensent has a shortage of memory space during its goal reduction.
it reports this event 1o ather provessing clements after it finishes the current goal reduction. This is
hecause garbage collection is diflicult 1o start during goal reduction. Shortage of meniory space should
therefore be detected belare all the memory area is used np. After all processing elements stop their
goal reductions, they start the copving operations, tracing all active eolls in the shared memory of a

cluster, Here. the copying roots are the ready goals i ready goal-stacks".

“The rxpart Lables in section B arc also the roots of copying aperations.
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6.3 Distributed Garbage Collection by WEC

Since export table entries for multi-referenced data objects cannot be freed by local garbage collection
within a closter of the tvpe described in section 6.2, there must be an inter-cluster garbage collection
mechanism to froe those entries that have become garbage,

The weighted export count (WEC) scheme was designed as incremental inter-cluster garbage col-
ection. The WEC scheme can alse he seen an application of weighted reference connting [2, 30}, Note
that a naive implementation of the standard reference counting scheme does not work correctly in a
distributed environment,

The WEC schems assigns weighted export connts {wec) to references (pointers}t as well as 1o
referenced data [153]. More precisely, positive values are assigned to external references (impart table
entries and references encnded in messages ). and negative values are assigned to export table entries,

so that the following condition is kept for every export table entry £ (see figure 7.}
[l aof B+ z [weight of ») =1
Trefrrence ba F

The weight of £ will become gero only when there is no reference to E. As a result, export table
eniries can be incrementally reclaimed through the message operation with wee.

7 Abstract Instruction Set: KL1-B

To build an efficient parallel inference machine, execution on each processing element must be as
efficient as possible, Therefore, KL1-B was designed first based on sequential execution”. It was
extended for parallel execution.

Most instroctions in KLI-B ioclude run time data type checks, The actions that follow the run-
time type chieck are very dilferent, Therefore, all the memory words and all the argument [temporary

registers hold tagged words of the form:
{lagl M EB. T ype |, value),

The MAEE in each tag i= maintained to show the multiple reference information. Type shows the data

type information.

TAn explanation of rach KLI1-B iustruction can be fonnd w [5] and [16],

L1
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7.1 Compiled Code in KL1-B

A oddata stroetare called s _r.lun'lr--"'r'rr"r-ll 12 el for rv|:.4-.-..-f-||1]||'_'. i ’.'1r-'l|- A oocal-vecord comsists ol 1=
argument liste a pointer 1o the compiled code corresponding oo its predicate wame, and coutral infor-
pition. The argument s iueledes atonde valoes ar pointers to variahles or strociure bodies e the
leap.

A poal reduetion is initiated by oa KLT-B instruetion™, proveedg . popping a goal as a corren woal
from the readv-goal-stack,  Hereo we assume that the arguments of a current goal are located i
argument registers (s

A set of candidate clauses lor a predicate is compiled into a sequence of KLI-B instructions” as
Shewn in fignre 80 For the current goal, eandidate clauses are tested sequentially by head unification
atd guard execation to choose one clanse whose body goals will be executed

A KLI-B code for a st of candidate clauses includes passive unification instructions for head
and guard parts. active unification lnstractions, argament preparation instroctions andd poal fork
instruetion for body part. aond garbage collection instrucnons, The guard part is compiled =0 that
ATEUTC DT PEESECTS AT eveT destroveed belore comitment . st ruChions are Hl'rallgl"{l s that reference
paths to data objects can be maintained correctly in terms of the MR scheme. lable 1 shows the

prineipal WL 1-H instroctios,

7.2  Passive Unilicalion

Passive unification instructions include the instruetons for goal argnments (e . XXXg ). and for
stractore olements Ceead Y XN gL The indexing instruetions are also gsed 1o avoid duplicated npera-
tions between the head aud guard part execution of candidate clauses.

Dereferencing is required at the beginning of passive and active unification instroctions. The data
type of an argnment regizter is first tested Lo see whether its vontent is an indirect pointer or not. 11l
is an indirect pointer, the pointed cell i= dereferenced until an instantiated value. an unbound variable
cell, or an external refercnce is reachied.

If the instantiation of a variable [including an external reference] 1s required during the execution
of the passive part, the test for this clanse i= abandoned. The variable that cansed the suspension i5

saved moa .l-iu:-ilu:n-.iun stack. then execulion Tn'r:urPPLl& to the next candidate clause.

*ln thiz article, each FLI-B instruction is wotten with postfis B lue crample, proveeds.
“The actual rompiled code bas o different Torm when indexing in=tractions are nsed



Table 1: Principal KL1-B Instractions

| K11 B lusiruction

widl ralpey Ai 4]
waiddronstg A

wael sty Ai
read_rav/vdr rarg Ai, 4]
fryg_mioelsen fabel
suspendp Cioal

Passive noification and suspension

Canunent

Wit for two instantiated terms, 46 and Aj, then unify them.
Wait for a constant value ¢

Wail for a pointer to the lst

Rtead the rar (or edr) of a hst cell pointed by Af into Aj.

Sel w branch label Label

Suspend (=oal,

markg Ar

Coeelleci_ralueg A7

colleci sty Ad

MEB maintenance and garbage collection

Set the MEB of Af 1o on.
Heclaim along with the refereuce path from Ai.
Reclaim a list cell A7,

Active unification
petovalueg Af, Az

i gt consfg A7 O
ged st _ralucg A, Aj

Actively unify 40 with 43,
Uoify A wilh a constand (7
Unify A7 with a list pointed o by Aj

Armumment preparation .

froforiary da, Af sefovalney i, Aj

gl _valfven Ar Aj o selovalueg 000, 45
pudeomsty Ai 0 sel_consig G
gt desty Aic sel lsfy O

wrile_earfedr_varg Ai, A

wrate cearSedr_valuen Af, Af
wedle _cavSedv_conslg Ad

Make 2 new variable powsting from 4i/Gi and Aj.
Mowve the variable from A7 to Ai/G7

Put a constant (" in 47050

Allacate a list cell in Ai /e

Make a new varable pointed to by A5

and the car (or cdr) of a lisi Aj

Move Aj to car (or cdr) of a list Ar

Write a constant € in car (edr) of & list Ai.

aoal fork

| proceedn

| ravcnte g Ceoal

| cngueue goaly Goal

e N .fr'.«?‘.n’.«_prm rityyg Croal, Pri
crgurae to_prcessorg Goal, Node

Pop a goal from the ready-goal-stack.

Jamp to the code for (oal.

Fush a forked goal (roal to the ready-goal-stack,
Push (Foal to the ready. goal-stack of the p‘ri{)rlt.}' Pri.
Throw (Foel 1o Node,

Notes A A0 Arguiment registers

G Gth argument of a forked goal

€ At integers and nil are handled by individual instructions.
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Figoure 9 A Aotive Unification Example

The & read pressage 1= not sent. in principle, 1 passive unification instroetions even when the value
ol s cortain externat efepence cell s reguired: nstead, suell o message will be sent i the suspendy

instruction. hecianse ather candidate clanses ey he committed.,

T4 Ruspension

IF teer wlamsee i sodoctol for the correant goal, the swspe ndy n=troction tests the suspension stack, If
e b= oo variable, o Taifure l'.\:rvpiiﬂal avcurs at the shoen, Otherwiae, the curpen E.uhi Beecormies a
suspended eosl, First, vareables that canse the suspenson are popped ap froan the suspension stack,
Fhivis dhe eurrent soal is lieked 1o these vaviables. setting the tag of the variable Ly HOOK. to realize
a wan by waitine svochronization mechanism hetween KL goals,

Mo an esrernal referenee i Tound in the snspension stack, the ned pressage i= sent to The node
where the exported data resides C2oe fignre 51 FPhe goal waits for the Wansie roenlon mieossage a8 a
suspre ] moal,

Thae _'.:-rn-;:-whi:w_ clequeat That seceived #vend inossape retaros the saloe of 1he I*.\'|1c-rrl>:] eliata witly
the Wanesgreroeinfee wessage. However, che exported dats may beoan unbonnd variabibe eell. Ju this
case. Hhe action ol |'¢-J:-|_'n.'i!|‘.z‘ to The Wrrad MEEssA D s F.IJH[JH]H"I"!J h_‘.‘ kg & rr,rny recard fo the unbound
variable cofls The reply record can be secn as a special goal reeord 1o reply with the Sansweci_value

THE =R e,

7.4 MRDB Maintenance and Garbage Collection

Avtive wnificorion tav produce o cliain of varable cells pointed 1o be indinat pointess. These variable
RIS puimr'd lea 3-:. an o ret j:ui:ﬂ:—'r with WHH eoff can be reclalime) l]l]l'i[lH q|t-'{v|'r-'1|1'i:.a. Theedor.
each derefcrencing aperation includes the MEH test and. possiblv, a reclamation operation.

Fhoe MHB s wadntaived oo cach WET W instraetion. Te addition, soveral garbapge colloction instrue-
tions are introd need o KL=, The compiler detects candidate places where reference paths are added.
sarky i nsed tooset AED w00, When (e compiler linds @ unification i which a ceference path to
adata object = congimed, it inserts a collecrf. XY X g instraction at an appropriate place. Collect_fisig
Bsoa tvpical KLED fostruction which corresponds to the goal reduction by the clanse in section 6.1,
MNote that the cons cell can be reclaimed alter the clause is comnmitted, Therelore. colleci lisig. which
reclaitus the cons ol i 00 is a single-referenced coll | MEH offh. is pul aller the passive unilicalion

inEtructivns as shown m Hguee =,

7.5 Active Unification and Resumption

It a rlanse is selected. the body part of that clause is executed. Execution of the hody part includes
two kinds af aperations. actiee wnification and bedy goal fork. Figure 9 shows the rypical compiled

code for the aetive nuilication in sueh o elapse ase
e | N = e ] L

The structures for active unifications or the argnments for body goals are prepared by argument
preparation mstractions. pif VX Ngo wridfe XX g and s, Y YN, New variable vells or siructnres,



such as the rizht-hand side of the above unification, may be allocated from free lists of in free memory
area by these instractions. Unlike the original WA M. structure elements should not be used directlv
as undefined variable cells, to avoid fragmentation. This is because the incremental garbage collection
by MRB may reclaim a structure body and its elements at a different timing. Thus, when a structure
element should be initiated as a new variable, the new variable cell is allocated separately from the
structnre body. and a poiuter o the cell is stored inside the body.

The last instruction in Azure 9, get_list_valueg, is a typical KI,1-H instruction for active unilication.
This instraction has one of four kinds of actions. selected by checking the data type. When 416 is
an nuinstantiated variable without suspended goals, Aj {a pointer to a cons cell made by the first
instruction in Figure 9) is assigned to the variable cell, Note that unbennd variables are located
in shared memory. [hus. the instantiation of unbound variables is done by lucking and uniocking
the variable cells [22]. Here, it is important to sharten the period of locking the unbound variable.
Therefore. the compiler generates the compiled code as shown in Figure 9, where the right-hand side
structure is created first. As a result. the unbound variable is locked only within the gt st valueg
inmstruction,

I Avis an uninstantiated variable with suspended goals, these suspended goals are resumed by
moving the goal-records linked from the variable 1o the ready-goal-stack again befure instantiating to
Aj. (See figure 3.3 When reply records are linked to that variable, the Fanswerovalue messages for
each reply record are sent to the cluster whick is waiting for the instantiated value,

Av may be an external reference, In this case, the Funify message is sent to the node which
exported the variable. The node which received the unify message performs active unification on the
helhalf of the sender processor.

When A:ds a pointer toa list cell. general nnification is performed. Otherwise. unification fails

anpd an sxcoption orcurs,

7.6 Goal Fork and Slit-checking

Several goal fork instructions are provided to push and pop a goal-record to and from a ready - goal-
stack. or 1o execule goal reductions repeatedly. As shown in Figure 3, a KL1 B instruction proveedg
pops up a goal record {a cnrrent goal} from the ready-goai-stack when the previous goal reduction did
not fork any bady goals. The KLI-B code corresponding to the goal predicate is executed. Assume
that there are two body goals in a K1 clause as:

p= fguard) | q.r.

The reduction of the left-most body goal. g. will follow just after the current goal reduction. while the
other goal{z). r. is pushed io the ready-goal-stack.

Other body goals are pushed by the rugueucgoulp instructions. When scheduling priority is
specified by the pragmas, the KL1 compiler generates a K1.1-B instruction, engquene_with_priovityy.
When the pragmas for luad distribution are specified in a KL1 program, KL1-B instructions en-
giteie_to processorg are used.  This instruction sends a message, Fthrow, to the specified cluster
imstead of enqueuing its own ready-goal stack.

The following events are incidental in KL1 execution: a garbage collection requirement {sec-
tion fi.2). an inter-processor communication request, and a goal fork with the highest priority {sec-
tion 3.3} These evenis are only detected by slit-checking in the executen. proceeds and suspendg
mstructions, e, the actions corresponding to these events are delayed until a certain goal reduction
finishes, even if the event occurred during a goal reduction. This is because garbage collection is
difficult to start during » goal rednction. In inter-processor communication or for a goal fork with
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liimhest priovity, the corresponding actions do nol have (o be performed immediately. so they may he
detaved until afrer the goal reduction finishes,

As deseribed in section 3.2, a foster-parent in a cluster holds the shoen status as well as information
about The computing resources assigned for the foster-parent. Belore voecute g, provecdy or suspendy
starts a soal redoetion, it checks the shaen status of the current goal. and the compuliog resonrees

lels in thal Toster-parent.

8 IPPIM Hardware Architecture

8.1 Targets ol the PIM Hardware Architecture

Onr performance target in the RED of PIM hardware architerture was to execute KLI programs
with more than 100 times the performance of conventional machines, To achieve this goal, we studied
new processing element architectures as well as new parallel architectures 1o connect more Lhau 100
processing elements, The target processing element performance is 200k 1o 500k RPSH sa that 10
1 20M RPS is expected to be the total performance [or practical applications.

Several pilol machines are now being developed for the PIM research for the final stage of the
FGOS project, The PIM/p is one of the PIM pilot machines, which is planned to have 128 processing
elements. The rest of this section focuses on the hardware architecture of the PIM /p.

8.2 T'he Pilot Machine: PIM/p

[ the parallel architecture design for the PIM/p, we aim to build a parallel processing architecture
where the locality in communication cost can easily he nsed from sofiware. We introdueed a hierar-
rhical structure. as shown in Figure 10. Eight processing elements (P'Fs) form a cluster with shared
memory. The PIM/p consists of 16 elusters connected by inter-chester network,

8.3 PIM/p Processing Element

A PIM/p processing element is implemented on a single board with ahout 20 static R AMs and sevioral
custom CMOS LSIs, a CPT, a network interface unit { NI}, cache controller units (CCUs), and a
floating point processor unit (FPU). as shewn in Figure 11. The hasic machine cvele target is 50

Whps: LI goal reduciaons puer second
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Figure 11: PIM/p Processing Element Coufiguration

nanoseronds,

The processing element includes vwo caches: an instruetion cache and a data cache, The contents
of both cache memories are identical. Thev are provided to enable the C1'U to fetch both data and
instructions every machine evele. The cache controller units (COT8) manage both the instroction
vache and the data cache. The cache address array 1= updated by both commands from the CPT and
d COITIL hllh.

The CPLU bas twao instruction streams: one from the instruction cache, called external instructions,
and the other from the internal instruction memory (1M, called internal instructions.  Ezternal
districtions are used to represent compiled codes of user programs. Internal instructions are stored in
thenternal instrociion memory (1M ) of each processor, in the sawe way as in the microprogrammable
processor.  Small programs in [IM can specify the complex actions of KL1-B instructions. Both
mstrucbions inclode kL1 support instructions as well as siple RISC-like instructions.  They are
invoked by external macro-call instructions. Hopefully, the CPTU will execute an instruction every 50

nanoseconds using a four-stage pipeline in most cases.

Slit-check and Interrupt

A hardware mechanism for slit-cheeking {(see section 761 is incorporated into the processing element of
PIM/p. A normal hardware interrupt causes automatic save of program status: however, slit-checking
does not. Fack processing element has a dedicated register, each bit of which can keep an individ-
ual event, The slit-checking mechanism has an additional one-hit flag to show whether any events
happened or pot, which can be tested by ope conditional branch insrruction. On general-purpose
computers, slit-checking might be implemented using normal interrupt mask/unmask operations and

a cumbersome interrupt handler, which would incur too great a cost for the kL1 system. By incorpo-

1N



Table 2 Haste CPT Comemands to the Cache
| rﬂ-PFI r:-lrrirh'n.l:’.r | r‘l'n'”r“"f_l.i. o o h . -
i Read | Ur:illml'}u ety regd

D Write | Cirdinary memory write,
L L - -
" Kead-lovalulate | When coche-to-cacle tpansfee ovenrs, the sonree cache block 1= invalidated.,

(dtherwise, same as Head.

i- BHead _Purge Adver CPU pewds, the cache Dlock is purged,
' . Tl shinred blocks w other caches are also purged.
U Direct ¥Write I cache misses al the block boundary, wriie data to the cache without fetehing
i Cfearn nwemory, CMDiorwise ordinars memary write.
I [1'||;i-:_.|'i-":“.1t. o [ Lok addeess. ihen LR 1a] readl, o
Wrate U ilack ! Megnory wene, fullowed by unlock. I
. Unlock Unloek addeess. i f

rating the hardware shit-checkine mechanisn . the processing element can avold frequent maskfunmask

L.II}‘.'I-.‘I”I.III'~ il illll-'l'l'lli}t II:lIH.”..JIL] inverhead,

Hegisters

The processing elomwent inclades 82 general-purpose registers with some dedicated registers. Each
general-purpose pegister has an 2-hin tag and 32bit data, The dedivated registers inelude » condition
code register for the resull of ALU execution and a slit-check register. ot Hags, such as the condition
code, are placed in the tag part of the dedicared registers, Therefore. these Hags can be tested by the
tag hranch Instructions,

A CPU has virteal registers, called Dndireet registers, in addition wo tie above registers. Through
the indirect registers, internal instreetions can eastly handle the operands of o macro-call instruction
rhat has just invoked the imernal program code, En other words, each indivect pegister corresponds Lo
the aperand position of the nsero call instroction. Tt can represent either the emediate value or the

conlents of a register specilied in the operand of the macro-call instraction.

5.4 Cache System

Processing elements within each cluster share one address space. Therefore the design of a local
coberent cache iz a kev iszue in increasing the efficiency of local exeention on each processing element,
and it epables high speed conuouuication withio a cluster. Althongh several coberent cache pratocols
have been proposed so far [1. 5. 3. 19, we designed a cache protocol for KLT parallel execution based
an the simalation results [10]. The simulation results have shown that kL1 programs require more
write accesses than conventional |;-1.||,g|_1.;-1;{1=:«'. Therefore, we chose a write-back prmucﬂ] which can
reduce common bus traffic more than & write-throngh protocol, When a cache block is npdated. the
consistency with other caches is kept by invalidating the shared cache blocks in orher caches. In
addition, we extended some cache functions {rom ordinary cache protocols using the characteristics of
the KL1 parailel execution. Table 2 shows the basic CP'U commands to the cache.

Cache Commands for KL1 Support

In parallel implementation of KL, some data structures can be found out when they are not accessihle.
A typical example is an explicit communication between processing elements. First, a sender processor
creates a message in its own cache, The message is sent to a receiver processor as a cache-to-cache dala
transfer. Although the message in the sender processor is useless after message transfer, it remains as

1=



shared cache blocks between both processors’ caches. Therefore, when the receiver processor makes a
message 11 Lhe same area. another cache will be invalidated. The CPU command, Head_ [nvalidate, is
provided to avoid invalidation caused by invalidating al cache-to-cache data transfer.

In normal write operations. felch-on-write is used. However, when data structures are created
i an anused memory area. it may not be necessary to fetch-on write. This is because the Mmemaory
contents have no meaning, and because the new data structure is not shared by other processors. The
Direct Winte comumand is jutroduced 1o avoid useless cache block fetch from shared memory. The
Read Purge command invalidates its own cache block just after the CPU reads the last cache block
word, so that the Direct. Write command can be used for already-used memory area that is already in
n=e,

Hardware Lock

Lock operations are essential for hnplementing KL in the shared memory multiprocessor.  This
is becanse exclusive memory access is required to instantiate variables in active unifications (see
section 7.5 or to link suspended goals to them (see section 7.2, Although lock conflicts seldom occur,
loek Tatency is high in KL1 execution. The simulation resuits in Matsumoto et al. (1987) show that
the Read_Lock frequency is about 7% for dala access, so a fightweight lock operation is requirod,

The PIM/p cache enables a lightweight lock and unlock nperation by using the cache block status.
lock address registers, and busy-wait locking scheme, When the CCU receives a Lock_Head command
fromy the CPU, the CCLU checks the corresponding address tag and status tag. If the address hits and
its statug is ercfusive, the address can be Jocked without using the common hus. The locked address
i= held inoa lock address register.

8.5 Hyper-Cube Network and Network Interface Unit

As discussed in sections 5 and 7, inter-cluster communication may be required during a KL1-B uni-
fication instraction on each processing element. That communication may include various kinds of
messages. We designed the inter-cluster network aiming at enough performance for both short and
long message packets. and inter-cluster processing where it is required. The hyper-cube structure [4]
has been introduced to connect clusters in PIM/p. placing each cluster on the hyper-cube node. This
iv hecause the hyper-cube structure enables us to shorten the inter-cluster distance with reasonable
hardware costs. In addition. the network router can be implemented distributedly on each cluster.

The network was designed aiming al an inter-cluster communication throughput of 40 M byte /s,
We rhose the following configuration considering the limitations in hardware implementations. A
network router was designed for a six-dimensional hyper-cube connection. While four dimensions are
enough to connect 128 processing elements {16 clusters). the router switch will be available for future
extensioms. Each comununication path has a throughput of 20 M hyte /s one byte every 50 nanoseconds,
iw both dircetions. Te obtain 403 byte/s throughput. the inter-cluster network has been doubled.
Therefore, two network routers are provided for each cluster. one for four processing elements.

Fach processing element has a network interface unit (NI} as a co-processor of the CPU. The
NIU has two packer buffers. one for each direction, whose contents can be transferred to and from
CPL registers. A packet is sent to the other processing element from the NIT by the CPU requests.
The buffer status in a NIU. full or empty, can be reported to the CPU by the slit-checking mechanism.
Therefore, these message handling operations can be done on each processing element.



8.6 PIM/p Instructions

The instruction set for the PIM/p processing element has been designed for the efficient implementa-
tion of K11, The design started by analyzing the behavior of the KL1-I instructions [26],

Tagged architecture

As dliscussed in section 7. run-time data lype checks are essential for KL1-B instructions, so we
introduced the tagged-architecture in the CPU design. The tag parl in a KLL variable cell can be
inplicitly loaded and stored with the data part by using basic memory access instructions. In addition,
4 new tag can be given in memory access ipstructions and ALT cowpntation. The memory access
wiving a new tag is a primitive operation in the KL1-B argoment preparation instructions of KL1-11.

The run time test of the tvpe tag is a primitive operation to implement kLI Most unification
inehades & |:|||,j]|,'|-l.-'.'ul'. branch for 1he gnal argnment Type. Some i'l'0|ﬂg nachines, such as the PSI “q}
have a hardware-supported multi-way branch function. However, the processing element of PIM/p
dews 1ot have such hardware, This is because (1) 10 i difficult 1o adopt a hardware-supported multi-
way braneh (o a pipeline provessor, and {2} branches taken in ran-time are biased. Even a normal (wo-
way branch can he useful enough by selecling au appropriate brauch condition. Therefore, the PIM/p
instruction =et has only two-way branch instruetions, but various tag ronditions can be specified in
then. A branch condition can be specified as a logical operation hetwesn two register tags, or betwesan
a register tag amd an inmediate tag. Tnoaddition, some branch instructions have an immediate tag

wiask in their operands,

Conditional maero-eall instruction

| he mext issue 15 how to implement polymorphic functions in KL1 B, because most KL1-B instrue-
tions include very different actions that follow the run-time data ivpe check. The RISC like instruction
sot can be execnted nsing short pipeline eveles, and in hardware design cost is relatively low. How
ever. considering the naive expansion of KL1-B using RISC-like instructions, the static code sige of
compiled programs will be very large. This problew can be solved by incorporating the features
of microprogrammable processors such as PST [18]. Therefore, we designed RISC-like imstructions
with conditional macro-call instructions for the FIM;’p pID(‘ESﬁIIII?, elements, so Lhat the ad\'a.utagﬁs-
of both in the RISC-like instructions and microprogrammable processors are available in the KL1-B
implementation on the PIM/p.

Marro-call instructions were iniroduced 1o iniplement high-level KLI-B instructions. A macro-call
instruction can e regarded az a lightweight subroutine call or as a high-level instruction realized by the
viicsaprogram. A macro-call instruction invoke a small program in the internal instruction memory
(TEMY depending on given conditions, which has the fore

MCALL if cond. address with reg, reg /immed,. .. .. rag, /immed,
where:

address Entry address of the internal instroction memory
reg,/immad, : register number or constant for the macro-call argament
cond candition for the macro-hody invocalion.

A tag condition. cond. can be specified as a logical operation hetween a register tag, Tegy and a register

lag. reg;. or an inunediate tag, immed.
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MHB GC support

The principal operations sich as incremental garbage collection by MRB and dereferencing are sup-
ported by dedicated RISC-like justructions. In MRB incremental garbage collection, each variable cell
or structure is allocated from a free list, When reclaimed, its memory area is linked to a free list. To
support these free list operations. the PUSH and POP instructions are used. PUSH can link & variable
cell or a structure to the free list, and POP can allocate it from the free list, in one machine cycie.
The MRB of each pointer and data object must he maintained correctly in all unification instruc-
tioms. Here, the most primitive operation is MRB maintenance during dereferencing. In dereferencing.
the MEH of the dereferenced result should be off i and only if MEBs of both the pointer and the
vell are afft I this case. the indireet word cell can be reclaimed immediately because there are no
ather reference paths to it. 1wo dedicated instructions, MRBorflead and DEREF, support this operation.
MiBorRead accumulates both the address register’s MRB and the destination register’s MRH, then
sots the result in the destination register. DEREF performs MHEH aceumulation along with the POP

uperalion.,

Special cache access

Asostaeed Tnosection 54, the coberent cache of the processing element has extended Tunctions for KL1
paralie] execution, The instruction set includes memory acvess instructions corresponding to each
cacle function: DirectWrite, feadFurge. ReadInvalidate. and ExclusiveRead. Fxrlusive memory
access instructions, LockRead and WriteUnleck. are also provided. Incorrect use of these instructions
mav cause fatal errors. Therelore, the use of these instructions will be limited to internal insiructions.

The processing element performance estimated from the compiled code is over 600 K RPS for the
append program. Note that the estimated performance includes the incremental garbage collection
cost nsing MR

9 SUMMARY

This paper autlized the parallel inference machine architecture, KLI parallel implementation issues.
suelias distributed resource management, goal scheduling and distribution, memory management, and
distributed unification, were discussed, based on the logic programming framework. These have been
nnplemented on the parallel software workbench, the Muiti-PSI svstems. This paper described the
desigo of the PIM pilot mackine hardware, including its processing element instruction set. The LSls

are pow being implementsd,
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