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Abstract

Plie Sewigronp Problem is the caleulation of the miembers of a SEMIEERMID Biven an
Hutial st ol senerator wembers. The problen was solved i OR-parallel Prolie by Disz
etaland e PGHC by Telivoshi, ver these solutions have poor performanes Tor reasons
detailed e this paper. Oplimizations of the progras are disenssed apl il procesaar
pretformance measurenents are given, |hese eptimizations: gravulamty collecting {in
Profoe and removal of sy nelironization points (in FGHO )L are in general useful techniques

for speeding op any parallel logic program.

1 Introduction

meveral progrannning technigues have heen proposed for paralle] logic progranining languages.
bt tew Bave bheen analvzed on veal multiprocessors. When sucl, empirical tests are conducted,
I often the case that the moltiphicative copstant 1 the complexity order s significant in
distingwizline pooed programs from bad programs. 1t s alse the case 1hat ineliciencies [ oa
prograin give the deception of lots ol easily exploitable parallelism, This paper analvies lwo
thporiant prograriming teclinigues that can be put to use in practice. We present performance
vcasurenients o parallel Jogie programming languages (OR-Paralle) Molog and FOGHCY

rutning on shared memory oliprocessors {Sequent Svinmelry) to justify our claims. The
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Lol discussed here have Decen used in programiming soveral problems: however, hiere we
se a single unifving example of the Senngroup Problem[2]. a problem will a single salution.

e tw fechmiogues stressed heve are granularity colleetion in OR-parallel svstems and
renoval ol svnchronization points i AND-parallel systems. Although parallel Prolog 15 meant
o D parallel execntion from the user, granariny collection helps explon parallelism i
prowrams where paralielsn is hard to et at. Granalarity collection s the reatrangesnent
of code o allow the officient placement of a branch-pont, e.g.. via & parallel member/2 call.
Without this rearrangement. the overheads of spawning OR processes from multiple branch
points can outweight the henelit. Removal of svneliromzation pomts is the recoding of a problein
o allon streams to fow freely withool cansing suspensions. This mereases the throughput of
s processes comprising Uhe progrant, thus increasing the speed and specdup.

[ addition to these techniques. the Semigroup Problem also raises the issue of appropriate
data structures. We introaduce a hinary tree lilter in FGHC that supports parallel accesses,
This data structure is analogous in forus and performanee to the 2-3 tree used in the Prolog
algorithims presented.

As with any engineering discipline, the technigques and performance measurcinents are sub-
jert 1o conntless caveats, Fiestly, the measarements presented here were taken on a Sequent
Semmmetry shared memory multiproeessor [5] running up to eight PEs {out of 12}, Secondly.
the OR-parallel system. Aurora [3]. and the committed-choice svstemn, KL1PS [4], are hath in

Lhe continual process of relinement.

2 Semigroup in Prolog

The Semizgronp Problem [2] is the calenlation of the members of a semigroup from an initial
ot of eenerators, The specitic problem solved in 2] uses fonr generators, each a 25-tuple of
clemments from the Helement Bradi semigroup B, They produce a semigroup of 71 elemsents.
A Jarger problem is discussed herel usiug fom i-tuple generators, producing a semigroup of
313 elements, Disz et al, [2] cite a speadnp ol 6.2 0n eight PLs (on Encore Multimax) for their
programt. 1 may hardly seem bke an improvement 1o report here a speedup of 3.6 for a new

version of Lhe same problem. on even higger data! However, Jet us start at the beginning...



The program in [2] does more computation than is uecessary to compuie the SENIEIroup:
essentiilly vach new semigroup member is nwltiplied by ol other members from both sides.
|r|1j_1'-l_:|:~'||i discoversd That each new SELIETON b rmener need u1||_1. | i |n|;||t.ip1jf_'{] h}' Lhe initial
generators (Hhe keencd) from one side, Thus the nnmber of semigroup mulliplications decreased
fron ViV = 1) to gV owhere g is the minnher of generators and N is the size of the generated
semnigreup. For the examnple measured here, N = 313, 50 that the nunbers of nultiplications in
the original and improved algorithms dilfer by a [actor of 78, Frperimentallv, on SICStus Prolog
VIS running on a SONY NEWS workstation, the original code ran in 17271 sec. compared Lo
the new algorithmn which rav in 24.3 sec. a factor of 710 Concentraling on the latter algorithm.
cleaning up the code a bit resulted in 20.7 see. At this point. adding a hash kev to improve the
performance of the 2-3 tree lookup reduced the tine to 18,1 sec. These changes in sequential
execution efficiency affect how efficientlv parallelism can be exploited

Semigroup has no non-determinate OR-parallelism. as in an all-solutions search probleni,
Here OR parallelism is exploited when fiuding the cross-product of two sets of tuples. Ly
Dverbeek's program, oue set contains the new additions to the semigroup, and the other set
comtains the current sctnigroup. In the new algorithm. the second set contains only the generator
tiples (i the specific case, four). Given this reduction in available parallelisni, the original

program did not optimaliy group the parallelism so that it conld be etheiently exploited.

2.1 Original Code

The oniginal code2] is given in Figure 1. The state of computation is state(Ses,Sub,Hbg).
where Sos is a list of candidate tuples {ready 10 be included in the semigroup. but as vel they
frave ot boey s (o generate further candidates ), Sub is the 2273 tree comtainiug the current
fpartialb semigroup tuples (including the candidates). and Hbg, the list of current senmgroup
tiaples {nof et including the candidates ). 1f the candidate list is enpty, then the current list of
senigrontp tuples is the complete semigroup, Otherwise, the state most be reduced into & new
state by caleulating all tuples generated by the cross-product of the candidates and the kernel.

Phe 2 3 tree is not strictiv necessary —the list Hbg could e used exclusively. However, the

2 3 tree decreases the lookup time when checking for duplicate tuples. In fact, we developed a



parallel member/2, paired/4.

polHBgy -
kornell(Ses),
extend _treal(Ses,pil,Sub),
gen_all{statetsas.Sub.[]},stntc{_._,ﬁbg},Sos}.

gen_all{state([],Sub,Hbg}, state( (], 5ub,Hog), ).
gen_allis, F, Kernel) :-

5 = statel(_1_7._,.7,

gen_onal(5, 51, Kernell,

gen 2ll(5l, ¥, Kernel}.

gen_one{state((HIT), Sub, Hbg), state(Sosi, Subl, [H|Hbgl), Kermel) :-
findall({Tuple, newtup(H, [H|Hbgl, Sub, Tuple), L},
proc_newl(L, Sub, Subl, T, Snsi%.
newtup(E,L, Sub New} -
member (E2,L),
parred(kE, B2, New, Sub) .

paired(El,E2,New,5ub) -
mult(E3, B2, Hew) .

Wt acc23(New,Sub).
pairad{El,EE,Heu,Sub] i-
mult(E2,E1,New).

4 aco?3(New,Subl.

proc_newi[],5ub,Sub, 5o, S0s8) .
pruc_newi [BIT] ,5ub,5ubl,Sos,8051) =
roo_newl T, 3ub, 5ubl, 505, 5052},
{add23(Sab2, H,Subl) ->
Sosl = [Hl5es2]

{5ubi = SubZ?, Bos1 - Sos2}).

Figure 12 Original Prolog Program for Seinigroup



Tlash 2 A veee” B speed things p even more. as s deseribed Gnoa later section.

The crosseproduct s calenlated with a £indall/3. Nondeterminate member/2 and paired/4
[eleclared parallel ) explost the pulependent Ol-parvallel compuiation of the cross prodoct of
H with [HlHbgl. acc23(X,T} checks for tuple X in 2-3 tree T, and fails if the tuple exists.
add23(T0, %, T1) m=erts tuple X into tree TO. giving a new tree TL or fails if the tuple exists.
Heter to Bratko ] for this code. The check with acc23/2 fillers away products that already
resice i the partially constructed semigroup. However, even if the product is not in the tree
at tlis staege, 10 does not allow us to msert it I moay be the case thal two or more identical
prodicts are computed concurrentlv, Thus we still need a fillering phase. proc_new/5 filters
all the new products for duplicates with add23/3. The previous filtering with acc23/2 is not
strictly necessary, given the filter here: however. add23/3 1= significantly more expensive. All

unigue trples are added 1o the tree at this stage.

2.2 Utilities

There are a few as vel undefined utilities needed for the Semigroup prograni: member/2,
kernel/1. and mult/3. member/2 is a nondeterminate memhber. which can be unrolled to in-
crease the available parallelism at a single branch point within Aurora [2]. The measurements
presented thronghoot this paper have member unrollod four times.

As for mult/3, Figure 20 there are hasically two choiees with wlieh tooamiplemnent the tuples:
stractures and lists, Within each. a hash kev can be caleulated from the the tnple elements. and
plivced as o first, special, element. This hash kes element will antomatieally help the 24 tree

code do fast lookups (note that oviginal program in Dise [2] does not incorporate s hash keyv ),

Fhe hash fnoetion we devised gives only five aliases for 313 tuples in the example analvaad.
The betrer cholce amone straeture and bst is dependent on the Prolog svstem. hat hotly are
close. We show the hist version heres Each Listois of length 41, where the lirst element is the

lrast |{P:‘.' and =nhsedquent elements are e |l|.'|J|{" areumerds, The POHC code for melt/3 i

s lar.

Py |



kernel{K) .-

K={1833472791,1,1,1,1,1,2,2,2,%,2,3,3,3,3,3,4,4,4,4.4,
£,5,5,5,6,3,3,3,3,3,6 5 ,5,5,5,4,4,4,4,4],
—5‘]00191.".0,‘],3.3,‘},5.1,2,3.4,5.1.2.3.&.5,1,2,3,4,5,
1,2,3,4,5,1,2,3,4,5,1,2,2,4,5,1,2,3,4,5],
1094198104 ,1,1,1,1,1,2,2,2,2,2,3,4,3,3,3,5,5,5,56,6,
4.4.4.4,4,2,2,2,2,2,4,4,4,4,4,3,3,3,3,3],
1154844758 1,7,3,5,4,1,2,3,6,4,1,2,3.6,4,1,2,3,56,4,
1,2,%,5,4,1,2,3,4,5,1,2,3,6,4,1,2,3,5,4]].
pulti[_ %3, E_1v], [Keyi2s]) :-
mule{®,¥,2s,0,0,Key ).
male{ {1, (1, [}, Key, I, A} := & is I+Key#*3d.
mult{[Xi%s], [¥lvs], [21Zs], Hey, I, A} :-
NewKoy 1s I+Key=3,
m{X, Y, Z}.
multiis, Y=, Zs, NewKey, I, &4).
m(2,1,1):=" m{3,1,11:-1. ml&,1,1):=1, m{5,1,10:-". m{1.1,10:=",
miz, 2,2 -0, mi{3,2,13:-1. ml4,2,1):-1. mlb,2,56) -1, mi1,2,1):-1,
m{2, 8, 13-, m{3,3,3):=1, mi4,3,4):-!. m(5,3,1):=!. m(1,3 1}:=1.
m{Z,2,4):-0. m{3, 4,13~ ml4,4,1):-. m(5,4,3):-", m{l1,4,1):-1.
m{2,5,1):-1. m{3 6 &8}:=" m(4 B, 2}:-', m{b, B, 1}:=', m{(1,5,1):—",

Figure 20 Kernel Tuples and Hash- Muoltiphication Procedure
2.3 Optimized Algorithm

lehivoshi's optimization is the fact that ouly the kernel generators need he multiplied, and
onlv in one direction.  This modification is shown in Figure 3, where paired/4 has been
[used with newtup/4. Now considering parallelism and speedup, we must work from this
eflicient algorithm. Unfortunately, in reducing the complexity of the algorithm, we removed
exploitable parallelisin from the progran. The wodified program slows down on multiple PEs

on Svmmetry! The major bottleneck is that the cross-product of new semigroup tuples and

gen_onelstate([H|T], Sub, Hbg), state{Sosl, Subl, [H|Hbgl), Kernell) :-
findall(Tuple, newtup(H, Kernel, Sub, Tupie}, L),
proc_nes(L, Sub, Subl, T, Sosi).

newtup(E.L,Sub New) :=
membar (E2,L),

mult(E,E2,Naw).
Y+ acc23(New,Sub).

Figure 3: Reduced Ovder Seonigronp Algorithm (Prolog)

fi



o I:Hhﬂ:l 1=
kernel(Sos),
extend_tree(Ses,nil,Sub),
loop{Scs, Sub, Sos, Hbg, Sos).

loop([], _, Ebg, Hbg, _} :-'.

loopiSos, Sub, Hbg, F, Kernel) :
findall{Tuple, newtup(Sce, Kernel, 5ub, Tuplel, LJ,
filter(L, Sub, KewSub, [J, NewScs, Hbg, NewHbgl,
loop(NewSos, NewSub, NevHbg, F. Kerpel).

newtup(L,K,5ub, New}
member {E1,L), ¥ mew candidates
member (£ K, % kKernel
malz(E2,EL Hew),
"+ acc23(5ub, Hewl.

filter({[}, Sub, Sub, Sosz, Sas, Hhg, Hbgl.

tilter({RIT], Sub, SubF, 5e¢s, Sc=F, Hbg, HbgF)} :-
(acd?3(Sob, H,5ub1) =>

Scel=[H]%0s],

Hogl=[H|Hbg]

Subi=Sub,

Soal=S5o0s8,

Hogi=Hbg),

#ilter(T, Subl, SubF, Soszi, SosF, Kbg!, HbgFl.

[

Fignre 4: HBig Granule OR-Parallel Semigroup Program

the kernel is proceeding by multiplving one new tuple at a time against the kernel, P'reviously
this same code attained speedups, on even smaller data hecanse member selected from the
entive semigroup. creating an efficient branch-point. To solve this problem, we must collect the
grasalarity of the computation into a focal point where a branch-point {with a high branching

factor) can be lulr,

2.4 Granularity Collecting

o the case of the Sengronp progrant, we wish to collect the candidate fst into a single granule
that woother member can =elect from. The reworked code (1gure 1) alleviates much of the
previons battleneck by doing the entive cross product within newtup/4 with the use of two
members. We have also done a bit of procedure fusing, renaming, and removal of superfluous
strnetures. This code achivves a speedup of 11 on eight Symmeley PEs on the 40-element tuple
problem. Speedug i still constrained by the small kernel sige of only four elements. Hecall that

Semigroup is nof an all-solutions search program where each OR-paralie]l branch is usually a



werrely sl ree. Instead. the member branch-points create only OR-parallel stabs Tor computing
proddicts.

I weneral we conclude that as one streamlines the sequential strocture of an algorithm,
e corresponding parvallelisi can heeome harder to exploin. This may require restructiring
of the program to colleer the granalavity ina more centralized spot. Thus in “antomaticaliy”

parallelizoed lingusges such as Prolog. the parallelization is not as automatic as one might hope,

3  Semigroup in FGHC

The FGHC vorsion of the Semigroup Problem published in [6] also has its problems. For this
program ranning on Sequent Syinetry en the KLIPS system [4]. spesdups of (1.7.3.0.4.3)
on {2181 Pls were measured. Hewe there are two problems: the program gets poor speedup
andd the program is slow. 6.3 5.1 times slower (for one and cight PEs respectively] than Ve
optimized Prolog program previously discussed. Yet both programs do the same amouni of

multiplications. e each new semigroup tuple is multiplied only by the kernel tuples.

3.1  Original Code

The hasic idea of the original program [6], Figure 5. is Lo create a pipeline of filters, onc
corresponding to each new tuple in the semigroup. Initially this pipelme has four tuples cor-
responding to the generators. Each tuple begins as a g/5b process — during this phase, it
pltiplies itselt by tuples it reccives as messages. This message stream holds the new semi-
aroup tuples. deliniited by two bookends: begin and end. When the new group ends, the g/8
process has done its job and changes into an £/3 filter process. Now it remains forever, simply
checking oncoming produet taples for a mateh (in which the oncoming tuple is discarded).
The progran complexity and poor speedup comes from the method vsed to collect products,
Faeli tuple is vepresented by its value in addition to a difference list holding the products formed
by mdtiplving it by the pipeline g/5 processes. All the new products are strung together Ty
connect/2. This serinlizes the compuration because it does not allow the new products to be

fillered as [ast as they are created.

o



go(ﬂut) s
kernel(Gens),
gen _giGens, Gin, Finm, Gout, Fout),
gen_gen{Gens, Gin, WGin},
connact (Gout, Finl,
ends(Feutr, _, _, BOin, Gens, Ouwt-[1).

gl lgen{X ¥, PO IGint], Fin, Gouwt, Fout, E)
mult(E, X, E¥j,
PO = [EXIP1],

Gout = [gen{X,P,P1}iGoutl],
gl{Gini, Fin, Goutl, Foutr, E}.
g{[begin|Gin1], Fin, Geut, Fout, E} -

Gout = [beginlGoutll,

glGinl, Fin, Goutl, Fout, E}.
gllend|Gin1], Fin, Gout, Fout, E} :-

Gout = [endlGinil,

f(Fin, Fout, E}.

f{[1, Fout, E) :- Fout = [J.
f{[El¥1in1], Fout, E} :=- f{Finl,Fout, E}.
£{[¥|Fini], Fout, E} = utherwise | Fouwt = [X|Foutil, f{Finl, Foutl, E).

gen_gll[X|Xxe), GO,FO,G.F} :-
ELGO FO,G1,F1, %),
gen_gl¥Xs, G1,F1,G,F).
gen_g([], G0,FO,6,F) :- G0=G, FO=F.

ends{[begin,end]_], _, Gin, OGin, _, 01-02) :- Gin=[], 0Gin=[1, 01=02.

ends{ [begin,X|Foutz], _, _, 0Gin, Gens, Out) :— ¥ %= end |
Een_ en{Gene , NGind, NGin),
EndE%fI|FBut?]1HGIDD.HGIH.UGin. Gens, Out).

ends{ [end|Fouri] , Gouwt, Gin, OGin, Gens, Out) :-
connect{Goeut, 0Gim),
ends(Foutl, _, ., Gin, Gens, Out).

ends{[¥|Feurl], Gout, Gin, DGin, Gens, 01-03) :- otherwise |
o1 = [xlozl,
glGout, Foutl, NewGout, NewFout, XJ,
ends{NewFout, WewGout, Gin, 0Gin, Gens, 0Z-03).

gen_gen{Gens, GO,G) :
G0 = [begin|Gi],
gen_genii(Gens, G1.G).

Een_geniiillisj, GO, G) -
G0 = [gen(X,P,P}|G1],
gen_genliXs, G1,G).

gen_genl{[], GO,G) :-
GO = fendig].

cunnectf[gen{,,PU,P}|G1], F) :- F=P0O, connect(Gl,P}.

connect( [beginiGi], F) ;- F=[beginlF1], connect(&1,FL).
connect( [end|G1], F) = F=[lendlG1].

Fignre 30 Original FGIIC Semigroup Program: Pipeline of Filters



gotluc) -
kernel{K},
append( [beginl¥], Tend (R, 5},
spawn(5,k,0ut.[]1).

spavn{ [begin end|_],50,T0,T1} - TO=TL, sn=[].
spawn{[be%in_l|ﬁs],RH,TDIT1} ;= & %= end |

50 = [beginl|sil,

spawn{[llxs],SIJTﬂ,Tl}-
spawnl [end|Xs] ,30,TO,T1} :-

50 = [end|51],

zpawn{Xs,51,TC,T1).

spawni[X|%s0] ,50,T0,T2) - othervise
kernel (K],
TO = [XITi],
50 = [_,_._._I817,
glK, K,500,

f{Xu0 281,10,
spawn(¥s1,51,T1,T2),

glll,_._2

gl[EIKs] B, [PIPs]]) :-
giks . E,Ps},
mult{K,E.F).

Figure 6: High-Throughput AND-Parallel FGHC Semigroup Program
3.2 Removing Synchronization Points

The hottlenccks in the original program are corrected in the program shown in Figure 6.
gen_gen/3 i= no longer necded  we pass the raw tuples directly down the stream. By is
suing the new products directly inte the tail of spawn/4’s input stream, we obviate the need
fur connect/2. Note also that the g/3 and £/3 processes are spawned together. avoiding un-
pecessany syuchronization. The strange binding of 50 is to skip four places in the candidate
streans for the four kernel products. This temoves any synchronization with the recursive call

4 SPawm.

3.3 Single Bookend Termination

We can simphife the optimized program noticing that only one hookend is really necessary
listead of checking lor begin followed immediately hy end, we use only end and a flag to
indicate il two ends fall back to-back. This modification (Figure 7) does not give ns any
speedupa, bul s pretiier

Iiv any case, the program still suffers from the handicap of a long pipeline of filters. This

n



golOut) -
kerneliK},
append (K, [end!R], 5],
spawn (3 R, 0ur, [J,_).

spawn( [end|Xs],50,T0,T1, sawelement }
So=[end|51],
gpaen{¥s,.51,T0 . Tl zawvend) .
spawn{ [end|Xs],50,70,T1,sawend) :- TO=T1, 50=[1.
othervise.
spawn{ [X!Xa0] 80 TO T2, ) -
kernel (K],
T0 = [XIT1],
8¢ = [_,_,.,.181],
giK, X 500,
f{XeD, Xs1,K),
spawn(Xs1,51,T1, T2, sawelement ) .

Figure 7: Single Bookend FGHC' Semigroup Program

pipehne requires a linear rumber of checks, whereas the 2-3 tree in Prolog requires only a log
nimleer of checks. This makes the speedup of the pipelined filter better than that of the 2-3
tree, bt the 23 tree is much faster. This observation is confirmed by the timings, where the
Prolog program’s advantage over the FGHC program on one PIL is a factor of 6.3 in speed,
but this decreases to only 5.1 ou eighl PEs. Ideally we would like a tree filter in the FGHC

program alac, as 1= deseribed in the next section.

3.4 Binary Hash Tree Filter

The tvee filter introduced below 1s an unbalanced binary tree containiug the tuples, UUnlike the
24 tree oo Pealog 1] parallelism can be exploited in the unbalanced tree filler. A candidate
Luple can enter the tree filter before the insertion of the previous tuple has been completed.
Measurements presented show this simple data structure gives over a factor of four improvement
uver the previons pipeline liler, We first modify “!]'E: defimition of a tuple slightlv. Here a tuple
15 K=T where K= the hash key and T is a list of elements,

Fhe nobalanced hinary hash tree code is shown in Figure 8. A pode, containing a buckel B
ol tuples and its hash kev X, ig comprised of one of Tour Lypes ol processes: leal (no children),

right-child omiyv, left-child only, and with hotl nght and left children. A node process responds

w four types of messages: [J-- kill vourself, m(Y,C,3)  check/insert tuple C with hash key Y,

N



% leafl node {node with no child nodes)

till, ,_).

timiy,c,sy 1T].%,
£ [m(Y, 0,250 IT].%. :
ti{[m(v,c,5) ITI,X,B) :
tl{iout(S0,3)(T] %, B} :
v{[end(30,5)IT],X,B}

l:ﬂh:!
T
[}

% node with right child
tr{(1,_,_.8% :- R = 0.
tr{[m(Y,2,5) |T],X,B R}
crim(y,c,5) 1T1.%
tr([m(y,C,5) [T],

wr([out(50,5)1T],
tr{lend(50,5)1T],

|
X, B
1B
L,B

% node with

% ==Y | insertBucket(® B, C,B1,C,5), ©(T X B1).
X <Y ] gen(s,S), tr(T,X,B,R}, t(K,Y,[C]).
¥ < & | geni(C,5), oL, ¥, [el), t1T,x,B,L).

send(B,50.5), (T, X,B}.

20=[end|5], t{T.I.EJ.
only
¥ ¥ | insertBucket(®,B,C,B1,C,5), tr(T, % Bi k).

<Y | tr(T,%x,B,R1}, R = [m(Y,C s}lnil

X

- ¥« X | geniC, 5} w(L,Y,[c1), tlrl{T.K.B LK.

- send(R,50,51), t‘.r{T X,B Rl-}, [eut(51, 5”“-1].
- so=[end (2], tr{T,1,8, R).

lett child only

£1{[I,_,..L} := L= [0.

t1{[m{¥,5,5) |T],X,B,L} :- X =:= ¥ | insertHucket(E, B,C,B1,C,5), t1(T,X,B1,L).
£1([m{y,c,%) IT],X,B,L) := X <7¥| ﬂn(C 5}y, tlr(T,%,8,L,R), tlR,Y, [C]}
tl(Dn(f.c.sj IT],%,B,L) :- ¥ <1l [H{T,C.S}ILIJ £1(T.X,B,L1).

t1( [out(S0,5)1T},%,B,L) :- L=[ous(S0, Si}lLi], t1{T,%,B,L1}, send{E, 81,5).
t1([end(50,5)1T] % ,B,L) :- S0=[end|S], t1(T,X,B,L).

% node with both left and right children

e1r(i], ._ LB} := L=1[,HR= .

tir{[m{¥,c,5) ITJ,X,B,L,R}) :- X =:= ¥ | insertBucket(8,B,C,B1,C, 5),t1r(T,¥ B1,L,R).
tlr([m{¥,c,5) |T],%,8,L,R) = ¥ < ¥ | tlr{T,X,B,L, Ri), B = Em{? ¢,5)1R1) .
e1rf{[mi¥,c,8 |T,%,B,L,R) :- ¥ <X | L= [m{¥,C s}kLll t1r{T.X, R, L1,R).
tLr{[uut(Sﬂ £)|T1,%,B,L,R) := L=[out{50,51)IL1], nlz(T L,B,L1,R1},

send(B,51,52), R={out(S2, s}|11]

tir([end(S0,5)IT],%X,B,L R} :- S0=[end|5], tir(T,X,8,L,R).
insartBucket{[],B,C.B1,E,5) := Bi=z[C|B], gan(E,5). % new element
insertBucket{[C|_],B,C Bi,_,Sﬂ-Sl} := R1=H, 50=51. % already in bucket
ingertBucket([_ IEs] ,0,B1,E,5} :- athtrr1a& | insertBucket{Cs B, B1,E,S).
send{[],50,51} :- S0=51.

send([TiT=],50,52) :- 50=[TIS1], send(Ts,S1,52).

iigure 8 Unbalanced Binary Hash Tree Filter



golbut) -
kernel(K]},
append (K, [end|R] , T},
t(T1,0, 110,
spawn(T,T1,sawelement A, Out).
spawn( [end|T],T1,savelement RO, Out)
T1=[end (RO,R1D1Ts1,
spawn{T,Ts,sawand K1, Qut).
epavn([end|_ ), T1 sawend, ,Out) :- Ti=[out(out,[]}].
spawn{ [£-¥1T1,T1,_,RQ,0ut} -
Ti=[m(X,¥ RO-R1) [T,
spawn{T,Ts,sauelunent,HIJnut}.
geni{i, 30-51} - kernel(K}, gl¥,X,50,51).
gl0d,_.50,51) - 50=51.
gl[KIHs]) , E,8,T) :-
S=[F|Ps],
g(Ks,E,Ps,T),
mult(K, E,P).

Eult(_-%,Y,0ut) :- Out=Key-k, mult{X,¥,R,0,Key,0).

Figure 4 Binary Tree Filter FGHC Semigroup Program

out{50,5) - —output vour value, end(50,5)- -pass bookend throngh.

To check/insert the new tuple. the hash key is used to route the message to the appropriate
node in the tree. Nate that general unilication of the entire tuple is avoided until the final
Lucket check in insertBucket. If that tuple already exists. the stream 3 is shorted. If that
tuple is new. it is inserted inta the tree, and gen(C,S) is used to generate the cross product
with the kernel, These product tuples are sent down the 5 stream.

Civen Lhe tree code. the new semigroup program (Figure 9) is even simpler than the previons
pipeline program. Again we use a single hookend termination miethod. In this case, spawn no
fonger spawns anvthing, but simply checks {or termination. Spawning generators and filters is
replaced by sending the tuples as m/3 messages into the tree. The crux is the stream argument
of the check /insert message. RO-R1 in the last clause of spawn. Similar to the original program,

we issue the new products, via RO-RL. into the tail of spawn’s own input stream.
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Table 1: Sentgronp Execution on Symmetry: Seconds [ Speedup

4 Discussion

Parallel solutions to the Sermigroup Prablem posed by Disz el al. [2] are discussed in this paper.
It s shown how the original solutions given by [2. 6] are incfficient in algorithin and in paral-
lelism, Tmiprovemnents to the programs are given here, as a sequence of stepwise refinements,
witl easurenients to indicate the utility of the optimizations. In these changes, we believe
ihe clarity of the programs actnally ine reased.

A snnary of the Svnmetry fimings 15 given in Table 1. All programs calculate the 313
member semigroup giver by the generators i|||. Figure 2. All the prograins use lists to represent
tuples.  Lor Prolog, we fiave given only the final progran (Figure 1) timings because the
original prograin cannol run (for the large problent size] on Aurora Lo memory limitations and
Ui intermediate program {withont grapularity collection) has slowdown. For FGHC however,

ithe optimizations aflord a continuous range of performance improvement. Hash keys give a

b



spenilups ol 0% Renmoval ol svnchronization poinis gives a speedup of 309 ou eight PEs.
Maost stenihicant v, the tree hilier gives a speedup of 17

e prograniniing technigues of grannlarity collect ion and svnchronization point renwval are
eeneral tools et prove usefil in an miperfect world where Tinear speedups cannot be produced
antonatieall by start compilers and schedulers, Refer to Tickl7] for further examples of
parallel logic progranming technigues and their performance analvses.

A general conclision of this paper s that parallel logic programning bas not vet. achieved
the goal of declarativity wherein parallelism can antomatically be uncovered from an etticient
sorpuential algorithm fin a language =uch as Profog). o addition. although dependent stream-
AND paraliclism is very powerful because stuall-grain parallelisim 15 exploited, care must be
Vaken to avoid svichronizations and hottlenecks. We uree those who are designing parallel
crelitectures to take an Lonest ook at the benelmarks they are psing or the programming
paradizis they are professing, We hive seen many cases of published analyses o parallel pro
arains with grosshy neffieent algorithms. wappropriate data structures. scheduler-dependent

ternination. and other problems.
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