ICOT Technical Report: TR-469

TR-469

Tracing Garbage Collection for KL1
on ihe Multi-PST/ V2 System

by
N. Miyauchi, Y. Kawada (Mitsubishi)
& K. Nakapma

Maurch, 1989

1989, 1COT

Mita Kokusai Bidg. 21T (03) 456-3181—-5
Il :D I 4-28 Mita 1-Chome Telex IOUT)32964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Tracing Garbage Collection for KL1 on the

Multi-PSI/V2 System

Nobuhito Mivauchif Yasuharu Kawadatf Katsuto Nakajimal

fMitsubishi Electric Corp. T{SET Corp. iICOT Research Center

Abstract

This paper describes the implementation and evaluation of tracing garbage col-
lection for KL1 on the Multi-PSI/V2. It is important for committed choice lan-
guage systems to implement effective memory management mechanisms, because
the memory consumption speed iz quite high. The incremental garbage collector
by Multiple Relerence Bit (MRB) reclaims single-referenced data in order to keep
locality and avoid frequent tracing garbage collection on the Multi-PSI/V2, but
cannot collect multiple-referenced garbages. Thus, the tracing garbage collector
is indispensable to collect multiple-referenced garbages, The MEB information is
maintained by counting reference paths in the tracing garbage collection, so the
incremental garbage collector can collect all of single-referenced garbages after that.
We evaluated the performance of the tracing garbage collection and the statistics
of memory consumption on the Multi-PSI/V2, and confirmed that all of processors

can work away without the disturbance of the tracing garbage collection.

1 Introduction

The Multi-PSI/V2 was developed as a pilot model of a parallel infercnce machine in
the Japanese fifth generation computer systems (FGCS) project. The parallel language
programming system to execnte KL1 is implemmented on it. We are now evaluating the
performance of the KL1 system and making research on the parallel programming systems,

operating systems, and algorithms.

The Multi-PS1/V2 is a non-shared memory multi-processor constructed from up to (4
processors connected by a message passing network. Various application programs and

the parallel inference machine operating system, PIMOS, has been developed on it.

As the memory cells are rapidly consumed in the execution of commilled choice lan-
guages such as KL1, a naive implementation would cause serious performance degrada-
tion by the less locality of the memory references and frequent invocations of the tracing
garbage collector. To avoid the performance degradation, the Multi-PSI/V2 has currently
{hree types of the garbage collector: an incremental intra-PE garbage collector by Multi-
ple Reference Bit (MRB) [2, 7], a tracing intra-PE garbage collector, and an incremental
inter-PE garbage collector [5]. The incremental garbage collector by MRB can collect
many garbages referenced by only one pointer. However, it cannot collect them if they
are once referenced by two or more pointers. Therefore, the implcmcni;ation of the trac-
ing garbage collection is indispensable to collect all garbages. We have implemented a
tracing garbage collector, using the copying algorithm, which also maintains the MRB
in tracing memory. This technique considerably increases the chances to incrementally

collect garbages.

This paper reviews the incremental garbage collection by MRB in section 2, and
describes the algorithm of the tracing garbage collection in section 3, its implementation
on the Multi-PSI/V2 in section 4, and the evaluation of the performance of the tracing

garbage collection in section 5.

2 Incremental Garbage Collection by MRB

In the execution of a committed choice language such as KT.1 which has no hacktracking
[eature, memory consumption ratio is pretty high as the result of list cells being consumed
for process commmunication by streams. As memory cells are consumed rapidly, tracing
garbage collection must be executed much frequently, and the performance shall go down
seriously. On the other hand, the statistics of KL1 programs show that most of the data

are single-referenced.

S0, an incremental garbage collection mechanism for single-referenced garbages is in-
troduced, in order to keep the locality of the memory reference and decrease the frequency
of the tracing garbage collection. In this mechamsm, the MRB, one additional bit for a
pointer, is used to indicate whether the object must be referenced by only one pointer
{of-MRB) or may be referenced by multiple pointers (on-MRB), as shown in Figure 1

and 2 [2].

A single referenced object become the garbage and is collected, when the path to it is
consumed by the dereference, unification, and so on. The memory cell for the collected

object is chained to a free list for the reclamation.

Special instructions are introduced lo collect garbages and maintain the MRB. KL1

REF UNDF REF UNDF

REF
REF O— REF
11 U2
REF UNDF
REF 9 : on-MRB
REF O i off MRD
U3

Figure |: MRB of References to an Lininstantiated Variable

compiler generates instruction codes by analyzing reference information and timing of

collecting garbages.

3 Method of Tracing Garbage Collection

3.1 Necessity of Tracing Garbage Collection

Once MRB of a painter is turned on to indicate multiple referenced (on-MAB), the MRB
cannot be turned off even if the pointers decrease and their object becomes to be referenced

by the single pointer.

It is the reason that the increment and decrement of reference paths cannot be managed
by 1 bit reference information. Consequently the tracing garbage collector must collect
garbages which have ever been multiple-referenced.

4

REF O~ - @) REF @
REF
REF
I1 12
REF ® REF o
REF REF
REF REF
[3 14

Figure 2: MRXB of References ta an Instantiated Variable

Moreover, the tracing garbage collection is indispensable to reclaim circular structures
which cannet be collected by any reference counting, and to resolve the fragmentation of

the free lists.

3.2 Copying Algorithm

Copying algorithm adopted in our garbage collector is faster than marking and compacting
algorithm. That is, it sweeps only active data, while marking and compacting algorithm
sweeps whole memory area. This advantage should overcome the drawback of the avail-
able memory size for switching of accessible memory area, a half of the actual memory,

especially in the systems which have large scale main memory, such as the Multi-PSI/V2.

In this algorithm, data cells are allocated to a half of the heap area, the active heap,

until it is used up and the tracing garbage collector are invoked. The tracing garbage

collector only traces active data from marking roots, and copies them to another half of

the heap area, which will be the next active heap.

Generally one bit of a memory cell is used as a GO bit to indicate whether it has been

already copicd or not.

3.3 Dereference and Maintenance of MRB in Copying

A naive garbage collector will copy all active cells, including invisible pointers, without any
modification. In a committed choice language svstem, overwriting of the dereference result
is allowed for the garbage collector. That is, it reduces the size of active cells by eliminating
intermediate invisible painters and the cost of copying their cells. Moreover, the reduction
of the reference chain length should improve the performance of the dereference. Almost

of reference pointer cells can be collected by dereference of tracing garbage collection.

As to the maintenance of MRB, if a pointer with en-MIH is found in the reference
chain, a naive method will turn on the MRB of the root of the chain to concern with
possibility of multiple-reference. Although this methad is simple, it will turned on the
MRB of the single-reference pointers whose objects once were referenced by multiple

pointers,

In our tracing garbage collector, the MRB of those peinters are turned off by the
following method. When an object is found for the first time, it and its pointer are copied
to the new area, and the MRB of the pointer is cleared, regardless of the MRB of the
pointers in the reference chain. So, if there are not other pointers referencing the object,

the MR of the pointer is off indicating that the object is referenced by the single pointer.

0ld Active Heap New Active Heap

REF REF \

STRUCT STRUCT \ -

Figure 3: Maintenance of Pointers on Normal Copying GC

The MRBs of those pointers are turned off by the following method. When an un-
marked object is found in the old active heap as the result of dereference, the object and
a pointer to it are copied to the new active heap., The MRB of the pointer is made off,
regardless of the MR s of Lthe pointers in the reference chain in the old heap. 5o, if there
are not other pointers to the object, the MRB of the pointer is off- MEB to indicate that

the pointer references to the object.

Il there are other pointers, that is, marking process finds the object again, the MRB
of all the pointers including the first one should be turned on. In order to turn on the
MRB of the first pointer, the ohject in the old area is replaced with the pointer to the
first pointer in the new area, as shown in Figure 4, instead of the peinter to the object in

the conventional method as shown in Figure 3.

The MRB of each type cells are maintained as follows.

Old Active Heap New Active Heap

REF - = REF .

—
STRUCT . ~ STRUCT
|

Figure 4: Maintenance of Pointers on MRB Maintenance Copying GC

Pointers to Atomic Cells The pointers to atomic data cells, such as atoms and inte-
gers, are removed, because those data are directly written in the location of the pointer

in new active heap. In consequence, maintenance for their MRB is not required.

Pointers to Structure Data Cells The MRBs of pointers to structure data cells are
turned ofl in case of single-reference and turned on in case of multiple-reference according
to the above method. The invisible pointers to the pointer cells are removed as those to

atomic dala.

Pointers to Uninstantiated Data Cells As shown in Iigure 1. the MRB of the
pointers to unbound variables are turned off in the case of single- and double-reference,
and turned on in the case of multiple-reference more than two. Note that it is allowed to

turn off one pointer’s MRB in latler case [2].

Old Active Heap New Active Heap

STRUCT . @

l STRUCT - ® O = STR (O *
STRUCT » ® @ - STR @ >
STRUCT S5TR @
© : unmarked
® O . visited once
OF | + visited more once

Figure 53: MRB Maintenance of Pointers to Structure Data Cells

Thus, the first and second pointers are copied as off-MRB pointers, and the MRB of

the first pointer is turned on when the third pointer is copied.

To identify the four different states, unmarked, marked once, twice and more than

twice, the GC bits and MRB of the object in old area are used.

4 Implementation of Tracing Garbage Collection on

the Multi-PSI/V2

In the nnplementation on the Multi-PS1/V2, active goals are chained to a list, called goal
stack. Thus, the roots of the marking are the arguments of the goals in the goal stack.
There are various data types, other than deseribed above, such as suspended goals and
variables which hook them, special data for a constant timne merger, pointers to data in

other processors, and instruction codes.

Export and import data tables are implemented for the inter-PE garbage collection [3].
Each entry of the export table, corresponding the data referenced by olher processors,
is one of the root of the marking. Fach entry of the import table, corresponding the
reference to the other processor, is used to request counting down the reference count,
when it becomes the garbage by the intra-PE garbage collector. The count down request
will remove the export table entry when the reference count becomes zera, and the data

corresponding to the entry may be collected by the intra-T'F. garbage collector.

There are several [ree lists according to the size of cells. When a new data is created
and the corresponding free list is empty, the list is extended by consuming the heap area.
If the size of the extended list is too small because of the short of the available heap area,

10

[4]

0Old Active Heap

New Active Heap

UNDF

UNDF

OX

s visited more once

i

REF ~ UNDF ©
REF +| UNDF @ O} REF
REF ~ UNDF ® .—' — REF
REF REF
REF _~— UNDF @ @ |——{ REF
REF |— REF
©
«— unmarked
REF ' o, visited once REF

UNDF]

Figure 6: MRB Maintenance of Pointers to Undefined Data Cells

11

Team

oo) N T4
JU T/ T Y

: // // | .// A
/ /

1/
A

% 100 200 300 400 500

Execution Times (sec.)

\
NN
T

Figure7 (a) : History of the Heap Consumption (Pentomino)

the garbage collector is invoked.,

5 Evaluation on the Multi-PSI/V2

We evaluated consumption speed by measuring the interval time of the invocation of the
tracing garbage collector, the amount of active data after the garbage collection, and the
cxecution time of the garbage collector on the 4-processor Multi-PST/V2. The statistics
of four processors are shown in Figure 7. Initially, the Code data are storaged in the

processor whose number is zero,

We used the following five benchmark programs, one is simple and others are consid-

erably large, for the evaluation. They are execuled under the control of the PIMOS.

12

Queens :1t a simple benchmark which computes all solutions to the 13-queens prob-
lem. The evaluation on the sequential KL1 emulator shows that the most of active data
cells are invisible pointer cells. The memory consumption ratio of all the non-idle proces-

s0rs 15 constant,

Pentomino : It computes all solutions to the 8 x 5 packing picce puzzle by exhaustive

search. The memory consnmption ratio of all the non-idle processors is constant.

Tsumego : It solves sub-problems of the Japanese board gamce, “Go”, similar to the
checkmate problems of the chess. The scheme of dynamical load balancing is implemented
by software and one processor is the manager of load balancing which was found to be
not always busy. One of difficult problems is solved three times continuously in Lhis

measurcrnent.

PAX : i is a natural language processing subsystem. It analyzes natural language
sentences and makes the parse tree. This program is based on the bottom-up parser
using the layered stream method. Forty same sentences each of which is composed of
85 words are parsed in this measurement. There are many active data in the execution.
Memory consumption ratio frequently changes because the circumstances of the execution

is complicated for matching various grammer.

Best Path:lt finds the minimum cost paths for all the network nodes on a network
with about ten thousand nodes. Each network branch has a non-negative cost. About
ten thousand nodes processes of the network are allocated as 4 nodes groups of squares
divided by 4 to 4 processors statically. The farther node area of cach processor from a

start point is, the longer total execution time of it is.

Main characteristics about the measurement are as follows: memory consumption

13

e T

&
(Mword) /
B

1 - / %

0 200 400 600 800 1000

Execution Times (sec.)

FigureT (b) : History of the Heap Consumption (Tsumego)

14

H

€

p O) vig =
(Mword) p
. /// P 1

4 i Vi /"f-‘
T

3 SO —

\
N
N

I

=

0 400 C o800 1200 1600 2000
Execution Times (sec.)

FigureT (c) : History of the Heap Consumption (PAX)
ratio is almost constant according to a program, especially a type of exhaustive search
programs like Queens and Pentomino; the more active data there are in heap area, the

longer the execution time of tracing garbage collection.

We measured memory consumption with the lapse of Liine Lo execute in case that the
maximuin size of heap area is smaller than the size of actnal heap area, too. The result

of Pentomino is given in Figure 8.

The tracing garbage collector doesn't reduce the performance of KL1 execution as
much as available memory is reduced, as illustrated by the data in Table 1. ‘GC’ means
the frequency of tracing garbage collection, and ‘Active’ means the average of active data

aver all tracing garbage collections. The overhead of tracing garbage collection is about

7
H
3
a
p 6
(Mword)
5
4_ I

s eyiVaa
TV YV

0 100 200 300 400 500
Execution Times (sec.)

Figures : History of the lleap Consumption (Pentomino; Heap:;)

1% ~ 2% in case of 4 processors with 12 Mword of heap memory. (Physical memory =

16 Mwaord)

We also measured the overhead by varying the number of processors which work, but
couldn’t discern the difference of various cases. This shows there are little overhead of
the procedure to maintain the information of external reference between processors in the

tracing garbage collection.

On the other hand, the overhead is estimated to be large in case of such an application

program that the memory consumption ratio is high like Pentomino and there are many

active data like PAX.

16

6 Conclusion and Future Work

As a result of this measurement we concluded that tracing garbage collector 1s not invoked
so frequently that total performance does not go down by it and that incremental garbage
collectar by MRB is very effective for Jower memory consumption ratio and locality. It
needs to evaluate the execution of more application programs and the effect of MRB

maintenance in the tracing garbage collection.

We must cvaluate the performance of memory management totally in comparison
with the multi-processor system for KL1 supported only the tracing garbage collector
without the incremental garbage collector by MRB. The incremental and tracing garbage
coliectors by MRB scheme is expuected to he more efficient to the performance of the
Parallel Tnference Machine (PIM]) systems as shared memory multi-processor systems,
which are being developed in the Japanese FGCS project j15].

A cknowledgments

We would like to thank Dr. Shunichi Uchida, chief of the 1COT fourth laboratory, and
the research members of the Multi-PST and PIM project for their valuable suggestions,

who have worked with us in designing and implementing the KL1 system on the Multi-

PSI/V2,

L7

Tablel: Tracing Garbage Collection Time Overhead 1

Programs Heap | PE | Run Time | GC | GC Time | Active | Overhead
[N[w{}['d] {::u?c:mlr]]) [Suecf_:_r_ndl [.\-Iwurd]

Queens 6.13 0 1104 | 4 11.3 | 0.234 1.02%

(1) 1 1095 | 3 12.4 | 0.00347 1.14%

2 1135 | 6 14.9 1 (.00345 1.31%

3 1154 51 12.5 | 0.0203 1.08%

3.07] 10=6 g 226 0.234 2.08%

(3) 1 1103 | 11 27.4 | 0.00352 2.48%

2 1200 | 12 20.9 1 0.003460 2 4959,

3 1115 | 11 27.4 1 0.00322 2.45%

Pentomino 6.13 i 11 B I 956 | 048G 1.90%

(1) 1 402 | 3 1028 | 0,139 2.09%

2 491 3 543 1 0.144 1.72%

3 493 1 3 9.52 1 0.140 1.93%

307 |0 528 | 7 | 2220397 1.20%

(1 518 | 6 18.5 | 0.176 3.57%

i 2 all 6 17.5 | 0174 3.43%

] 510 | 6 17.1 | 0.175 3.35%

Tsumego 6.13 0 T4h | 1 5.72 1145 0.77%

(1) 1 966 | 3 10.29 | 0.389 1.07T%

2 963 | 3 10.31 | 0.391 1.07%

3 963 | 3 10,33 | 394 1.07%

3.07] TEG | 4 25.6 | 1.78 3.26%

(3) 1 1008 | 6 18.8 | 0.275 1.86%

2 1008 ; 6 18.7 | (L264 1.86%

3 1008 | 6 18.7 | 0.267 1.86%

PAX 6.13 0 1923 | 2 29.6 | 3.25 1.54%

(1) 1 1935 | 2 30.6 | 3.23 1.58%

2 1935 | 2 304 | 3.23 1.57%

3 1935 | 2 27.7 | 2.74 1.43%

4.60 0 1976 | 5 717 1 3.44 3.63%

(%)] 1976 | 4 574 | 3.25 2.91%

2 1956 | A T5.6 | 3.19 3.86%

3 1976 | 3 41.85 | 3.04 2.12?{5

Best FPath 6.13 0 4631 0 - - -%

(1) 1 1154 | 2 23.9 | 2.29 2.07%

. 145 0 — —%

3 541 0 — —%

4.60 0 8021 1 7.23 11.20 0.90%

(2) 1 1495 | 3 2847 | 1.78 1.94%

2 2331 0 —_— —%

3 553 1 9321 1.52 1.69%

15

References

1]

a1
<]

[3]

(4]

[6]

[8]

[9]

K.AM. Ali and S. Haridi. Global Garbage Collection for Distributed Heap Storage

Systems. International Journal of Parallel Programming, 15(5):339-387, Oct. 1986

T. Chikavama and Y. Kimura. Multiple Reference Management in Flat GHC. In

Proceedings of the Fourth International Conference on Logic Programming, pages

276 203, 1987,

J. Cohen. Garbage Collection of Linked Data Structures. ACM Computing Surveys,

13(3):341-367, Sept. 1981.

L.P. Deutsch and D.C. Bobrow. An Eflicient, Incremental, Automatic Garbage Col-

lector. CACM, 19(9):522-526, Sept. 1976.

N. Ichiyoshi, K. Rokusawa, K. Nakajima and Y. Inamura. A New External Reference
Management and Distributed Unification for KL1. In Proceedings of the FGCS'SS,

pages 904 913, 1988, (Also appeared in TR 390, ICOT, 1988.)

Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set.

In Proceedings of the 1987 Symposium on Logic Proyramming, pages 468-477, 1987,

Y. Kimura, K. Nishida, N. Mivauchi, and T. Chikayama. Realtime GC by Multiple
Reference Bit in KL1. In Procesdings of the Data Flow Waorkshop 1987, pages 215~

222, Oct. 1987, (in Japanese).

E.Y. Shapiro. A subset of Concurrent Prolog and its Interpreter. TR 003, ICOT,

1983.

K. Ueda. Introduction to Guarded Horn Clauses. TR 209, ICOT, 1986.

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[NH.D. Warren. An Abstract P'rolog Instruction Set. Technical Note 309, Artificial

Intelligence Center, SRI, 1983.

D. I. Bevan. Distributed garbage collection using reference counting. In Proceedings

of Parallel Architectures and Languages Europe, pages 176-187, June 1987,

I". Watson and 1. Watson. An Eflicient Garbage Collection Scheme for Parallel Com-

puter Architecture. In Proceedings of Parallel Architectures and Languages Lurope,

pages 432-443, June 1987,

A. Goto, Y. Kimura, 'I'. Nakagawa, and T.Chikayama. Lazy Reference Counting — An
Incremental Garbage Collection Method for Parallel Inference Machines. In Proceed-
ings of the Fifth International Conference and Symposium on Logic Programming,

pages 1241-1256, 1988.

K. Nakajima. Efficient Garbage Collection for Al Languages. In Proceedings of the
IFIP WG 10.3 Working Conference on Parallel Processing, 1988, (Also appeared in

Technical Report TR-354, ICOT, 1988.)

A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto. Overview of the Parallel
Inference Machine Architecture (PIM). In Proceedings of the FGCS 88, pages 208-

229, 1988.

K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Rokusawa, and T. Chikayama. Distributed
Implementation of KL1 on the Multi-PSI/V2. To appeared in Proceedings of the

ICLP'89.

20

