ICOT Technical Report: TR-466

TER-466

Optimization Technigues Using the MRB
and Their Evaluation on the Multi-PS1/V2

by
Y. Inamura, N. Ichivoshi, K. Rokusawa
& K. Nakajima

April, 1989

1989, 1COT

Mita Kokusai Bidg. 21F (03) 456-3191~5
I(:D | 4-78 Mita 1-Chome Telex 1COT]32964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Optimization Techniques Using the MRB
and Their Evaluation on the Multi-PSI/V2

Yi Inamura Nobuyuki lehivoshi
ILaznalki Rokusawa Katsuto Nakajima

Tnstitute for New Generation Computer Technology

Abstract

The Multi-PS1/V2, & lovsely coupled multiprocessor running the parallel fogic pro-
gramming language KL1 {kernel language version 1), has been developed for conducting
parallel software research and lor testing varivus new implementation techuiqnes.

Frowm the antset of the design of the KL1 implementation on the machkine, avtention has
focused on the realization of efficient meuors management, which is one of the serious
probles of @ conumitted-choice language implementation. The new mulliple reference
nit (AR technique provides a way of performning increnental local gavhape collection
efficientlv, 1t turms out that the MEHB information can be wsed also Tor destroctive up
date of structure elements, speedup of the built-in constant Nme werger. and ethicient
inter prowessor data management, This paper describes these optinidzation Lechinigues,
Measirement resuits are also given, and Lhey coufirm the effectivencss of the optimiza-
Lacan .

1 Introduction

The Multi-PSI/A2 [7] s a looselv-coupled multiprocessor developed i the Japanese fifth
generation compnter svstenn { FGCR) project. The purpose of development was (1] to provide a
<vstem powerlul enoneh to run large-scale parallel logic prograns hefore the Parallel Inference
Machine (PIM} [4,. one of the rargets of the project. is available. and (2} fo test varions
wew implementation teehnigues for KL, The mitial implementation of the parallel mierence
machine operatmg svstem (PIMOS] 2] has been completed and some medinme-scale programs
are running, Performance mcasurements are also being condncted.

I designing the WL implememtation on the Multi-PSIA2 mneh attention has heen paid to
the memore managemen! scheme, Tlis is because the heap-hased cvecntion of KL consumes
memory auite rapidlve and i is expected that a naively nnplemented memory rwanagernent
seheme will become a limiting factor of the overall svstem throughpui.

The mnltiple relerence bit (MRB) scheme [1] provides a way to perforns incremental garbage
collection. 11 turns ont that the MRB information caun be nsed not only for incremental garbage
collection bt also [ur various other optimization technigues related to memory management..
This paper describes these optimization technigues, and gives the resalts of the perlormance
measarements, The results conliomed the effectiveness of the optimization technigues, and

praved Lthat the wide applicability of the MBB mechanisn.

2 The MRB Scheme

The MIB is ane-bit information attached to every reference pointer. The implementation
maintains the MRB so that if the MRB of the pointer is off, the pointer is guaranteed Lo be the
sole pointer to the data. When a pointer with the MRB off 1s consumed — i.e. the refcrenced
data is read and the pointer is no longer needed, or the pointer is simply discarded —, the
memory area acenpied by the data can be reclaimed because it becomes inaccessible from the
PRI L.

As for variables. one can have up to two pointers with the MRB off. Typically, a variable
ix shared by a producer process and a consumer process, and is instantiated to a conerete dala
via one of the pointers, and the variable cell together with the data will be reclaimed when the
data is read via the other poiuter,

It can be decided at compilation which pointers are consumed or duplicated in a reduction
using a given clause. The compiler generates instructions for reclaiming garbage data or in-
structions for turning the MRH of the pointer on. One of the merits of the MRB technigue is
that no extra memory accesses are needed except when the referenced data is garbage collected
v the scheme. This will be all the more important in a shared-memory multiprocessor like the
PIM. where memory access contentions should be kept as infrequent as possible.

It is known that. for a wide class of symbolic processing programs, the majority of data is
single-referenced. K L1 programs are no exception: we have fonnd 40 to 90 percent of garbage
data is incrementallv reclaimed by the MRB scheme in benchmark programs,

The reader is referred to [1] for details of the MRB scheme.

3 Optimization with MRB

3.1 Destructive Update of Structures

[logic programnming languages like K11, only variable data can be assigned a value, and data
inctantiated once can never be modified logically. Therefore, when structure data which is
almost the same as an existing structure except for a few elements is needed, 1t is necessary Lo
create o new structure by copying elements frown the old one to the new one. However, with the
MRB mechanism. which gives information about the existence of other pointers. a structure
can be reused by updating some eleinents destructively.

The following are examples in which a structure can be rensed when its MRB 1= off.

fool (N1 X2]) - teue | bar({Y1 V2],

Joo2{[XIIX2) - trur | bar([NEY 2 ..

I the first example. the cons cell is rensed {structue frame reuse): in the second example,
the cons coll and CAR of the list are reused (structire element reuse).

3.2 Inter-PE Data Management

An external veference, a reference wineh points 1o a dala object in another PE may be created
as a result of goal distribution. The goal sender PE crports the data abject and the goal
receiver PE amporis it. For local garhage collection, an external reference points to a data
object through two indirection records called an cmport tuble entry and an erport table calry,
which are never moved in local garbage collection [5]. The hashing mechanism was introduces
in exportation and importation. to avoud the nmltiple registration of one data object, which
may increase the number of inter-PL inessages,

(S8

merge([], InZ, Cut) :- true | Out = In2.
merge{Ini, [1, Out) :- true | Out = Inl.
merge{[X|Int], In2, Out} :- true | Qut
merge{Ini, [X1In2], Out) :- true | Dut

(X|0ut2], merger(Ini,In2,0ut2).
(XI0ut2], merger(Ini,In2,Out2).

i

Figure |: Dehnition of “merge/3"

Iimport aud expori tables with simpler structures, called white auport and export fables,
wore also introduced. and used for data export and import where the MRB is off [6]. The
original inporl or export table is called the black dmport or erport table, in contrast with the
new table. The hashing mechanisim is not necessary for the white export or import, because in
most cases, the sole pointer Lo the object is exported and there are no more internal pointers
to the ahject. The data object i never reeexported. The procedures of export and import arve
fairly siiplified by white export and import table.

3.3 Stream Merger

Stream communication hetween processes is i heavilv-used programming technigque in commited-
chotee langnages. When 2 process may receive messages from an unknown number of processes,
mmessage streanis of he sender processes st be merged into one stream to the receiving pro-
cess. This i a common situation i a object-onented style program. in which a reference to an
obiject [input streatn to ihe process representing the ohject] mav be T]llp]it‘.&tﬂd at any time.

A two-way stream merger can be defined i KL1 as shown Fignre |

e elements of two input streams are merged and sent to the output stream by this
process. However. there are two obvions disadvantages in such a realization of the stream

merge aperation:

o Suspension and vesumption of the “merge/3" process are necessary for each element of
the input streanmt, and these arve fairly expensive procedures;

¢ The cost ol merge operation increases in proportion to the mcrease in the number of the
UL Streanns.

One sophisticated solution to the problem was proposed, using a special structure to de-
sevibie predicates[s]. The solution was general and able to applied to the predicates other than
erpe, as long as they have no goard. We introdueed a sore specialized solution which is only
apphicable to the merge process.

I'his is done by preparmg special expressions for the variable for which a nerger process
s waiting (merser hooked variables MUV) and for the merger provess itsell (merger record:
MR The MHY points to the MR and the ME points to a variable cell which corresponds
o the antpait variable of the merger process. The MR also contains an integer value which
indicates the number of input streams to isell. This value is used to detect the termination of
a merger procvess [Figpure 2,

A unification hetween an MHV and list daita causes the instantiation of the output variable
with new lList data inmediatelv, thus eliminating the overleads associated with suspension in
the nser-defined merger (Figure 3).

The built-in wnerger can be further optimized. When the input cons cell is single-referenced,
it can be reused as the new outpul cons cell,

MY MH Merger Outpul

-— VAR !

MHV

Figure 2: Hepresentation of merger process

al

ons cell MHV MIt Merger Output
Y

unifv I'I

13}
{ "o ot MR New (ons cell
X {_LIST X
1!' —
New MHY
v = VAR
unity New Merger Ouiput

Figure 3: Unification between an MHY and hst data

merge([], Out) :- true | Out = [].
merge([AlIn],Out} :- true | Out = [AlNewOut], merge(I,NewDut).

merge([], In, Outy :- true | merge(In,Out).
nmergelln, 1. Out} :- true | merge(In,Out).
merge([AlI1],12, Out} := true | Out = [AlNewOut], merge(I1,I2,NewDut).
merge{Il, (A1I2],0ut} :- true | Out = [A|NewDut], merge(Il1,I2,NewDut).
merge([A|11],12, 3, Out) :- true |

Out = [A|NewQut], merge(I1,I12,I3,NewOut).
merge(T1, (al12],13, Out) :- true |

Out = [AlNewDut], merge(T1,12,13,NewOut).
merge(T1, 12, [4173],0ut) :- true |

Out = [A|NewOut], merge(I1,I2,13 NewOut).

merge({}, Out} :- true | Out = [].

merge ({X}, Jut) - true | merge(X,Out).
merge({X,¥}, Out) :- true | merge(X,Y,Out),.
merge{{X,Y,Z},0ut) :- true | merge(X,Y,Z,0ut).
merge({}, In, Qut) :- true | merge(In,Out).
mergelln, {1}, Out) = true | merge(In,QOut).
merge({X}, 1In, Out) :- true | merge(X,In,Out).
merge(In, {X}, Dut) :- true | merge(In,X, Out).
merge({X,¥},In, Out) :- true | merge(X,Y,In,Out).
merge(In, {X,Y},0ut} :- true | merge(In,X,Y,0ut).

FFigure 1 Logical definition of the stream merger

Another nportant requirement for the merge process is the dynamic increase of the number
ol ill]rlll streatms. With the WL definttion of the IEr e, it is realized |)I\' nesfed FUETEE PLOUESSes,
which neeis very expensive procedure. Our solution is to expand unification of the M1V from
the original defnition of merge (Figure 1. The nnification between an ATHY and vector data
b= acvepted, which = regarded as the addition of mput streams. When a vector = nnified to
an MHVL as many inpunt streams (MHVS) as the anty of the vertor are added to the merger
process and each element of the veetar is unified to each new input streaim.

B expanding the nmhication ke above, the merger process can he regarded logically as
a =l of an wmdmite number of clanges which have two to an infinite number of arguments as
showan i Figure 1L

For simplicity. only “merge /27 95 prepared as a built-in predicate. and merger processes
which have nodtiple inpat streams ave realized only by the nnification between an MHV and a

L T

I.
l 27
&
[+
&
il .

MEB = ON
T e
| il | J_,.-*/

[1iser | /
e
/____.f'
0.4 yd
A
e
.z"f.'/
L~ MEB = OFF
e
L= ‘ . - -
1] fiel 128 192 256

Arity of Vector [Kword)

Figure 5: Update cost of vector {modifying all elements)

4 Evaluation of Optimization

This section shows the results of performance measnrements of the optimization technigues
described in the previous section. For each item, we took the processing time for data with
MRB on and off. The former corresponds to the processing time without MRB optimization.
The tine difference represents the effectiveness of the particular optimization.

4.1 Structure Reuse
4.1.1 Vector Update

To ascertain the effect of the MRB. the modilication costs of vectors with several size were
measured. The measurement program modified all the elements of the given vector with the
MEE on or off for the comparizon, and the tine elapsed in the whole procedure was measnred.

As the mutable array scheme [3] was introduced to deal with the bad case in updating vector.
the maodification cost of one element s constant even if the vector’s MIRRB s on. Tlowever, i
Lecomnes obwvinis that the modification eost of a vecltor with MREB oo is about 2.0 Limes as
tuuech as that of a vectar with MREB off,

4.1.2 Effect in Small Bench-mark Programs

The etfect of the structure reuse was measured with several small bench-mark programs. such
as Appond. Quick-sorf, and Prime number generator. Fach program was compiled in thivee
wayvs and the execution speed ol each is measured. The three ways are:

I. 1I."l.1:.1];-{:||1 any st Pt LLEe pese
20 With structure [rame rense;
¥

d0 Winh structure element rense,

Table 1 shows measurement resuln,

Table 1: Performance improvernent with structure reuse

Noorense (WREPS) | Frame rense (KRPS) | Element reuse [KRPS)
Append Iy i 128 146
Qeort 5.9 : 108 113
j_ Primes BaM ; 9.8 1.2

RP5: reductions per second

The performance nproves by 10% to 30% with structure clement reuse in these small
bepeh-marks. This improvement is mainly bronght about by the decrease of the number of
nstrnelion steps when runaing these small bench-marks. However, structure reuse can also
reduce the Drequeney of memory aceess, and Chis may greatly allect the performance with
shared memory machines such as the parallel inference machime (PIM} [4].

4.2 Stream Merger

The cost of the built-in merge procedure is compared with the merger defined with KL1 (Figure
L1 to find out how the built in merger improves the performance.

Fignre 6 shows the cost of merging one element, with the input list’s MRE both on and
ufl.

The ditference between the KLI merger and the built-in merger with the MRB on can he
regarded as the effect of the built-in merger representation, which can he realized even in the
implementation without the MEB mechanism. The performance improved by four times with
Hhe introduction of the built-in merger.

The difference between the huili-in merger wath the MRB off and on is the effect of the
MEB. Execution with the MRB off is twice as fast as that with it on.

Although the performance improvement with the buili-in merger seems to be sufficient, we
are convineed that MRB mechanisim 15 necessarv, since merge aperation s used guite frequently
in K11 programs. and influences the overall svstem performance.

4.3 Comparison of Black and White Exportation

To ascertain 1he ellect of inroducing the white pxport amd import table, Lhe cost of poal
distribution and data transter were measured, using white exportation and black exportation
independentlv. '

4.3.1 Cost of Goal Distribution

The costs of goal distnbution with several arities were mieasnred. Three Kinds of arguments ace

thrown with the goal:

L. Variable with the MEER off;

2 Variable with the MED on:

=1

L KB : KL1 merger with MEB ou
a LW : KLL merger with MEB off
1 BT Tuilt-in merger with MEB ou
e B : Built-in merger with MRB off

a1

(see)

kH W BH Hi

Figure 6: Performance of the merge operation

3. Atomic data,

The first kind of argument is exported with a white export table entry. The second is
exported with a black export table entry. The third is exported as is. The time clapsed i one
goal reduction in each case 15 shown i hgure 7

 Assuming that the cost of exporting atoniic data is a constant overhead in the goal throw
operation, the cost of black exports is about three times as expensive as the cost of white
exports. However, as a loosely-coupled multiprocessor, the constant overhead in the goal throw
operation is very large. Thus, the difference between the white and black exportation is not
significant. in particular, when the arity of the thrown goal is little. As for the geal throw, i
can be said thal the white export table is an optimization for the large goal distribution.

4.3.2 Cost of Data Transfer

The data of an external reference is transferred by the inter PE messages read and ansver_value.
T'he costs of data transfer nsing this protocol are measured i terms of the white and Dblack
capurtation. The data transterred is lisis with several sizes. Inoom inplementation, enly one
cons cell is transferred at one time and the CTDR of the cons cell is represented by an external
reference if it is pointed to another cons cell, hecause of the on-demand copy strategy [6]. The
cost of one cons cell transfer 15 shown in Table 2.

Even in transierving ane cons ce

1. the white export reduces the conminication cost by 2004,
This is because the constant overhead of the read and answer_value i= much less than that of
the throw goal aperation. White export table is fairly effective U vase of data Lransier.

(n 4 -
t'.“ ¥ [2: Variable (MRB on)
| | o Variable (MRB off)
: o Atomic

pp———

ST
{II'J S _'

it a3 L 15 20
Arity of Goal

Figure 7: Elapsed time in one goal reduction

Tabde 2 Cost of one cons cell bransler

| White expori | Black export
” 240 pmec 300 psec

5 Conclusion

This paper described several optimization techniques using the MRB information. such as
wruetore reuse. buillein consiant-time strean merger, and white export. The effects of these
pptimization technigues were individually measured, and it was ascertained that these opti
wization techniques improved the respective performances by 10% 1o over 200%..

This proved that the MRB mechaunism not only makes incremental local garbage collection
possille but alsa enables speedups of various typical processing related to memory management.

Althongh the measurement results conh rmed the effectivencss of each piece of optimization,
the mpacts on the overall performance of the svstem should be evaluated by measuring the
frequencies of optinuzed operations. We are taking those measurements using realistic-size

prograius of varlous programmimg st vies,

A cknowledgments

We would like to thank the 100OT Director. Dr. K. Fucki. and the chief of the fourth research
laboratory, Dr. 5. Vehida. for giving us the opportunity to conduct ths research. We waiild
alser like to thank the researchers of [COT and the cooperating companies. who have worked
with us in designing. implementing. and evaluating the kLT system on the Multi-Pslfv2.

References

[1] T Chikevama and Y. himura, Multiple Reference Management in Flat GHC. In Proceed-
ings of the Fourth International Conference on Logic Prograniing, 1987,

2] 1, Chikavama, H. Sate and T. Miyazaki. Overview of (he Parallel Inference Machine
Operating Svstern (PIMOS). In Procecdings of the International Conference on Fifth
Clove vt Connpede e Systomes, [COT Tokyo, | HEE.

31 L. H. Liksson and M. Hayner. Incorporating mulable arrays into logic programnung. In
Frrower r'r.'ll;lr‘{,r.‘\ g_J" the Fourth Tutervational Conference an Logue .“.aﬂlqrm.':mf-ug, ['ps,ﬁa.la. [984,

(1] A, Goto. M. Sato. k. Nakajima, K. Taki and A. Malswmoto. Overview of the Paraliel
luference Machine Architecture [PIA). T Proceedings of the International Conference on
Fiftte Genevation Compater Systems, [COT. Tokvo. | YRS,

30 N dehiveshi. ke Roknsawa. I Nakajima and Y. Inamorva. A New Exterpal Reference
Management and [Hstriboted Unification for hL1. In Proceedings of He International
Confrenee on Fifth Goueralion Computee Sgstems, 1COT, Tokyo. 1988,

[6] K. Nakajitna, Y. Tnannra, N lehavoshi. ke Ruoknsawa, T. Chikavama. Distributed Lople-
mentation of KL on the Muli-PSI/V 2. Vo appear in Proceedings of the Sirth International
Conferenee o Logie Progoinmng. 114,

[7] K. Taki. The parallel software resca el and development tool: Multi-PS1systen, Program-
ming of Future Generation Computers. Klsevier Saence Publishers BV (North-Holland),
198N,

8] k. Ueda, and T, Chikavama. Efficient streamn/artay processing in logic PrOgramnung
language. In Procecdings of the Intevnational Confevence on Fifth (onevation Computer
Systems, 1COT, Tokvo, 1951,

1

