ICOT Technical Report: TR-465

U R-465

Learning Simple Deterministic Languages

by
H. Ishizaka

April, [989

iC 1989, ICOT

Mita Kokusai Bldg. 21F (03} 456-3191—3

IGDT 4-28 Mita 1-Chame Telex ICOT]37964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Learning Simple Deterministic Languages
Hiroki Ishizaka

ICOT Research Center
21F, Mita Kokusai Bldg.
1-4-28 Mita, Minato-ku, Tokyo, 108, Japan

C.Mail Address: ishizaka%icot.jp@relay.cs.net

Abstract

This paper is concerned with the problem of learning simple deterministic
languages. The algorithm described in this paper is essentially based on the
theory of model inference given by Shapire. In our setting. however, nonter-
minal membership queries, for nonterminals except the start symbol, are not
used. [pstead of them, extended equivalence queries are used. Nonterminals
that are necessary for a correct grammar and their meanings are introduced
automatically.

We show an algorithm that, for any simple deterministic language L, out-
puts a grammar & in 2-standard form, such that L = L((G), using membership
and extended equivalence queries. We also show that the algorithm runs in
time polynomial in the length of the longest counterexample and the minimum

number of nonterminals of a correct grammar.

1 Introduction

We consider the problem of learning simple deterministic languages using membership and
extended equivalence queries. A simple deterministic langnage (SDL) is characterized
as the language that is accepted by a I-state deterministic push-down automaton by
empty store. The class of SDLs is a proper sub-class of deterministic languages. Another
characterization of SDL is as the language that is generated by a context-free grammar
in a special form of Greibach normal form, called a simple deterministic grammar (SDG).

Angluin {Ang8Ta] shows that the class of k-bounded context-free grammars is learnable
in polynomial time using equivalence and nonterminal membership queries. The algorithm
described in this paper is based on her algorithm. Both algorithms are essentially based on
the theory of modet inference given by Shapiro [Sha81). Qur setting, however, differs from
Angluin’s and Shapire’s in available types of queries, that is, in our setting, the learning
algorithm is allowed to use membership queries but not nonterminal membership queries.
This difference leads to a problem of introducing new nonterminals that are not observed
in interaction between a teacher and a learner.

This problem relates to the problem of introducing theoretical terms in learning of first
order theories from facts. Recently, there have been several approaches to the problem
[Ban88, MB88|. However, in such settings that the algorithm learns not only a concept but
also a language for describing the concept, it becomes difficult to ensure the convergence
of a learning process. Of course, if the concept is described by a sutficiently restricted
language, then we can expect an algorithm that learns the concept even in such a setting.
The result of this paper gives one such learning algorithm.

Another feature of our setting is that the algorithm is allowed to use extended equiva-
lence queries. An equivalence query defined in {Ang88] is allowed to propose only element
of an original hypothesis space. For example, if the target class of learning is a set of
concepts {L,,Ls,...}, then the learning algorithm must make each equivalence query
with L; in the set. We do not assume this restriction. Thus, the learning algorithm de-
scribed in this paper makes each equivalence query proposing a grammar which is simply
in 2-standard form but may not necessarily be simple deterministic.

Yokomori [Yok88] gives another algorithm for learning SDLs in polynornial time. Our
setting also differs from his. The difference will be described in Section 4.

2 Preliminaries

We shall give some basic notions and the notation needed in this paper. Most of them
are from [Ang87a| and [Yok88].

2.1 Context-free Grammars and Languages

An alphabet is a finite non-empty set of distinet symbols. For a given alphabet X, the
set of all finite strings of symbols from X is denoted X~. The empty string is denoted .

X* denotes the set X° — {z}. For a string 7, |z| denotes the length of z. If § is a finite
set, then |5| denotes the cardinalily of §.

Let T be an alphabet. A language L over T is a subset of £°. For a string in &7
and a language L over £, let L = {y | 2y € L} (LT = {y | yz € L}). The set TL (LT)
is called the left/right)-derivative of I with respect to . For a string » = a122-+ @n,
Pre;{z) denotes the string ayay - - i, and Suf;(z) denotes the string a;iqfipg - - Gn.

A contezi-free grammar (CFG) is a d-tuple G = (N, E, P, §), where V is an alphabet
of nonterminals, T is an alphabet of {erminals such that N E =0, § € N i3 the start
symbol, and P is a finite set of production rules of the form A — a (A € N,a € (NUZ)"}.
The size of a grammar G is the sum of [V], |Z], [P, and the sum of the lengths of the
right-hand sides of all the productions in P.

For 8, € (N U L)", a binary relation = is defined as follows: 3 = =~ if and only
i there exist &;.8, € (N U D) and there exists a production rule 4 — o € F such
that 3 = 8§ A8, and « = d1ada. A derivation from 3 to v is a finite sequence of strings
3 = 8,81, 3. = 7 such that, for each i, §; = fuq. If there is a derivation from 3
to ~, then we denote 3 =" +, that is, the relation =" is the reflexive, transitive closure
of =. In each step of the derivation, if the left-most occurrence of a nonterminal in
is replaced, then it is called the left-most derivation. In what follows, unless otherwise
stated, a derivation § =* ~ alwavs means the left-most one.

The language of a nonterminal 4, denoted L(A), is the set of all z € L7 such that
A =* z. Similarly, for @ € N, L{a} denotes the set of all z € I such that & =7 =,
(To emphasize the grammar being used, we use the subscript G, eg., S =gzxor Lg{A).)
The language of the grammar G, denoted [((7), is just L{S5), where 5 is the stast symbol
in grammar (.

2.2 SDG and SDL

A context-free grammar in Greitbach normal form G is simple deterministic if, for any
Ae N ac X, o, N, there exist productions A — ax and A — af in P, then a = .
Note that the definition does not imply that SDGs generate only ¢-free languages. In
this paper, however, our attention focuses on only £-free SDGs. A language L is simple
deterministic if there exists an SDG G such that L(G) = L.

For example, the grammar G = ({5, A, B,C},{a, b}, P, §), where

F= {E'—+u.r‘1.,..-1—rb=A—ruB,B—baBG,B-ﬂhC,c—?ﬁ},

is one of the SDGs that generate an SDL {a™b™|1 < m}.
The following propesitions provide the features of SDGs and 5DLs desired for our
purpose |see, e.g., [Har79!).

Proposition 1 Let G = (N,L,P,5) be an SDG. Forany A€ Nz € EF anda € N, if
there ezists a derivation A =* za, then L{a) = TL(A).

Propesition 2 Let G = (N,Z, P, §) be an SDG. For any A € N, L(A) is prefiz-free,
that is, if ¢ € L(A), then, for anyy € %, zy & L{A).

2

Proposition 3 For any SUG G| there exists an equivalent SDG G that is in S-standurd
form, te., there exists an SDG G = (V' N, P 5 such that

(1) L(G) = LIG");

(2 Fach production in P is of one of the following forms: A ~a, A = aB, A — aBC
L N i o o J .II bl 2
where A, B O e N o ¥

PrupusiLiUn 3 allows uy to consider G-nl}’ {E—fl'ﬂﬂj context-frec ETRININATS i1 Dstandard

form.

2.3 Models and Incorrectness/Correctness

Our algorithm for learning SDL is based on Shapiro’s model inference algorithm [Shadl]
and Angluin’s learning algorithm [Ang3Tal. The most important component of these
algorithms is the diagnosis rontine. The diagnosis routine finds an incorrect element in a
hvpothesis that implies a negative example, so we need to define notions for incorrectness
{or correctness) of the elements of a grammar, that is, incorrectness of productions. In
order to do this, we shall introduce some model theoretical notions for grammars.

Let & = (NV.Z,F 5] be a context-free grammar. For each nonterminal 4 € N, a
model of A, denoted MW A), is a subset of 7. A model M for the grammar & consists of
the model of each nonterminal,

M= {L{rfq-l:l‘ iw{A'IL RER -J‘Jllr‘iﬂ];l'

A replacement is a finite tuple ({3, A1), ...y (¥a, An)), where 3, € E°,4, € N. Let
o=y, A}, (yn,4a)} and 3 £ (N U E). g is compatible with 3 if and only if there
are finite strings Tg,...,3, © = such that 3 = zodiz14s--- Apza. If p is compatible
with J, then an imstance of 7 by p, denoted p|3|, is the terminal string obtained from 3
by replacing each occurrence of A, in 3 by the terminal string y;.

Let M be a model for a grammar (¢. A production 4 — a is incorrect for M if and
only if there exists a replacement p = ({31, A1)y, {¥n,Ax)} that is compatible with o
such that, for each {, y; € M[A,), but pla] & M{A}. A production is correct for M if and
only if it is not incorrect for M.

Prﬂposiéiun 4 Let G = (N,Z,P,8) be a CFG. Suppose a model M for G such that, for
each nonterminal A € N, M(A) = L{A). Then every production in P is correct for M.

2.4 Types of Queries

Let L be the unknown SDL that is intended to be learned by a learning algorithm. We
assume a teacher who knows L and can answer the queries below. The algorithm is

allowed to make two types of queries as follows.
A membership query proposes a string z € L7 and asks whether z € L or not. The

reply is either yes or no.

An ertended equivalence guery proposes a grammar G in 2-standard form and asks
whether L = L{G). The reply is yes or no. It it is no, then a counterezample is also
provided. A counterexample Is a string @ in the symmetric difference of L and L(G). It
£ e [— L{(). = is called a positive counterexample, and if z € L{G) = L, zis called a
negutive counterexample. The choice of 2 counterexample is assumed to be arbitrary.

Note the difference between extended equivalence queries and equivalence queries de-
fined in [Ang38]. The equivalence query is allowed to propose only element of the original
hypothesis space. Thus, in learning SDLs, the hypothesis proposed by an equivalence
querv is restricted to a grammar that generates an SDL. However, the hvpothesis pro-
posed by an extended equivalence query does not have to exactly generate an SDL. A
teacher who answers equivalence queries and membership queries s called a mnimally
adequate Teacher {AngdTh|, so we call & teacher who answers extended equivalence queries
and membership queries an ertended minimally adequate Teacher.

3 The Learning Algorithm

In what follows, unless otherwise stated, 2 grammar is in 2-standard form. Let L be the

unknown SDL which should be learned by the algorithm and Gy = (Vg, 5, P, 5) be an

SDG such that L{Gp) = L and with the mimmum number of nonterminals, that is, for

any SDG G' = (N',Z, P', 8 such that L{G') = L, INg| < |N']. We assume that the

terminal alphabet © and start svmbol S are known to the learning algorithm, but that

N —~ {5}, the set of nonterminals excepl 5, and P, the set of productions, are unknown.
The nain result of this paper is as follows.

Theorem 5 There is an algorithm that, for any SDL L, leerns a grammar G in 2-
standard form such that L(G)} = L using extended equivalence queries and membership
queries that runs in time polynomial in |Ng| and the length of the longest counterezample.

Note that the grammar learned by the algorithm may not be SDG. The grammar is simply
in 2-standard form.

3.1 An Outline of the Algorithm

First, the algorithm initializes nonterminals N to {5}, and initializes productions F to
the set of all productions consisting of only §. As a model M for G, we initiaily consider
[M(S) = L}. Models for any other nonterminals that are introduced by the algorithm
are defined in the next section. Then it iterates the following loop. An equivalence
query is made, propesing G. If the reply is yes, then the algorithm outputs & and halts.
Otherwise, a counterexample w is returned. The algorithm tries to parse w on G Iw
can be parsed, that is, when w is negative, the algorithm diagnoses G on the parse-tree
of w and finds an incorrect production for M. The incorrect production is removed from
P. Qtherwise, that is, when w is positive, new nenterminals are introduced and all new
productions constructed from them are added to F.

The Learning Algorithm

Given: An extended minimally adequate Teacher for L and a terminal alphabet ©.
Output: A grammar (= [V, E, P, §) in 2-standard form such that L{G} = L.
Procedure:
N={5l P={f=afSS—uf S—aac®l &= (NI PS5
repeat
Make an extended equivalence query with (7.
If the reply s positive counterexampile, then
introduce new nonterminals with their models.
Put all candidate productions into P.
Flze if the reply is nezative counterexample, then
diagnose G.
Hemove the incorrect production replied by the diagnosis routine [rom P.
until the reply is yes.
Output G.

We assume a parsing sub-procedure that rups in time polynomial in the size of a
grammar & and w, e.g., Angluin’s parsing procedure [AnglTal*.

The diagnosis routine® finds an mcorrect preduction for M on the input parse-tree
that generates a string w and has its root node A such that w & M(A4). For example,
consider the following parse-tres for a negative countercxample abbb.

s
Hﬁﬂ

i A B
/’/,] |
b B b
I
b
Initially, abbb & M(5) = L is known. Then the diagnesis routine considers in turn

each child of 5 which 15 labeled with a nonterminal. In the example, first, the child labeled
with A and generating the siring bb is considered. The diagnosis routine inquires whether
bb e MiA)ornot. If 66 ¢ M(A), then it calls itself recursively with the sub-tree rooted A.
If bb € M(Aj, then it goes to the next child labeled with & and makes the same inquiry.
If b & M(E), then it returns the production B — b, Otherwise, it returns the production
S —adB.

In [Ang3Tal, such an inquiry is made through nonterminal membership queries. In

‘Since 7 is in 2-standard form, Lemma 3 and Lemma 4 in [AngBTa] hold. In fact, the procedure
returns a parse-DAG [directed acyelic graph) instead of a parse-tree. Our discuasion, howeaver, is not
affected by the difference,

2See [Ang8Ta] for the precise definition of the diagnosis routine

our approach, however. it is made by using only membership queries. The next section
shows how to introduce new nonterminals and replace nonterminal membership queries
by membership queries.

Suppose that New is a set of all nonterminals that are newly introduced at a stage of
tearning. V is set to VU Vew. Let Py, be a set of all productions in 2 standard form
constructed from .V that have never appeared in P, that is, for each a £ T, Py, contains
productions A -+ ac such that de £ N*, l¢| € 2 and A contains at least one element
of New. Then P is et to P U Py,

Claim 1 The set Py, 15 2asily computed in time polynomial in |N| and, af any siage of
learning, P containg at most [N| % [T] = (|N] <+ 1)? productions.
q . i P

3.2 Generating Nonterminals with Their Models

The key idea of the generating nonterminals routine has its roots in an extension of a
model deseribed m [Tsh89].

First, we show an important feature of SDGs for describing the generating nontermi-
nals routine.

Lemma 6 Let &= (N, E, P, 5) be an SDG. Suppose that A =" rBe for A, BE N,a €
N*,r & TF, and that t is a string in L{a) such that Suf,(t) &€ L{a) for any j (1 <
J=t| = L) (ifa=¢ thent =¢g). Then, for any z € ¥, ¢ €L(B) if and only f (i)
ret € L{A) and (1) rPre;(z)t @ L{A) foranyi ([l <i<|z|=1).

Proof: Suppose r € L{B). Then A =" rBa =" rza =" rzt. Thus, rzt € L{A). Since
L{B) is prefix-free, Pre(z) ¢ L(B) forany i (1 < i < |z]—1). Hence, if rPre,()t € L{A),
that is, Pre;(z)t € TL{(A) = L{Ba), then there exists 7 (1 < j < |{| — 1) such that
Prei(z)Pre;(t) € L{B) and Sufj(t) € L(a). This contradicts the fact that Suf;(t) ¢
L{a) forany j (1 £ £ [¢| = 1), Thus, rPreiz)t € L(A) forany i (1 <i < |z] = 1).
Conversely, assume that (i) and (ii) hold. From assumption (i), it holds that =zt <
rL{A) = L{Ba). Since there is no strict suffix of ¢ in L{a), there exists j (1 <7 £ |z])
such that Pre;(z) € L{E) and Suf;(z)t € L{a). On the other hand, from assumption (ii),
Frefzjt & L(Ba) for any 1 {1 < 1 € |z| — 1). Hence, for any ¢ (1 < ¢ < |z] = 1),
Prefz) € L{B). Thus, j = |z|. This concludes that Pre.(z) = z € L(B). O

In the learning algorithm, whenever new nonterminals are introduced, there is a pos-
itive counterexample w. The generating nonterminals routine constructs nonterminals
with their appropriate models from w.

Let w be a positive counterexample such that |w| > 2. Nonterminals generated from
a positive countererample w, denoted N{mw), are defined as follows:

N{w) = {{r,s,)jr,s € £* t £ T" and rst=w).

Claim 2 There are at most (w|{jw|—1}/2 elements of N(w), and N{w) is easily computed
in time pelynomial in |w|.

For example, let w = aabb, then
-‘I":rl; w| = {i“: ':1'5:'"3':'5}: [a'. ab, E’]~ ;"-1'- a, H":'r[u“! JJ'E'1 E:I,I:aa, b, '5}1 EM'E'- b, EJ]‘
For each triple (r, s, ¢} € ¥{w), let o(r, 5,t) be the shortest suffix of ¢t in 73, 1.e.,

elr s, t) = Sufit) where 1= max {j| Sufi(t) e 75L}.
0

' <rgit-L
Claim 3 The string (v, 5. 1) 15 computed by making |t| membership gqueries proposing
rsSufi(t) (0<j<lt[=1).

The intended madel of each nonterminal in .V(w) is defined as follows. For sach triple
(r.a.1) & N(w), define

M({r,s5,1)) = {:c gt i ree(r.s.t) € L and
rPrefzie(rs) g L forany ¢ {1 <:< x| —-1)}.

Lemma 7 Let N be the set of known nonterminals. Suppose that w is a new positive
counterezample. Then the time required for generating nonterminals and computing new
productions is bounded by a non-decreasing polynomial in |[N| and |w.

Proof: Bw Claim 1, 2 and 3, it is straightforwardly implied. I

Lemma 8 Let L be an SDL, w be a string in L, and G = (N,E, P, 5) be an SDG such
that L{(5) = L. For any A € N - {5} that appears in the derivation § =" w, there exists
a nonterminal (r,s,t) € N(w) such that L{A) = M{(r, s,1)).

Proof: Suppose that § =" rda =" rse =" rst = w. Then, from the definition of
N(w), the triple (r,s,8) is in N{w). (Since G is an SDG and A # S, neither r nor 5 is .)
Since L{S) = L{G) = L, by Proposition 1, L{a) = F5L(S) = 75L. By the definition of
¢lr,5,1), wlr,s,t) € L{a) and Sufj(e(r,s,t)) & L(a) for any j (1 € j < [p(r,,2)] = 1).
Hence, by Lemma £ and the definition of M{(r s,£)}, L(4) = M((r, s,1)). O

The above lemma ensures that if the learning algorithm is given a positive counterex-
ample w, then it can make all nonterminals with appropriate models that are necessary
for generating w. In the result, nonterminal membership queries used in {Ang87a] can be
replaced by membership queries. For any © € E* and A € N{w), the diagnosis routine
can accomplish each inquiry as to whether £ € M({A) or not by making |z| membership
queries.

3.3 Correctness and Complexity

In what follows, let L be the target langunage, Go = (N, &, Fa, 5) be an SDG such
that L(Gy) = L and with the minimum number of nonterminals, G = (V, I, F, 5) be the
grammar in the algorithm and M = {M(S}, M{(ry, s, 1)), o, M((rinv)=10 $wj=10 tavt=1))}
be the model for & defined in the previous section.

7

Lemma 9 Suppose that the diagnosis roufine is given as input a parse-tree that generates
a siring r and has s rool node labeled with A € N such that z & M{A). Then it returns
a production in P that is tncorrect for M.

Proof: The lemma can be proved aloug the same line of argument as the proof of
Lemma 3 in [Ang87a. O

Lemma 10 The time required by the diagnosis routine on an input parse-tree for a nega-
tive counterexample w is bounded by a non-decreasing polynomial in |w| and €, the length
of the longest counterezample.

Proof: Since & is in 2-standard form, there are at most (w! occurrences of nonterminals
m the parse-tree. Thus, the number of inquirivs made by the diagnosis routine is at most
w|. For each inquiry as to whether z € M(4) or not, if A =5, then only one membership
query “r € L 77 is made. Otherwise, that is, if A = (r, s,), the routine makes at most
\z| membership queries “rPre;(w)pir,s,8) € L 77 for 1 <1 < [z, Since z is a sub-string
of w, the total number of queries made in a diagnosing process is at most |w|?. Since the
main operations made in the diagnosis routine are making strings rPre,{z)@(r, 3,t) and
malking membership queries, it is clear that the claim of the lemma holds. [

Lemma 11 The tolal number of given positive counterezamples is bounded by |Ngl.

Proof: Let w, be the nth given positive counterexample. We define Np(w,) and Fplw,)
as follows:

No(wa) ={A € Ng | § =5 nda =3, w,.},

n
Fu,)={A—ane Flace An e (U Nolaw;))*).
im]

When wy, is given, the learning algorithm computes N{w,) and sets N to VU N{w,).
Then it computes all pew candidate productions and adds them to P as described in
Section 3.1

By Lemma 8, for each nonterminal A € Ny(w,), there exists a nonterminal A" € N{w,)
such that L{A) = M(A'). Under this correspondence of 4 and 4, for every production
in Fylw,), a corresponding production is added to P at least once. By Proposition 4,
these corresponding productions are correct for M. Since correct productions are never
removed from F, whenever the n + 1st positive counterexample is given, there exists at
least one nonterminal A € N, such that

A s Ny(wayy) and 4 F I:] Nolw;).

: O

Thus, the number of given positive counterexamples is at most | N

Lemma 12 The number of nonterminals introduced by the learning algorithm is bounded
by [Noléy(£p — 1)/2, where £, is the length of the longest positive countererample.

g

Proof: For each positive counterexample wy, [V{wy 1] 15 at most Juw;|(|wi] —11/2 as stated
in the previous section. Bv Lemma 11, the total number of noenterminals introduced by
the algorithm is bounded by |Ng £.(, — 1}/2.]

Proof of Theorem 5: From the way to introduce new productions and Lemma [2. the
total number m of preductions introduced into P is at most
,

m =

RYALATAESY Nojbald, — 1)
— 5 x |Ej x 4 -.--.)I

By Lemma 9, for each given nesative counterexample, at least one incorrect nroduction
is found and it is removed from P. With Lemma 11. this implies that. after giving at
nost [Ny positive counterexamples and at most m nezative ones, the learning algorithm
outputs a grammar & such that L{(3) = L.

Let £ be she lengih of the longest counterexample. By Lemma 12, at any stage of
learning, the size of G is bounded by a non-decreasing polvnomial in [Vy| and £. From
the assumption on the parsing sub-procedure, the aleorithm can derermine whether a
given counterexample is positive or negative in time polvnomial in |V and ¢, The total
number of given counterexamples is at most | Vy| + m. With Lemma 7 and Lemma 10,
this implies the claim for the complexity of the algorithm. O

4 Conclusion

We have discussed the problem of learning SDLs. The main idea presented in this paper
was flow to introduce necessary nonterminals with their appropriate models {or mean-
ingsj. The problem introducing new sub-concepts that are useful for representing a tar-
gel concept but not observed is one of the most important and difficult problems in
machine learning. Recently, there have been several approaches to this problem, e.g.,
'Ban8S, MBS8|. It seems, however, that we have no sufficient result vet. Of course, our
result is also for a class that is too restricted, so we need to try to find more general and
useful approaches to the problem.

For the given algorithm, there is a problem of efficiency. As shown in the proof
of Theorem 3, it is ensured that the algorithm runs in time polynomial in |V, and
{. However. the polynomial has a rather high degree. If we can set each intermediate
hypothetical grammar to an SDG, we will be able to decrease the dezree. Of course, such
a restriction on hypethetical grammars also results in the development of an algerithm
that produces an SDG as its output using pure equivalence queries,

Yokomori [Yok38] gives another algorithm for learning SDLs in polynomial time. His
algorithm exactly construcis an SDG. In his setting, however, a very powerful teacher is
asauined, The teacher can answer the special two types of queries: prefix membership
sueries and derivatives equivalence queries. A prefix membership query is an extension
of the membership query. A derivatives equivalence query proposes two pairs of strings
Doy), (ug,wy) and asks whether T7LWy = @ Liby, where L is the target language.

It 1s clear that derivatives equivalence gueries can be uszed, in our algorithm. to test
whether two candidate nonterminals are identical. For example. for two nonterminals
(uy vy, wy) and (us, vs, ws). if WL = TLW5, then they are identical. Thus, the number
ol nonterminals generated by our algorithm will be reduced. Unfortunately, we have not
sufficiently discussed the problem of such relations between the ability of the teacher and

the efficiency of the algorithm.

5 Acknowledgements

[wish to thank Dr. K. Furukawa and Dr. R. Hasegawa for their continuous suppart and
advice. [am also deeply grateful to Dr. T. Yokomori for his manv valuable comments.
Mr. Y. Sakakibara pointed out my misunderstanding about equivalence querics in the
draft. Discussions with the members of the Learning and Non-monotonic Heazoning Re-
searci Group at ICOT have also been very fruitful, Finally, I wish to thank Dr. K. Fuechi,
the director of [COT Research Center, for providing the opportunitv to conduet this
research in the I'ifth Generation Computer Systems Project.

References

@ = 3 s * . X " - .
AngsTal Dana Angluin. Learning k-bounded context-free grammars. Research Report

357, Yale University Computer Science Dept., 19587,

[Angd7b; Dana Angluin. Learning regular sets from queries and counterexamples. fnfor-
mation and Compulation, 73:87-106, 1987.

Ang38] Dana Angluin, Queries and concept learning. Machine Learning, 2(4):319-342,

1988.

[Ban88] Ranan B. Banerji. Learning theories in a subset of a polvadic logic. In Proe.
Compuiational Learning Theory ‘88, pp. 281-205, 1083,

Har78] Michael A. Harrison. [ntroduction fo Formal Language Theory. Addison-Wesley,
1979.

[Ish89] Hiroki Ishizaka. Inductive inference of regular languages based on model infer-
ence. To appear in IJCM, 1980,

[MB88] Stephen Muggleton and Wray Buntine. Machine invention of first-order predi-
cates by inverting resolution. In Proc. 5th International Conference on Machine
Learning, pp. 339-352, 1988.

[Shagl] Ehud Y. Shapiro. Inductive inference of theories from facts. Technical Report
192, Yale University Computer Science Dept., 1981.

[Yok88] Takashi Yokomori. Learning simple languages in polynomial time. In Proc. of
SIG-FAL pp. 21-30. Japanese Society for Artificial Intelligence, June 1988.

10

