ICOT Technical Report: TR-461

TR-461

Extended Projection
— A New Method to Extract Efficient
Programs from Constructive Proofs —

by
Y. Takavama

March, 1989

C 1989, 1COT

Mita Kokusai Bidg. 21F (03) 456-3191-5

| G DT 4-28 Mita 1-Chome Telex ICOT) 32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

ft3

Extended Projection
~ A New Method to Extract Efficient Programs from Constructive Proofs

Yukihide Takayame

Institute for New Generatien Computer Technology

1-4-28, Mita, Minato-ku, Tokyo, 108, Japan
takayama@icot. jp

Abstract

This paper gives a method to extract redundancy free programs from constructive proofs, using
the realizability interpretation. The proofl trees are analyzed in the style of program analysis,
and they are mechanically translated into trees with additional information, called marked proof
trees. The program extractor takes marked proof trees as input, and generates programs in a

type-free lambda calculus with sequences.

1. Introduction
Constructive type theories and constructive logics are used in the formal development of func-
tional programs as in Nuprl [Constable 86], the calculus of construction [Coquand 88] [Huet 88],
and PX [Hayashi 83]. Programmers formalize the problem or specification as a theorem, and
the programming is performed in the style of theorem proving. The correctness of the program
is assured by the proof checker in constructive logic, and the theorem and the proof prepared
are used as the documentation.
The program extractor is one of the building blocks of the programming environment. It an-
alyzes theorems and their proofs and extracts the programs. The realizability interpretation
of logical constants in intvitionistic logic, such as the Curry-Howard isomorphism [Howard 80]
and g-realizability [Beeson 83), is used as the basic mechanism of the program extractor. Also,
various techniques, such as proof normalization and Harrop formulas, are used to generate effi-
cient programs [Goad 80] [Bates 79] [Sasaki 86]. This paper works on the problem of redundant
code, which is one of the main problems in terms of efficient code generation with g-realizability.
However, the problem is not always inherent to a particular formulation of realizability.
If a constructive proof of the following formal specification is given:

¥r:op. Jy:oi. Alz,v)
where oy and o, are types, and A(z,y) is a formula with free variables, z and y, the function,
f, which satisfies the following condition can be extracted by g-realizability:

Yz : op. Az, f(2)).

For example, if the proof is as follows:

Ziool [z
Eu E1

tz):ay Alz,t(z)) o
Ay : oy, Alz,y) {3 I}{'E-_I]

Wz ey, Jy oy Alz,y)

where &y and B, denote sequences of subtrees, the extracted code can be expreszed as:

Az, (¢(z),T) |
where T is the code extracted from the subtree, ([z : o¢]/Zy /A(z,1(z))), t(z) denotes a term
which contains the variable z, free, and (f;,¢2,++) means the sequence of terms. In this case,
the expected code is:

FE Az 1(2)

so that T is redundant.

The traditional solution to this problem has been to introduce suitable constructs to specily
which part of the proof 13 necessary in terms of computation. The set notation is introduced in
Nuprl and ITT [Nordstrom 83]. This is done to skip part of the extraction. [Paulin-Mohring
89] modified the calculus of construction by introducing two kinds of constants, Prop and Spec.
The PX system introduced {-bounded formulas from which no realizer code is extracted. These
constructs are obtained by extending the underlying constructive logics, and can also be seen
as the control commands to program extractors. However, to extract an efficient program from
a proof, the specification and the proof must be translated into a specification and its proof
with control commands. This transformation is generally difficult and sometimes impossible to
mechanize.

This paper presents a new construct called marking. It is independent from the formulation of
underlying constructive logic, and allows much more fine-grained specification of redundancy
than traditional systems. It also enables mechanization of the transformation of ordinary proofs
into proofs with constructs. In other words, the analysis of which part of the proof is actually
relevant to the algorithm is performed mechanically by giving a simple declaration to the spec-
ification. This method is called the eztended projection method, EPM for short. EPM can be
regarded as a method to analyze functional programs which uses proof trees as the enriched
formal description about programs. EPM also enables the extraction of multiple programs from
a single proof just by changing the declaration to the specification, letting the programmer select
a suitable program.

Section 2 overviews the functional language, Tiny Quty, and the constructive logic in which
Tiny Quty programs are developed. It also briefly explains the realizability of the logic. Section
3 introduces the notion of declaration to formal specifications and the marking procedure which
analyzes the proof trees to specify the redundancy in them. The crucial part of the proof tree
analysis resides in the proofs in induction. Section 4 elaborates on this issue. Section § gives
the definition of the program extractor. A simple example of 2 prime number checker program
is given in section 6. It demonstrates how the redundancy free program is extracted and how
multiple programs are extracted from a single proof. Section 7 works on an analysis of proofs
in induction again. It explains the phenomena in section 4 from a proof theoretic viewpoint,

Section § gives the conclusion.

2. The Langnage and Constructive Logic
2.1 Tiny Quty
Tiny Quty is a sort of type-free A-calculus obtained as a sugared subset of Quty [Sato 87]. The
ooly essential difference between it and the standard type-free A-caleulus [Barendregt 81] is
that il has sequences of terms as its data structure and a fixed peint operator for multi-valued
recursive call functions.
(1) Sequence of terms
A sequence of terms is denoted (tg,--+ ,f,-1) or tp,---, 4= where t; i5 a term, and a term is
regarded as a sequence whose length is 1. The nil sequence is denoted (). The coneatenation of
sequences, Sp .- Sipoq, is denoted {Sy,- -+, Si—y).
(2} Constants and variables
The language has integers, boolean values, T and F, special constants, left and right, and
any|n], which denotes the sequence of any constants whose length is n. Variables are denoted
in lower case letters: =, y, ---, and T, ¥ - - - denote sequences of variables.
{3} Abstraction and application
For a sequence of variables, T, and a term, M, AT M denotes 2 lambda abstraction. For two
terms, M and NV, M(N), or simply M N, denotes an application.
(4} H-then-else
If 4 is an equation or inequation of terms, and & and (7 are terms, theu i f beval{ A) then B else ©
15 v if-then-else term. beval is a function which evaluates the equation or inequation and returns
& boolean value. The term is abbrevialed as if A then B else € in the following description.
{5} Term equivalence

aj A{). Term = Term

b) Mzo, - 2n1) Term = iy, - Azpey Term

c)if A then ()else () =)

dy if A then (ap, -, an—y) else (bo, -+, bnoy)

=(if Athen ag else by,-«-, 1f Athenay_y else by_;)

e} AZ. (@0, ,@m-1) = (AT, ap, -+, AT. Gm—1)

F) Term {) = Term

E} Eﬂu: T :ﬂ'ﬂ-l}{b] = faﬂ(‘aL e s"—“n—ll:'h”
{6) Fixed point operator
If Fizg, -, 2,-1) is a term which contains = def Zg, ', 2n-y 8s free variables, and is equivalent
to (Fp(2),- -+, Fa_1(Z)), then p(zq, -, 20—y).F (20, -+, 2,_1) denotes the solution of the system
of the fixed point equation (2q,---, 20—) = (Fu(2),- - -, Fuci(Z)). The solution is also described
as (fo, o+, f1) where fi = g Fi(foy- o, fimas @iy fiats oy faca) £ = 0,000 = 1.

(7} Built-in functions

1} suce, pred, +, —, /, - -+ - successor/predecessor functions and arithmetic functions

2) proj(n) - -+ strike out the n-th element of a given sequence of terms

3) proj(I} -+ Let I be a finite sequence of natural numbers. For a sequence of terms, §, of

length 7 (m < n), proj({io, - im=1}) (5) = (proj(io)(S), -, proj(im—1 }(SH
1) tseq(i), ttseq(i, 1) are defined as follows. For a sequence, 5, with length n

—_— 3 —

tseq(i)($) % (proj(i)(S), proi(i + 1)(S), -, proj(n — 1)(S))
ttseq(i, I S) % (proi(£)(S),proj(i + 1)(8),- -+, proj(i + (I = 1))(5))

Theorem 1: Every Tiny Quty program is equivalent to a sequence of terms.

2.2 QPC

QPC used here iz basically an intuitionistic first order Gentzen style of natural deduction
[Prawitz 65] with mathematical induction, higher order equalities and ineguality n the sense
that functions can be handled, Tiny Quty as its terms and a simple type structure of terms.
See [Takayama 58 for detailed definitions.

(1) Type structure

rnat and bool are used as the primitive types. QPC also has the function type, Cartesian product
type, and recursive type in which nat and mathematical induction are defined. See [Sato 87]
for details of the type siructure.

{2) Formulas

1, equations of terms, ¢ : &, where t is a term and o is a type, are atomic formulas. Inequalities
of terms are also regarded as atomic, which is a little different from their standard treatment.
Other formulas and subformulas with logical constants, ¥, 3, D, A, and V, are defined in the
standard way as in [Prawitz 65). ¢ : ¢ is often abbreviated to £.

(3) Rules of inference

Desides the I-rules and E-rules of standard natural deduction, QFC has the L-F rule, math-
ematical induction, rules on equalitics and inequalities of terms, and typed term construction

rules,

Here, a few proof theoretic terminologies are defined as follows. See [Prawitz 65) for details.

Definition 1: Top-formula and end-formula
1) A top-formula in a proof tree, II, is a formula occurrence that does not stand immediately
below any formula occurrence in IL

2) An end-formula of II is a formula occurrence in II that does not stand immediately above

any formula occurrence in II.

Definition 2: Major premise and minor premise
C, Cp, and) as premises in the following rules of inferences are called minor premises. Other

premiszes are called major premises.

3. AGe) [ﬂéﬂ]
o8 C z. Az
—"-'-'E—'-{}E] c (E'E}
(4] 5]
%C—’{v-ﬁ‘} Cp,C1,C5 are all equal.
2

'y and € are called the left minor premise and the right miner premise. Jz.A(z) and AV E
are called the major premises connected horizontally o the minor premises, ', Cp, and C.

Definition 3: Subtree determined by a formula
If A is a formula occurrence in proof tree II, the subtree of I defermaned by A is the proof tree

obtained from II by removing all formula occusrrences except A and those above A.

2.3 g-realizability

The realizability used in this paper is slightly different from standard g-realizability [Beeson
85]. The nil term, (), is attached to an atomic formula as the realizer, while any terms can
be used in atomic formulas in standard g-realizability. The realizability used here is essentially
the same as that of px-realizability [Hayashi 88] in this respect. See [Sato 85] for details. The
algorithmic version of the realizability is formalized as the Ext procedure [Takayama 88|. Ext
caleulates the realizer of the theorem; in other words, it extracts the Tiny Quty program that
satisfies the specification from the proof of the specification. The realizer of a formula is defined

as a sequence of terms in Tiny Quiy.

3. Declaration and Marking

3.1 Realizing variables, length, and 3-V information of a formula

The sequence of realizing variables of a formula is the sequence of variables to which the realizer
of the formula is assigned. Tt is also used as the realiger of the formula which occurs as an

assumption.

Definition 4: Ru(A)

(1) Re(A) & () -~ if A is atomic (2) Ru(A A B) = (Rv(A), Re(B))

(3) Ru(A v B) ¥ (=, Ru(A), Ru(B)) (4) Ru(A D B) ¥ Ru(B)

where z is a fresh variable

(5) Ru(Vz : Type. A(z)) % Ru(Alz)) (6) Ru(3z : Type. A(z)) % (=, Ru(A(z)))

where r 15 a fresh variable

Definition 5: Length of a formula
For a formula, A, the length of Ru(4) as a sequence is called the length of the formula and

denoted I{ A).

Note that the length of the realizer as a sequence of terms is determined according to the form
of the formula.

Definition 6: 3-V information

1) For a formula AV B, the V-information is left if A holds and right if B holds.

2) For a formula, 3z A(z), the 3-information is the term, t, for which A(¢) holds.

3} The 3-V information of a formula is the collection of V-information and 3-information of all

the subformulas of the formula.

Ezt can be roughly seen as the extraction of the 3-V information of the specification, and the
realizing variables are the vanables to which the 3-V information of all the subformulas of the

specification is assigned.

Example 1:

fu(¥z i nat. {{z 2 0) D (z =0V 3y : nat. suce(y) = z))) = (20, 21) 2o is the variable to which
the V-information of which shows which in £ = 0 and 3y.suce(y) = z holds is assigned. =z; is
the variable to which the value, t, for which suce(t) = z holds (3-information), is assigned.

3.2 Declaration

In the following description, the end-farmula of a proof tree is called specificatton.

Definition 7: Declaration

1) For a specification, A, a subset of the finite set of natural numbers, {0,1,--- {A) — 1}, 13
called the declaration to A. A specification with a declaration, I, is denoted {4};. II; denotes a
proof iree, IT, whose end-formula has the declaration, I. Each element of a declaration is called
the marking number;

2} The empty set, ¢, is called nil marking;

1) trivial def {0,1,--- {{A) — 1} is called {rinial marking.

A declaration specifies which 3-V information is needed for a given specification with the set of
positions of the elements in the realiving variables of the formula. This is the only information

which programmers have to give in cur method,

Example 2: The following 15 a specification of the program, f, which tests whether the given
natural number is odd or even: B ¥ Yo.(Jy.x = 2-y)V(Iz.x = 2-2+1). Ru(B) = {z4, 21,22} 2o
is the variable for V-information, and 2; and z; are the variables for 3-information, Therelore, f
is the program that calculates a sequence of leris of length 3: the first element is the constant
left or right according to whether z is even or odd, and the second and third elements are
integers. If one wishes f to reburn only left or right, one should give the declaration, {0}, to
B.

3.3 Marking

For each formula occurrence in a proof tree, information called marking, which is similar to
the declaration, is attached. The definition of marking is obtained by changing “specification”
to “a formula occurrence in a proof tree” in the definition of declaration. The only difference
between declaration and marking is that marking can be determined mechanically by giving the
declaration to the specification. In fact, the marking of a formula occurrence, 4, is determined
by the inference rule whose conclusion, B, is the formula occurrence immediately below A,
and the marking or declaration of B. The terms “declaration” and “marking” will often be
confused in the following description. The procedure is ealled the marking procedure, Mark.

— B —

The tree abtained by the procedure is called a marked (proof) tree. In the following, part of the
definition of Mark is given rather informally. It uses the following operations on finite sets of
natural numbers:

flnd"—g{:c}nl:r!:f} I—ndzd{z—n|z-n§:ﬂ,xEI}

Il'_::n}'l.—ii{.ltizﬂﬂ:-::n} Il{‘;_*n]dfe{{xEIf:n.'_?n}

(1} Marking of {3-I'} rule application
The 0th term in the following sequence is the term, t, aceording to the definition of Fzt.
Ly &
t Al
Jx. Alz)

Ext (3-I)

Let { be the marking of 3z.4(z). If 0 € I, the marking of ¢ is {0}, otherwise, ¢. The marking
of A(t) is obtained from I — {0}. However, the ith (i > 0} term of the realizer of 3z.4(z) 15 the
t — 1 th term of the realizer of A(t). Therefore, the marking of A{¢) 15 (I - {0})—-1=T-1.
{2y Marking of (3-£) rule application

The realizer of the end formula, O, is obtained by instuntiating ¢ and Ro{A(t)) in the realizer

of the minor premise of the application by the realizer of the mojor premise of the application:

[t, A(t)]
dr. A(x) C (3 B)

c

where A(f) contains t free.

The marking of C' as the minor premise is equal to that of C as the end-formula. Mark on the
subtree determined by the minor premise C is performed recursively. Let J and K be the sums
of the markings of all the ocecurrences of t and A(?), which is ealled the marking of [¢] and [A(2)]
in the following deseription. Note that J is cither {0} or ¢. Mark on the subtree determined
by the major premise, 3z.4(x), goes as follows:

Case 1: J = {0}

The following forms of the subtrees must be contained in the subtree determined by the minor

premize, and the marking of [t] is {0}.

[¢] [¢]
Lo _I Lo Z

Pls s Wz Pz
R S R

Therefore, the Oth term in the realizer of Jz.4{z) has to be extracted to instantiate the realizer
of the minor premise. Consequently, the marking of 3z.4(z) is {0} U {K +1}.

Case 2: J=4¢

The Oth term in the realizer of 3z, A(z) is not needed, so that the marking of 3z.A(z) is K +1.
{(3) Marking of (V-E) rule application

The term i f Ty then Ty else T; is extracted from the following proof tree where T; and T3 are

sequences of the same length.

(Al [B]
En E1 Ez

AVE C"(:T C (V-E)

The markings of Cs as the left and right minor premises are equal to that of the end-formula.
T, and T» are obtained by instantiating Av(A4) and Rv(B) in the realizers extracted from the
subtrees determined by the minor premises by the realizer, t, of AV B. Also, the Oth term of t
is used to make T}y, which is the decision procedure of which of A and B helds. The markings of
the subtrees determined by the minor premises are determined recursively, Let Jy and J) be the
markings of [A} and [B]. Then, the marking of the subtree determined by the major premise,
AW B, is as follows:

Case 1: [= ¢

The realizer extracted from the proof tree will be in the following form: if A then () else () = ().
Therefore, the marking of 4V B is {0}.

Case 2: I # ¢

The Oth term of the realizer of the major premise, A V B, is used to make Ty. The other part
of the realizer is used to make the realizers of {[4]},, and {{B]} . Therefore, the marking of
AvBis{0ju(Jo+1u{J +1+1(4))

{4) Marking of (2-E) rule application

The realizer of A O B will be in the following form: AT. (tq,---,) = (AT.4g,- -+, AT.tx), where
(tg,--,t) is the realizer of B which contains z(= Ru A) free. The marking of A 2 B is equal
to B.

o b
= g (R
A {ADBh
{Bh =5

The marking of the subtree determined by the minor premise, A, is as follows:

Case 1: R#(2-F)

The marking of A O B only specifies the length and the positions of AZ. {to, -tk)}, snd, for
the input of the function which is the realizer of A, there is no restriction and all of the variables
in T are necessary. Therefore, the marking of A is trivial.

Case 2: R =(2-E)

The realizer of the minor premise, A, is restricted by the marking of [4]. Let J be the marking

of [4], then the marking of A as the major premise is J.

{[;]}J

EL _-i—[::}.j'}

A {A2 B} ‘
{B}s (2-E)

E

4, Marking of Proofs in Induction

4.1 Overflowed and missing marking numbers

The marking procedure for induction proofs is defined as follows:

[z > 0, Az — 1)]
[z > 0,A(z - 1)] - 5o . £
B T Merk ({Aw}}:) M e
| A Alzx) in def .
Mark Vr.A(z)}s (ind) {vz.4(z)}s (ind)

The realizer extracied from a proof in induction is generally the multi-valued recursive call
funetion which caleulates the sequence of terms, £, with the sequence of the terms, s, of the
same length. The length of the sequences is equal to the length of the conelusion of the proof,
the conclusion of the induction step proof, and the induction hypothesis. 7 is the 3-V information
of the conelusion of the induction step proof, and ¥ means the 3-v information of the induction
hypothesis.

The multi-valued recursive function, f, extracted from an induction proof can be expressed as
a sequence of single-valued recursive call functions, f = {fs,- -, fa_1), where n is the length
of the conclusion of the proof. Therefore, if one gives a declaration, say I = {ig,---, 151},
to the conclusion of the proof, the program extractor would generate the code (fi,, -+, fi,_,)
However, it may happen that one of the functions, f; (j € I), calls a function, fi (I & I},
recursively. This means that the lth 3-v information of the induction hypothesis must be used
to calculate the jth 3-v information of the conclusion of the proof. Mark can check which
3-v information in the induction hypothesis is used to construct the 3-v information of the

conclusion of the induction proof.

Definition 8: Overflowed and missing marking numbers

Let I be a declaration to the conclusion of a proof in induction, and let J be the marking of the
induction hypothesis determined by Mark.

1} If a marking number, 1, is in I but not in J, then 1 is called a missing marking number.

2) I & marking number, 7, is in J but not in I, then j is called an overflowed marking number.

If marking numbers overflow, the program extractor cannol generate the right program as
explained above. However, a missing marking number does not prevent the extraction of the
right program. For example, if the declaration contains the marking number, i, the extracted
program contains the following code: pz;.Az.Fi(z,2). If i is a missing marking number, z; does
not occur in Fy(z,z;). Consequently, if I is the declaration and J is the marking of the induction
hypothesis determined by Mark, J C I must be satisfied for the right program extraction.

e

4.2 Flimination of overflowed marking nunbers
4.2.1 Enlarging the declaration

Basically, an overflowed marking number can be eliminated by enlarging the declaration to the
conclusion of the proof. If [is the declaration and S is the set of overflowed marking numbers,

then the marking procedure should be performed again with the new declaration, JTUS. It may
happen that a set of marking numbers, 5", overflaws when the declaration is enlarged, so that

the procedure may have to be repeated. However, the procedure halts at most with the trivial

declaration.

4.2.2 Mested inductions

The elimination procedure of overflowed marking numbers 1= 2 little more complex when an
induction proof contains ether induction preofs and the induction hypothesis of the outer in-

duction is used in the inner induction proofs. For example, assume the following proof:

[A(z = 1)] [Alz = D][B{y -)]

G2 Ls
- B(0) B(y) :
[A(o 1)) T (ind)
Lo L)
A(D) Alz) .
V. A(z) (ind)

Wz.A(z) is proved by induction, and Vy.B(z) is also proved by induction in the proof of A(r).

Assume that the declaration, I, is given to Vr.A(zr) and the marked proof tree is as follows:

{[A(z - D}s A{[A=z = DI} sA[Bly — Dl}ee
o pA

3
Alz = 1)} {B(0)}L {B(y)}ts in
{[[xz;i M {‘qu_E(y}}L (d}
Ty ; T
GOy Eom _
AN (ind)

Let J % Jo U Jy U Jg, then both of the followings must be satisfied:
JCI s (1)
LLCL aaens (2)

If I is enlarged to assure (1), L is generally enlarged so that the procedure to assure (2) needs
to be performed on the new L and LL. On the other hand, if L must be enlarged to assure (2),
I should be enlarged to do that, then J is also enlarged, so that the procedure to assure (1)
needs to be performed on the new values of T and J.

4.2.3 Reverse marking: Mark™!

If induction proofs [13*, .- I} oceur in another proof, Il, which may also be an induction
proof, the declaration to the end-formula of II should be enlarged to enlarge the markings of
1% (1 < § < k). The reverse marking, Mark™!, is the procedure which is used in the opera-
tion. In other words, Mark™" determines which marking is needed for the consequence of the
application of the rule to obtain the specified marking of a premise of the application. Mark™!
is defined straightforward|y as a deterministic procedure for most rules of inference. However,
non-determinism occurs in the following three cases because, when the marking of the major
premise, 5, 1s specified and the marking of the conclusion of the application of each rule must be
determined, the marking, K, of each occurrence of the assumption discharged by the rule must
be determined. In other words, the equation must be solved on finite sets of natural numbers:
Set0p(§) = I;K;, where SetOp is a suitable set operation.

Case 1:
t, Alt)]
Zy ..l;l.
Mark= | 25 A{I”é ¢ (3E) where § £ ¢

II

A(#) neours more than twice as a hypothesis in the subtree determined by €.
Case 2:

(4] [H]
% 5 5
Markt | AAYBlS € C (y.p)| where S# 4 and S # {0}
n

Case 3:

/ 4] \

porl
Lo H
T (2-1)
park— | 14 AB:' B (>-E) where S # ¢
i

\ /

where A occurs as a hypothesis more than twice in the subtree determined by A 2 B.

The modified marking algorithm, M ARK, that makes marked proof trees in which no marking
numbers overflow is as follows. Let IT be a proof tree.

1) Perform Mark(Il). Let l'I} be the obtained marked proof tree.

2) Search for the subtrees in induction ITj*¢,-- -, Ij*, in which some marking numbers overflow.
If induction proofs are nested, the outermost (or innermost) proofs are always picked up. Let

5; be the set of overflowed marking numbers in 11" and go to 3). If there is no such subtree

in induction, go to 4).
3} Let [U % L, be the new declaration to II, and go to 1). L, is the marking obtained as

follows. Assume:

frind
0%
Then, L; is the marking of A obtained by:
mnde
Mark™ —-—%—

4) Return the result of 1).

Theorem 2: Let Il be a proof tree which may contain sublrees in induction, and let T be an

arbitrary declaration to the end-formula of 11, Then,
1} There are no overflowed marking numbers in MARK(IL});
2} There exists a declaration, J, such that I € J and MARK(I;) = Mark(Il,).

5. Program Extractor

The program extractor, NExzt, is obtained by medifying the Ext procedure described in 2.3.
The chief modification iz as follows:

1) If the marking of a furmula oécurrmm, A, is I, then extract the subsequence of the realizer
of A which corresponds to proj(I)(Ru(A)).

2) For a formula occurrence whose marking is trivial, N Ext works in the same way as Bzt
The following is part of the definition of NExi:
e NEzt({A};) S proj(I(Ru(A)) if A is used as a hypothesis

{lAl}n ([Bl}n \

To 3N Lo
+ wEat| VBT TOL 0y
)
{{A]}-ﬁ r’{[B]}h
€ if D then NExt {(E:_‘}f 6 else N Ext {g"-}*j 8

\

where [} is A when A 15 an equation or inequation of terms, otherwise it 1s equal to left =
. Lo
proj(0) [N Ext m and
]

i {projl:Jl}{Rv[.ﬂ],-’tfscq[l, |1 (NEzt ({_A'x?;}ﬂ)]

Ly
. , ¢ .
proi(n)(Ru(B)}tseatl) (N Eat (o))
Note that ¢80 denates the application of a substitution, #, to a term, ¢, and 0 € J;.

{lA]},

{;3} {lAl}s
r Iy | () Ry ot | —2
e NEzf {A:]—B}J'{-J-I} = A prDJ-,I.F){R [A)). NE=zt (‘[B}j’

o I
Y NEat (%E}L(}E}) el N Ext (ﬁ%) (NErf (%))

Lo Ey ‘) |
. Nhat {3z : 0. A{z))s (21 = ¥, ,
NE“({AE:)};J =g

{[t s ex]ac, {[A(E)]} e
B

—_
N B CIER TR b NE“({lfwi}xé{[dml}z,)ﬂ
{Ch

o | A DR A tsea(0) (W E ({am—quxﬁ)) o
where 8 ‘= { o0 (NE“ ({ar:f:{z]}i)}j J if K = {0}, and
gt {pmj{L;(Ru(A{z};];NEﬂ_ ({hiﬁ)} if K = ¢.

2,2 > 0){[A(pred(z))]} s

Lo 3
) {A(D)} {A(z)} -
» NEst : {¥z : nat. A{z]};{- (ind)
fz,z = 0}{[A{pred(z)}]} s
def iz i fx = _E.;,_ else I o
= uz Az if 0 then N Ext ({4‘1—(5)]‘!) se NEzt (A1

where ¢ = {Ruv{A(pred{z)))/Z(pred(z))} and % is the sequence of fresh vaniables with length
[f]. Note that J € T should hold.

— 13—

The following theorem means that the combination of MARK and N Ext is an cxtension of

applying the projection on the program extracted by Ext.

Theorem 3:

Let I be any declaration to the end-formula, A, of a proof tree, TI. Then,

(1) When the [D-I) rule is not used in I, N Ext{ M ARK(Il}) = proj(I){Ext(Il)) holds.

{2) When A is the conclusion of the (2-I) rule application and the rule is not used in the other
part of I, T def NEzt{ MARK(II;)) is the code which is equal to that oblained as follows:

a) Let AT, tz = proj(JH Ext(II}), where T represents the realizing vanables of the assumption
of the (2-I) application;

b} Eliminate all variables from ¥ which do not cccur in £; to obtain the subsequence of the
variables, i;

e] Let T = Ay, iz

G. An Example
The extraction of a prime number checker program is demonstrated in this section. MARRK and
N Ezt can be used not only to extract redundaney free programs but also to extract muliiple

programs from a single proof.

6.1 Extraction of a prime number checker program
The following is a specification of the program which returns the boolean value, T, if the given
natural number, p, 15 prime, and returns F' otherwise.
Wpinat. (p=2223b:bool. ((Vd:nat. (1<d<pa=(d|p)ab=T)
Vidd:nat. (1<d=paA(d|phab=F)}))
where (d | p) L 3r : nat. p=r-d
The outline of the proof 1= as follows:

=

[p:nat] LEMMA

[p:nat] Vz:inat. (2222 Alp, z]]{H'E}
p=22 Alp,p)

¥p:nat(p =22 Ap,p))

(V-E)

(v-I)

where LEMMA 15 Vp : naf. Ve : nat. {(z > 2 2 A(p,z)) and Alp,) =" 3p : nat. (Falp,z,b) v

Pi(p,z,b)), Polp,2,b) = Vd :nat. (1 <d < 22 ~(d|p)jAb=T, and Pi(p,2,b) = 3d :

nat. (l<d<zAn(d|p)ab=F.

(1) Program extraction by Ext
Ezt described in 2.3 generates the following program, where Ext (m) is abbreviated

to Ext(L).

prime = Ap. Et(S)(p)p)
Ezt(T) = Ap. plzo, 21,22, 23)-
Az.if z =0 then anyl4]
else if z =1 then any{4]
else if z =2 then (T,left,any|2])
else if proj(1){(ze, 21,22,23)(2 — 1)) = left .- (+)
then if proj(0) Ezt{prop){p)(z — 1)) = left
then (T, left, any[2])
else (F,right,z — 1, proj(1){ Ext(prop)(p)(z — 1))}
else (F,right, 23(z = 1), z3{z — 1))

Ezt(prop)
4 ym. An. (if proj(1)(Ezt(Th.)} = 0 then (right,proj(0} Ext(Th.))) else (left,any1])

prap is the proof tree of the proposition in anthmetic: ¥m Wi =(njm) v (njm), and Th. is the

proof tree of ¥p.¥g.3d3r(p=d-g+rv0 =T <g)

Ezi(E) is a multi-valued recursive call function which calculates sequences of terms of length
4. It can be obscrved from the program that the fist element of the sequence is the boolean
value, and the rest of the sequence is redund;nt, However, 25 can be seen from the part marked
(), the second element of the sequence is used to calculate the first element. Consequently, the

third and fourth clements are redundant.

(2) Program extraction by MARK and N Ext

o Declaration

The meaning of the realizing variables, (z0,2;, 72, 23), of the specification is as follows: zg is
the varizble for F-information of 3b, z; is the variable for V which connects Py and Py, 23 is
the variable for 3 information of 3d, and z; is the variable for 3-information of (d | p). Let the
declaration be {0} to extract only the boolean value.

o Marking procedure

An overflowed marking number is found during the procedure. The main part of the proof of
LEMMA is performed by mathematical induction, and the marking of the conclusion is {0} and
the marking of the induction hypothesis is {1}, so that 1 is the overflowed marking number.
Therefore, the declaration is enlarged to {0,1} by MARK.

» Code generation by NIxt
The program extracted by NEzt from the marked proof tree is as follows, where T is the

marked proof trce of LEMMA. The chief parl of the program is the recursive call function

which calculates sequences of length 2.

15 —

prime = Ap.N Ezt(Z)(p)(p)
NEzt(T') = Ap. {20, 21).
Az if z =0 then any(?
else if z =1 then any2]
else if z=2 then (T,left)
else 1f proj(1){(ze, 2)(z — 1)) = left
then if proj(0){ Ezt{praop)(p)iz = 1))} = left
then (T, left) else (F,right)
else (Fyright)

6.2 Extraction of multiple programs

Multiple programs can be extracted from the proof simply by changing the declaration, I
Case 1: [= {1}
The extracted cade is the program which returns the constants left and right instead of T and

F.

prime; & Ap.Ty(p)(p)
T, € Ap. pzy.
Az.if z =0 then any(l]
else if 2 =1 then any[l]
else if z =2 then leff
else if z(z 1) =left
then if proj(0)(Ezt{prop)(p)(z — 1)) = left
then left else right
else right

This program can also be extracted from the proof of:

Ypinat. (p=222((Vd:inat. (1<d<p2-(d|p))
V(dd:nat. (1<d<pa(d|p))))

and by giving the declaration, {0}.

Case 2: [= {23}

The extracted program will relum any[2] when the given numnber, p, is prime, and otherwise
returns the sequence of natural numbers (r, s), where p = r - s and r 15 the minimum number
which satisfies this condition. However, 1 turns out to be an overflowed marking number in the
marking procedure for the same reason in the extraction of prime, so that the declaration is

enlarged to {1,2,3}. The program obtained 1s as follows:

- 18 -

primes "< Ap. To(p)(p)
Ty = Ap. plz1, 22, 23).
Az, of z = 0 then any[3]
else if z = 1 then any[3]
else if z = 2 then (left,any[2])
else if proj(0)((z1, 22, 23)(z = 1)) = le ft
then if proj(0)(Ext(prop)(p)(z — 1)) = left
then (left, any(2])
else (right,z — 1, proj(1)(Ext(prop)(p)(z = 1)})
else (right, z2(z — 1), 23(z = 1)}

7. Proof Theoretic Analysis

The phenomena of vverflowed and missing marking numbers were briefly explained in 4.1 from
the viewpoint of the structure of recursive call functions. They can also be explained from the
proof theoretic viewpoint. The forms of the marked induction step proof trees in which marking
numbers overflow or miss can be specified for the normalized proofs [Prawitz 65], 1.e., there
are no redundant applications of rules of inferences. There are four patterns in which marking
numbers may miss: critical (L-E) application, and critical {A-I&E) markings, eritical (3-T&E}
markings, and critical (V-I&E) markings. In addition, there are three patterns in which marking
numbers may overflow: critical (3-E) and (2-E) applications and critical segments [Takayama
89]. Only the critical segment is presented here to illustrate how the proof theoretic analysis is
perforined.

7.1 Critical Segments
For example, assume that the induction hypothesis, A(z = 1), is in the form of Jy. Bz - 1,y) v
C(z — 1,y) and the induction step proof is as follows:

[t] [t]
[B(z — 1,1)] [C(z — 1,t)]
Ly I Mt
[(B(z - 1,))vC(z —1,8)] Alz) A=) (V-E)
{EF,B{:Z -1, LI'} v G{I ~ L I!"” A(I} (H.Er
A=) /
If the declaration, {0}, is given to A(z), the marked proof tree is as follows:
{By. B(z - Ly)VClz-1,y)l}, T _
(4G o S
where the II part is as follows:
{lt]}p {ltl}q
{[B(z—-1,t)]}r {{C{z - 1,t)|}s
o))
{[Blz - 1,)vC(z - 1,1)]};, {Al=)}) (2)hey
(A V-5)

-17 —

P and @ are equal to {0} or ¢, and K and I are as follows:
Case 1: PU@ = {0}
K={0}u{l+1yu{J+{Bz—1,1))
L={0lu(K+1)={01}u{T+2)0(J+ Bz -1} +1)
Case 2: PUQ = ¢
K={0}u(I+1)u{J+{B{z=1,1))
L=K+1={1}u(I+2)U(J+(B(x-1,¢))+1)
Therefore, 1 is the overflowed marking number in both cases, This can be explained as follows.
The realizer of AV [is the concatenation of one of the constants, [e fi or right, and the realizers
of A and B, and the constant is the first, i.e., the Oth element, in the realizer. Also, the constant
is always used to generate the code from the proof in the {V-E) rule. Consequently, if AV B
is used as the major premise of an application of (V-E}, 0 should always be contained in the
marking of AV B, and it is incremented by 1 in the other major premise of (V-E) or (3-E}

which contains A V B as a subformula,

Another example is as follows. Assume that the induction hypathesis, 4(x — 1), iz in the form

of (BY 3p.Cf{x — 1,y)) v D and the induction step proof is as follows:
[Fy.Clz = 1,y)]

(B "BV 3y.C(z,y)
[BvIyClz—1,y)) m, (BVwCiz,y)jvD (v-E) D]
(BV3y.Clz =1,V D] N (Bv3y.Clz,yv D I, (
(Bv3y.Clz,yN)v D
Assume that the declaration, {k} (k > 1), is given to specify the 3-V information of Jy. The
marking of |[BY Jy.C(zr =1, y)] 18 {0}US;s for a finite set, 55. Then, the marking of {{ Bv 3y . O(r —
Ly v Dlis {0,1} U S for = finite zet, 51, and 0 and 1 overflow. These marking numbers

correspond to the 3-V information of two V connectives in A(z). This can be explained, from

v-E)

the viewpoint of compulation, that two decision procedures must be solved before caleulating
the value of ¥ bounded by 3.

Before the definition of the critical segment is given, the intuitive, but not always mathematically
correct in minor respects, definitions of a few standard proof theoretic terminoiogies are given.

See [Prawitz 635 for rigorous definitions.

Definition 9: Segment

The formula occurrences of minor premises in (V-E) and (3-E) rules are in the same form as
their conclusions. Therefore, if there are successive applications of these rules in a proof tree,
they form the sequence of formula occurrences in the same form. The sequence is called a

segmend,

Definition 10: Path
A sequence of formula oceurrences, (A, A2, -+, A,), in a proof tree, I, is called a path iff:

17 A; is a top-formula of II;

2) A, is the end-formula of II or a minor premise of an application of the (D-E) rule;

3} A; {i < n) is not a minor premise of an application of the (2-E) rule;

4) A; (i < n) is a formula immediately above Ay, or A; is a major premise of an application
of the {3-E) or {v-E} rule and A;y, is the assumption discharged by the application in Il.

Definition 11: Critical segment
Let IT be a normalized induetion step proof, and let o be a segment in II. Then, ¢ is called
eritical ifF there ic a formula occurrence, A, in o such that the major premise, B, which is

connected horizontally to 4 is on the path from an occurrence of the induction hypothesis in 11.

7.2 Overflowed marking number in the example in 6
In the program extraction example in section 6, {0} is given as the declaration first and 1 turns
out to be an overflowed marking number. This phenomenon can be explained by the notion of

critical segments.

The part of the pruof of the specification which corresponds to the i f-then-else terin containing
the decision procedure annotated by (=) in the prime number checker program in 6.1 is as
follows. It is given as the marked proof tree with declaration {0}

' {lb,z = 1]}s {lb, = — 1]}
{IPD]}¢> {[Pi]}-t-

{{ z—=122]} {IH}]} Ziie Tz
{23}y U2A@z-D]] gy UV o) {4l {4E2he |, by
{5b. PV Py) {A(p,2)} 0y (3-F)
(Al 2)b
where F; def Fip,z—1,b),and z —1 = 2 2 Alp,z — 1) is the induction hypothesis. As can
be seen from the tree, the sequence of A{p, z) forms the critical segments, and the overflowed

marking number, 1, is generated here.

8. Conclusion

The extended projection method, EPM, was presented in this paper. EPM analyzes and removes
the redundancy in the program extracted from constructive proofs. It performs program analysis
by using proof trees as an enriched description of the program. What is new in EPM compared
to the traditional methods given in [Constable 86), [Nordstrom 83], [Hayashi 88|, and [Paulin-
Mohring 39] is:

1) the transformation from the ordinal proof Lrees to the annotated proof trees, which contain
information about the redundant part of the proofs in terms of the program extraction, is
mechanized;

2} it allows more fine-grained declaration about the redundant part of the proof;

3) the marking system in EPM is independent from the underlying constructive logic so that
EPM gives a general method of program analysis.

EPM also enables the extraction of multiple programs from a single proof quite easily.

— 18

Acknowledgment

My speciel thanks must go to Professor Hayashi from RIMS of Kycto University who read
the carly version of my paper and gave me several helpful comments. I also appreciate the
encouragement of Professor [to and Professor Sato of Tohoku University.

References

[Barendregt 1] Barendregt, H. P., The Lambde Caleulus, Its Syntaz and Semantics, North-
Holland, 1881

[Bates 79] Bates, J.1., “A logic for correct program development”, Ph.D. Thesis, Cornell Univer-
sity, 1979

[Beeson 85 Beeson, M., “Foundation of Constructive Mathemazics”, Springer, 1985

[Constable 86) Constable, R.L., “Implementing Mathematics with the Nuprl Proef Development
System”, Prentice-Hall, 1586

[Coquand 88] Coquand, T. and Huet, G., “The Calculus of Constructions”, Information and
Computation, Vol. 76, pp.95-120, 1988

[Goad 80] Goad, C.A., “Computational Uses of the Manipulaiton of Formel Proofs”, Ph.).
Thesis, Stanford University, 1980

(Hayashi 88] Hayashi, S. and Nakano, H., “PX — A Computational Lugic”, The MIT Press, 1988

[Huet 88] Huet, G., “A Uniform Approach to Type Theory” (to be published)

[Howard 80] Howard, W. A., “The Formulas-as-types Notion of Construction”, in ‘Essays on
Combinatory Logic, Lambda Caleulus and Formalism’, eds. J. P. Seldin and J. R. Hindley,
Aecademic Press, 1980

[Nordstrém 83] Nordstrém, B. and Petersson, K., “Programming in constructive set iheory:
some examples”, in Proceedings of 1981 Conference on Functional Programming Language
and Computer Architecture, pp.141-153, 1953

[Paulin-Mohring 89] Paulin-Mohring, C., “Extracting F,,’s Programs from Proofs in the Caleulus
of Constructions”, 16th Annual ACM Symposium on Principles of Programming Languages,
1989

[Prawitz 65] Prawitz, D., “Natural Deduction”, Almqvist & Wiksell, 1965

[Sasaki 86) Sasaki, J., “Eziracting Efficient Code From Consiructive Proofs”, Ph.D. Thesis,
Cornell University, 1986

[Sato 85] Sato, M., “Typed Logical Caleulus”, Technical Report 85-13, Department of Informa-
tion Science, Faculty of Science, University of Tokyo, 1985

[Sato 87) Sato, M., “Quty: A Concurrent Language Based on Logic and Function”, Proceedings
of the Fourth International Conference on Logic Programming, MIT Press, pp. 1034-1058,
1987

[Tekayama 88] Takayama, Y., “QPC: QJ-Based Proof Compiler - Simple Examples and Analysis
-" European Symposium on Programming ‘88, Nancy, 1588

[Takeyama 89] Takayama, Y., “Proof Theoretic Approach to the Extraction of Redundancy-free
Realizer Codes”, to appear in 1989

—_—) -

