ICOT Technical Report: TR-456

TR-454

Deriving an Efficient Production System
by Partial Evaluation

by
K. Furukawa & H. Fujita

March, 1989

L1989, ICOT

Mita Kekusa! Bldg. 21F (03) 406=-3191~5
" :D | 4-28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



Deriving an Efficient Production System by
Partial Evaluation

Loichi Furnkaws aud Hiroshi Fujita

Lustiture for New Generation Computer Technology,
1-4-2% Mita, Minato-kn, Tokvo. 108, Japan
Toraatsu Shintam

[TAS-FUIITSU LIDMITED
L ALivanmoro, Nusen-shi Shizuoka. 410-03. Japan

ABSTRACT

A great deal of researel Las been done on applving partial evaluation for optimizing
weta-prograns in Prolog, sucl as a rule interpreter with a certainty factor, 5 hottom
np parser atd a foruils manipulation system, It has been elaimed thar rhe technigue
i= very useful m developing various inference eugines for knowledge based svstems.
However. nobody Lis sneeeeded in deriving an cfficient prodnction system { PS) through
partial evaluarion. This paper presents the derivation of an efficient PS by partially
evaluaring a simple PS interpreter. given a set of rules. The derived codes are showy to

be very similar to the compiled codes given by [Shintani B8]

1. Introduction

The rowhingtion of rule interpretation and partial evaluation has been noted as
pronusing approach in developing various inference engines for knowledge based sys-
tewss. It replaces the rule compiling approach, which has dominated so far. The new
approwch divides the whole task of compiling iuto two subtasks: rule interpretation and
its partial evaluation, This division makes the entire task much more undersiandable
than the origiual cowpilation approach. Furthermore. it enables VETY a5y maintenance,

such as modification and debugeing.

Tt should be nored that logie programming supported this approach for two reasons: ease
of writing iurerpreters by meta-programming and case of developing partial evaluation
techniques in logic programming [Komorowski 82].[Venken 84, |Gallagher 86],[Takeuchi
86, Many applications have heen developed using this approach; examples are a simple
rule interpreter with a certainty factor. a hottorn-up parser and a formula mwanipulation
systeml. However. the applicability of the technique was rather lmited in terms of control

structures: if the target interpreter has a control structure which is very different from



that of Prolog. it becomes very diffieult to optimize it by partial evalnation, The only

exeeption so far was o bottoneap interpreter | Takeuehs 85).

There was an attewpt to derive an officient PS through partial evaluation [Takeuch
87, but 1t failed o derive o P35 as efficient as that based on the Hete algonthm. This
paper presents a new techuique for deriving an efficient PS. The techmque depends ou
a PS aleorithin developed by [Shintani 83]. In other words. we sitccesded in developing
s compiler equivalent o Shintaui’s by the combination of a simple PS interpreter and

it partial evaluation.

Section 2 gives a simple PS iuterpreter in Prolog together with partial evaluation of
the recognize predicate, Seetion 3 describes a working meniory driven PS interpreter
and its partial evaluation, Section 4 looks at further optimization. Section 3 deals
with conflict resolution programs iu Prolog. Section 6 gives the perfornnance evaluation
results, showing how mueh the partial cvaluation improves the execution tiwe of the

PS. Section 7 1s the conclusion.

2. Simple Production System Interpreter

Let us first consider a simple production svstenn (| PS) without conflict resolution han-
dling. It is well knowu that the fusdamental control strueture of a PS is the recognize-act
cvele. and it is casy to define s PS juterpreter in Prolog using the meta-programuming

techuigue shown in Fig. 1.

The prodSystem predicate has three arguments: the first arguent represents the cur-
rent working memory (WM}, the second the final state (FinalState) and the last a se-
quence of applied rules” identifiers for reaclung FinalState. The defimition of prod3ys-
tam expresses the recognize-act cyele using tail recursion. The st clause of prodSystem

1+ o tertnination,

The recognize (WM, Ruleld ,RHS) predicate means that a production rale whase identi

fier 1= Rulald is recognized at the current WML and its right hand side 15 RES. recognize
first picks np a production rule frow the clause database. Then, it tries to prove its
left hand side. LHS. in the eurrent WM. by deduce (LHS WM. It i< assumed that there are
only two types of goals on the LHS. They are either goals for alling arbitrary Prolog
programs. which are in the form of call(. . .), or literals whose existence is checked in

the eurrent working menory,

The act (RES,WM, NewWM) predicate weans that the result of applying the RES to the

current WM is NewwM. We nssume that the only action conunand against the working

2



= oopl200,xfx,? 7).
- oopl1580,xfy,=>»).

prodSystem{WM,FinalState,[]) :-
member (FinalState , WM) .
prodSystem(WM,FinalState, [RulelD|AppliedRules]) :-
recognize(WM,RulelD RHS),
act (RHS, WM, NewhM) ,
prodSystem(NewWM,FinalState,AppliedRules).

recognize{WM,RulelID,RHS) -
rule(RuleID - LHS => RHS),
dediuce(LHS WM .

deduce([],WHM}.
deduce([CICs] ,WM) :- deducel(C,WM),
deduce{Cs WM .

deducel(ecall(X),_)} := call(X).
deduce1 (X, [X|_1) :- member(X,wM).

member (X, [X]_]).
member (X, [_I1¥]) - member(X,Y).

act ([],WM, WM} .

act([Act]|As] , WM, New_WM) -
act1(Act WM, Int_WM),
act(As,Int_WM, New_WM) .

actlireplace(X,v),[],0]).
acti(replace(X,Y),[XIL],I¥IL]).
acti(replace(X,Y),{ZIL],[ZIL1]) :-
actl(replace(X,Y) L, Lt).
actl({call(X),WM,WM) :- call(X).

Fig. 1 A simple PS interpreter withou! confliet resolution ha,n{lling__

memory s replace(X,Y) which means to replace an element X of the enrrent working

memory to ¥ icall(, . .) is allowed in BHS also).

Although this interpreter is very natural in its hehavior. it is hard to make it efficient
by partial evaluation. To prove this fact. let us trv 1o partially evaluate the interpreter.,
given a sef of production rules for solving the eight-puzzle. Since production rules
ave ealled from the recognize predicale, we concentrate on the partial evaluation of

recognize. defined as:



recegaize(WM, Ruleld RHS) :-
rule(Ruleld : LHS => RHS),
deduce{LES, WM} .

A st Flant we bavee the f:r]l]ﬁwin,‘l-; il

rule(testTiled:
[goal({putlileQ},t(0,0}]
=3
[replace(geal (putTile0) ,goal(putTilel))}]).

This rule is a rule for testing whetler tile 0 15 put i the vight position or nor. If i

is. then the working wewory elewent goal(putTile0) is replaced by goal(putTilel).

Given this male. the recognize clause is specialized as the following eline:
recocgnize(h,testTilel,

[replace(goal (putTileld) ,geal (putTilel}]}} :-
deduce([goal(putTiled) ,£(0,0)],4).

Asoa resnlt, we will have o set of I'i"i'ﬂglliﬁ-*‘ clanses (‘:l-[rt-"-:l:um]i:1;|‘_=; rion iy [11'(3:]1“"[1{511
rule. Sinee there is no information for selecting the wost appropriate racognize clanse
from thew in run thoe, this speeinlization does uot change the essential strategy of

testing rules one by one from the beginning until & recoguizable rule 15 found,

3. Working Memory Driven FPS Interpreter

To significantly immprove performanes by partial evaluation. we need to wtroduce the
working memory ddriven rule selection straregy {we assune that we do not have awy
negative pattern on LHS=). & new mterpreter with this feature i obtained by modifyiug

tlie prodSystem and recognize predicates. as shown in Fig. 2

To add the working memory driven feature, an extra argument is added to the rec=
ognize predicate. Itis in the forn of recognize(Fact WM Ruleld JRHES), which mweans
that a rule named Ruleld containing o fact. Fact. ou its LES 1s recognized in the eur-
rent WM. The new argument. Fact. is o member of the current WM, as defined in the
new prodSystem predicate. The new argument is used to filter production rules which
do not contain the fact on their LES. The filtering is doue by the del (X, LHS,NewLHS)
predicate. which means that the result of deleting element X frou List LES 15 NewLHS.
The deleted element is unified wirh 4 given fact. Fact, for filtering. If the nnification
suceeeds, then we need ouly deduce the rest of the LHS. that 15, NewLHS. Note rhat tluis
strategy works even if we Lave negative patterns in condition parts. as long as every

rule Las at least one positive pattern on its LHS.

4



prodSystem(WM,FinalWM, [Ruleld|AppliedRules]) :-
member {Fact WM},
recognize(Fact,wWM,Ruleld ,RHS),
act (RHS ,WM,NawWM) ,
prodSystem(NewWM,FinalWM,AppliedRules) .
prodSystem(FinalWM,FinalWM []).

recognize{Fact WM, Fuleld RHS) :-
rule{Ruleld:LHS=>RHS),
del (Fact , LHS ,NewlLH3),
deduce(NewlHES , WM .

del (X, [X1Y],v).
del(X, [&1Y], [alZ]) - del{X,¥,Z).

Fig. 2 Working memory driven PS interpreter withont conflier resolution Lz ling

Interpretive cxceution eannot benefit frons this reick sinee it still needs to test rles
one by one. On the other Band, the filterine ean be dous at partiad evaluation time.
and the residnal prograw afrer partial evaluation does not ot ain Aaly cases hat wonlel
be filtered Tne the lack of any WA elemienr in its LHS during recognize predicare

e 0L

Let us lookat the partial evalnation process of the new PS mterpreter. givell @ set of

vules. Like the previous case. the recognize predicare

recegnize(Fact ,WM,Ruleld ,RHS)) ;-
rule(Ruleld:LHS=>RES),
del(Fact ,LHS,NewlHS),
deduce(NewLHS ,WM) .

1% specialized for the given ruie <et. Sinee rule is defined as a sot of facts. the recognize

clanse above s unfolded at rule as hefore.

., del. defined gs

del (X, [X]¥],y).
del (X, [al1Y],[A1Z)) :- del(X,Y,Z).

becontes unfoldable, heeause LES in the poal del (Fact , LES, NewLHS) is mow instantinted

to a fixed lengrh hst with whicl del may recur.

Aﬂerﬂuﬂ,deduEEfHeHLHS.HH}hlnnﬂFwwnnw5thﬁrandkhurﬁnﬁuﬁugunﬂﬂdﬁi How-
ever, it should not be unfolded because WM is still nubound in partial evaluation time.
Thus deduce calls are made residual (o precisely, the goal not to be unfolded is not

deduce. hnt deducel).

[y ]



Fow instanes, given the following role:

Tulel{testTilel:
(goal (putTile0),t(0,0)]
=>
[replacelgoal (putTiled),goal (putTilet) )] ).

tlie recognize clanse 15 specialized as two clanses for testTile0 rule due to the non-
derernnuacy of del:
recognize (goal{putTilel) 4, testTiled,

[replace(goal (putTilel),goal(putTilel})]) -
deducei{t{0,0) 4.

recognize(t{0,0) A, OAtestlilel,
[replace(goal(putTiled),goal{putTilel))]) :-
deducel{goal (putTile0} A} .

In normal cxecution. the apan fontpa nuede for recognize 1= (+,+,=): henee, rec-
osgnize should hecome evaluable only when the frst snd second argiments are instan-
tiated. However. the infended supar foutpuat mode for recognize is veally irrelevant
i partial evalnation time. The hackward propasation of the instantiation of the first
arpunent cansed by ealling rule and del nnder an uninrended input fontput iode eon-
tributes to the nerease o efficieney of the resulrang codes despite the decreased space
efficiency caused by the inercased munber of elanses. Note 1hnt partial evaluation does
not filter irrelevant rules. Iustead, rhe hackwand propagation causes the same effect
as filtering. Although we have exclnded irrelevant combinations of the first argument.
Facr. and rules 1o be selected. the vast nuber of new recognize clanses may give rise

tooa uew problem for selecting an appropriate rule,

Thix problem is solved if the underlyving Prolog svstem supports elause indexing for the
recoguize clanses, given their first argunents. but in fact, clanse indexing is not essential
for =olving this problem. By introdicing a new predicate for each distinet value of the
fir<t argument of the recognize cliwses, the siune good performanee 15 obtained. This

predieate troduction ean be easily done by applving folding.

The guestion 15 how far the efficiencey will be nuproved. If we assume chae the nomber
of candidate mules containing one or more current working weory elements is roughiy
ronstant for any working memory state, then the residual program aclueves time com-
plexity independent of the rule set size. Since the orviginal mterpretation requires time
corplexity proportional to the rule set size. n. this means that we can expect the speed
of programs to be inereased to the degree that the order of tiue complexity 1= reduced
fromw O{n) to O1). This is contrary to the commeon beliel that partial evaluation cannot

rediee the order of tie complexity.

=



There rewwins room for further improvement of the recognize predicate by sorting the
wiorking wemory i terms of receney of updated thne, The reason why this modification
brings nnprovement is thar changes of the working wenory often imake some rules newly
recogrizable. The performance imeasurement result in Section 6 is hased on the improved

TETSION.
4. Further Optimization

The vecomnized rale I recognize 15 roprosented with its whole RHS which is instanti-
ateld i-|-.'l":"|'l.|..lll|‘.": too LHS satistaction, e, Leads of '-pl-‘::‘izl,ij:q'l:l Iecognize clanses tend
to have o lavge strneture after wufolding rule as the result of Lackward substitution.
This may lead s extra consumption of code space and also be by load on head

mnfication of recognize at runlime.

However, it is sufficient to have a rale ID and a set of variables whicl: will be instantiated
e positivele uwatched elewents in the WAL in order to represenr the rocopnized rule and
1o obtain the corresponding ustantiation of the RHS for action. Appendis 3 shows a
rike deseriprion which includes a variable list for this purpose. Using the variable list.
hesds of specialized recognize clanses can be made more conpaet. thereby saving space

aticl ripne furtlor,

There 1= aother possibility for optimization. The act part wsninlle contains a lot of com

patation other thag WAL operation. Sueh auxiliary action is allowed through call(X)
ot both the LIS and RHS of & rule. Thus a program for X becomes the target of
partial cvaluation, The ligures shiown in Section § demonstrare that significant speedug

s opehaeved T rhis optimdzation,

5. ConfHict Resolution

The sunple PS duterpreter disenssed ahove takes the first recognized mule as the next
rube o be fived aud mever considers other eandidate ruales recogizalile in the sawe cvele.

It il work fon some applications like the eight-puzzle and Rubiks cube problems,

However, the siple PS iuterpreter can be extended to deal with a conflict sef and
to eorporate conflict vesolution straefegies sueh as the conventional LEX and MEA

strategies used in the OPSS family.

Conventional strategies for coudlict resolution are based on several criteria on matched
eletents and the LHS of a n—-l-ngniy,ml mmile such as:

¢ [ecency (Lhow peceutly hias the element heen added to WM

T



o Sipuificance (How sipnificant is the element ™)
o Support (how many elemments support the LHST)

o Complexity {Low complex is the mateled LHS?)

The recency ordering can e muplemented easily by emploving a st structure for the
WAL A vew element s placed at the head of the hst. The recognize predicate picks
np elenients starting at the Lead of the list: henee, the recogmzable mles are antomat-
wally ordered aceording ro the reconey of watehed elements. That s & rule whicl is

(positively | sapperted T s wore recent element is recopnized earlier.

I imany application=. there ave some special elenents i working memory which are far
more significant theios othier elewenrs, For instance, geal (_) i the monkey and banana
problemn (see Appendix 3) can be taken as the most sigmficant element, A rale whick
15 supported by aowmore stenificant element should be recommived earlier. An casy war

o imuplement this strareey is to foree the user fo supply some declaration sneh as:

more_significant{geal{_ ), _J.

.-h‘rm-:]ing ey this urrh-ring cleclaration. o mew eleinent shoald be fserted 1 e s s

priste peosition e the WWAT Jiar,

An boplementation of a PS interpreter incorporating the conflict resolution stratest is
given iu Appendix I This interpreter runs the monkey and banana Problem [Brownston

83] in the same way as OPSH under the MEA strategy.

Note that there way be possibilities of specialization of codes for confliet resolution.
For instance, length i rhe select predicate in Appendix 1 can be ealeulated when o

rule 15 given.
6. Performance Evalunation

We measired perfonuance nprovement by partial evaluation using the Rubik’s eube
example, We divided the entire problem into five subproblems: “perfect front edges™.
Tperfect frow [face™, “two perfeet lavers”. “perfect top corners” and " perfect eube”. The
first row gives the nunber of rules required to solve cach subproblern. Note that any
subproblem contains its left subproblemn. The secoud row shows the computation times
required to solve cach subproblem using the naive production systew interpreter with-
out any partial evaluation. The third row shows the couputation times after optinizing
the call predicates i the action part, The wmain call predicate is to compute the next
cube state by applving o given sequence of operatious. Fig. 3 shows the improvement

ratio representiug the factor of improvement by optinnzing call predicates. This graph

8



Table I Perforanee results of the Rubik's cube pralilem

S T Froor | Fromr Two Top s
| Stag [ vl I fare layers | corners Finish |
: :"-:1111'51_::1"1{ ritde= | I: | ™ 34 | 40 i Gl |

(L) Nawve PS 1 400 | 600 1119 1520 2630
Ot . . ! | o
| oy Vptimtzed s 320 870 1219 | 187
FE S TRV | |
see— ! - | - ;
gy Dpeciatized 219 200 400 479 ‘ 360 ‘
i recogie ) i

P O U erine (musee | by SICSTUS Prolog on SUN-3

shiewes that the performmanee <peceds g by abont 1.2 1o 1.4 thnes more than the originl
progran. The Tist vow wives the perforance results for the further optiized propram
by partially evaluating the recowtaze pare. Fig. 4 shows the buprovemwent ratio. repre
senting the factor of improvewsent given by further optimizing the recosnize part. This
El'i"lj_]]l shows thar the illJ|}I'rn'1-l_J|']1T i+ linear to [l‘lr‘ =ize of the tale goder wlielr wis
proedlicred i Seetion 30l total, we obioined e perforuanee nnprovenwnt of 1.8 to 4.7

thues, depending on the nher of pules.

7. Comparison with Related Research

This section compares omr wethod with the RETE and TREAT algorithins, As stated
carlier. our new method adoprs Shintani’s algorithin, The difference hetween them is
the venlization method of the compiler, Both the BRETE and TREAT aleoritlins store
aoset of workineg emory elements to a memmeny (called the alpha mewory ) associared
with each of the left hand side elements {condition elements) of each mile. This set is
an answer =t for the database query consisting of & condition olewent regarding the
v.'utkjng LLEELOEN as A relationn] darabase [1‘151'&11]]{1’,"1' tn-lj Oar n]guri[lu:;, Ligvwever, does
uot aintain amy partia] matelone results, Instead. it associates a set of eandidare
rules with cachi possible pattern of working memory elements, By this sssociation, we
1L r.]llit']:‘.l} aecess relovant rides which Ay P onne It-':_'n_r:l,uizui}lil after the ohs HELLE of
aoworking mwemory. This corvesponds to the feature of TREAT which caleulates the
derivative of the confiiet set from a seed. The main difference hetween our algorit L
aid TREAT 1s that we do not perform anv join to ealeulate e demivative, Tnstead,
we perforn test operations for each retnainng concition of the candidate mles. A wet
of all rule instantiations recoguizable for the current working memory is obtained T
corubining compilsory fail and the backtracking mwechanisin in Prolog. A wore detailed

performance comparison is left for future research.

8. Conclusion



performance improvementl:
(tLimes)

ratio

Fig.

(times)

performance improvement

ratio

Fig.

namaimﬂﬂﬁ__ﬁ_f_F_ﬂﬂ_afc

3

10 20 30 20 30 &0
number of rules

Performance improvement brought
by the act part optimization

4

10 20 30 40 50 60
number of rules

Performance improvement brought by
the recognize part specialization

10



Tlias papeer presented an approach to developing s produetion svstem compiler by com
Bining o 'S wterpreter auud o general partisl evaluaror, We developed s working memeory
driven lrerpreter to obtain maxinnun performance nnprovement by partial evalnation.
The residnal codes after parnal evaluation were shows to be eguivalent to these obtained

e o cowpiler developed by [Sluntant 83|,

The performanee iuprovement 1= about two tines when the sule set s small aned withont
couflict resolntion. We also showed that we can expect the speed of programs to e
mwerens=ed to the deeree that the order of tine complesxary s rediwed from 4] 1o O] 10,
This s comtrary to the common belief that partial evaduation eannot reduee the order

Hi PliLLes "'f'llﬂllilll‘.\'.i.ll'n.'..

Wealso developed s complere version of the PS mrerproter which handles conflict resolu
tion. negative patterns. and delete commeands for working mewory npilate, Performance
mnprovernent of the complete PS wis nhout 3005 <peeding less than one second of CPT

tiine ) for & sample problews monkey and Danang  Brownston 530

COr production system program does net 1se any assert retvact primitives for rep
uw-miug the 'l.'n'i.'n'l.'.iug wenwny and conflicr set, Furthermwore, tle Jrrogracn st
i~ simple enough to deternnne mpnr fonrpor onles for enely prediciet e argunent . and
thervefore it seews possible to trausformw it to an cquivalent FGHC program by apply-
g Leda’s tropsformation meihod [Ueda 561, Thas further transformation is & furare

researel) sl l-ji Wl
Acknowledgement

References

(Brownston 85] Brownston, Lo Favell, 1) KL and Mantin, N “Programing expert
systemn e OPS57. Addison-Wesley, 1935,

Bekke 8G)  UBrekke. B Bowehmarking Expert Systemn Tool Performanee”. Ford
Avrospace Teell, Nore, 1926,

Forgy 817 Forgy, O L., “OPSS User's Mammal™, CMU-CS-51 135, July, 1081,

Forgy 82| Foren. CL Lo "Reeter A Fast Alzovithon for the Many Pattern/ Many (Ohject
Pattern Mateh Problens”, Artificial Iurelligenee 19, pp 17-37. 1982,

[Fujita 88] Fujita. H. and Furukawa, K., A Sell-Applicalile Partial Evaluator and Tts
Use in Inerewental Compilation”. Proe. of Workshop on Partial Evaluation and
Mixed Computation, GL Avernes. Demnark 1957, New Generation Coapnting,
Vol 6. Noso 2030 1988

11



Futanme 83) Furtanmra, Y. "Pariial Comwpuration of Programs”™. Lecture Notes in
i anpoter Science 147, Springer Verlng. 1083,

[Gallagly v 867 Gallagher. J.. “lrapsfonuing Logic Progrus Iy Specialising Tu-
verpreters. In BCALSG Tth European Conference on Artificial Tntelligence.
Brighton Centre, United Kingdom. pp.109-122, 1956,

[Komwrowski 22 Kowerowski. HoI. “Pastial Evaluation as s Means for Infereneing
Date Strnerures in an Applicative Langusge: A Theory and hoplementation in
the Ciase of Prodog.” Tn Niwth ACM Symposivn on Priverples of Programming
Lawquages. Albnguergne. New Mesieoa, pp 203-267. 1982

[Teowenl<ki 79] Kowalski. R Toewe for Problem Solving” . Elsevier Noreh Hollaoel.
1979,

{(Lesser 77] Lesser. VR and Erpsne LD <A Retrospeetive View of the HEARSAY 11
Arclutectnre”. Proe. Fifth LICAL pp 790-800. 1977,

[Matsumoto 83] Aarswmoto, Yo Tanaka. Ho. and Kivono, M. “BUP: A Bottom-up
Parser Emhedded in Prolog”™. New Generation Computing 1. No, 20 1933,

DIeDermort 78] AeDermott, T Newell, AL and Moove. J.. “The Efficiencr of Certain
Production huplemenrations™, in Patteru Directed Inference Svsrems { Water-
man, Do A aned Hayes-Roth, Foooeds ) Academic Press, ppa135-176. 1978,

[Mirauker 87) Mirauker. D P "TREAT: A Berter Match Aleorithm for AT Production
Svystens”. ANALST, ppd2-47. 1987,

MDhzoguehi 83] Mizoguehi. o Aiwa. K., and Honma. Y., “An Approach to PROLOG
Basis Expert Systend”. Proe. of the Logie Programming Conferonee "83. Tokyo.
Marel, pp.22-24, ICOT. 1983,

Navak 88] Navak. P Guputa. A.. aud Rosenbloom. P ~Cawmparison of Rete and Treat
Produetion Matchers for Soar (A Sununary)”™. AAALSS, pp.693-6G93. 1938,

Sginraui 86 Shintani. T Katavama, Y. Hiraishi. K. and Toda, M., “KORE: A
Hybrid Knewledge Programmsng Environment for Decision Support based on
A Logic Programming Lanenape”. Lecture Notes in Computer Science 264,
pp.22-33. 1956,

Shintani 88] Shintani. T.o =A Fast Prolog based Production System KORE/IE™, Proc.
of the Fifth Tuternational Conference aud Symposinm on Logie Programming
(Rowalski. T AL sl Bowen, Ko A eds )0 MIT Press, pp20-41, 1988,

[Takeueli 86] Takencbi. A and Furakawa. K. "Partial Evaluation of Prolog Programs
and Its Application to Meta Programmmg”. Inforuation Processiug 86 { Kuger
H. 1. ed.). Dublin, Ieeland, ppod15-4200 North-Holland. 1980

[Tokenchi 87 Takeuchi. A aud Fujita. H. “Competitive Parrial Evaluation - Some
Remaming Problems of Partial Evaluation”™. Proe. of Workshop on Partial Eval-
uatien and Mixed Computation. Gl Avernes. Denmark 1987, New Generation
Computineg. Vol 6. Nos 2,30 1035

12



[Veuken 84] Venken. K. A DProlog Meta-interpreter for Partial Evalnation and Its
Applicarion ro Source to Souree Transformation and Query-Oplimization.” Ty
O Shea T (e ) ECAT-84. Advances in Artificial Intelligenee, Prsa, flaly North-
Holland, pp 01-100.. 1084

13



Appendix 1 PS interpreter with conflict resolution

- ﬂp(lﬁﬂ,xfy,=>j,
;- opl(14%,xfy,=:).

A top level loop

p:odSys:em{HK,Finalﬂtate] -
memper(FinalState WM).

prodSystem{WM,FinalState) :-
member (Fact WM),
bagof (Rule,recognize(Fact ,WM,Rule) ,C5),

% C8: conflict set

select(CS,Rulel+LHS1),
act(Bulel ,LHS1, WM, NewWM])
prodSysten(NewWM,FinalState).

%% recognition phase
recognize(Fact WM, Rule*LHS) :-
rule(Rule,LHS=>_},
del (Fact ,LHS,RestLHS),
deduce(RestLHS ,WM) .

del (X, [X=:V|v¥],¥) := X=V. Y% memorize the matched pattern
del{X,[XI1Y],¥).
dedl (X, [AIY], [A1Z]) :- del(X,Y,Z).

deducal [C1Cs] ,WM) - deducel{l WM},
deduce{Cs,WM).
deduce([],_).

deducel (call (X),_) := call(X).
deducel (X=:V WM) = member (X WM}, X=V.
Y% memocrize the matched pattern
deducel (X, WM} - member(X,WM).
deducel(-X ,WM) :- deduce_negative(X,WM). Ui mnegative pattern

deduce_negative(X,[X|_]) :- !, fail.
deduce_negative(X,[_|WM]) :- deduce_negative(X, WM).
deduce _negative(_, []}.

W act phase

act(Rule,LHE , WM, NewhM) -
rule{Rule, LHS=>RES), %% retrieve the corresponding RHS
act1(RHS WM, [],KewWM) .

actl([call(X) |RHE] , WM, AddWM, NewWM) -
call{X},
actl(RHS, WM, AddWM, FewWM) .
act1([replace(X,¥) |RHS] WM, AddWM, KawkM) :-
delete(X,WM,WM1), ¥¥ remove ¥ from WM
act1(RHS WML, [Y|AddWM] , NewWM) .
Y% add ¥ tentatively to AddWM

14



act1({[+X|RHS] , WM, AddWM, NewWM) :-
act1 (RHS, WM, (X | AddWM]  NewWi) .
Wh o add X tentatively to AddWM
actl([=XIRHS] WM, AddWM, HewWM) -

delete(X WM,WML), 1% remove X from WM
act1(RHS ,WM1, AddWM, NewkM) .
act1{[stopl_1,_,_,[]). W4 terminator

actl1([],WM, AddWM NewWM) -
acdd (AddWM WM, NewWM) . %%  2dd elements in A4EWM to WM

delete (X, [X|WM] WM} - 1.
delete (X, [Y|WM],[YIWM_]) :- delete(X,WM,WM_).
delete(_,[],[]).

add { [X | AddWM] , WM, NewwM) -
add1 (X, WM, WH1),
add (AddWM, WM1, NewWM) .
add([] ,HewWM  NewWM)

%4 more significant element is to be placed at the head of WM
add 1 (X, [YIWM], [X,YVIWM]D - more_significant(X,Y).
add1 (X, [Y|WM], [YiNewwM] ) -

more_significant(¥,X), add! (¥ ,WM,NewWM).
add1CX, WM, [X|wM] ),

member (X, [X1_]}.
membar (X, [_I1Y]} :- member{X¥,Y).

Ak select phase (more complex rule is to be selected)

select ([R1*LHS1 R2#LHS32|Rules] ,Rule) :-
length(LHS1,L1)}, length(LHS2,L2), Li=<L2,
selact ([R2+«LHESZ|Rules] ,Rule).

gselect ([R1,_|Rules] Rule) :-
select([R1|Rules], Rule).

select([Rule] ,Rule).

Appendix 2 A rule from the monkey and banana problem

rule(’'Holds: :Object-Ceil’,

[ goal(active,holds,D1,0n_g,To) =: Goal,
phys_object (D1,P,light,ceiling) =: Object,
phys_cbject (ladder ,P,_,floor),
monkey (At _m,ladder ,nil) =: Monkey,

- phys_cbject{_,_,_,01) ]

[ call({nl,writae('Grab *),write(D1),ni}),
replace(Goal ,goal(satisfied,holds,01,0n_g,To)),
replace(Monkey,monkey(At_m,ladder,01)),
replace{ﬂbje:t,phyﬁ_nbjectiﬂi,P,light,nil)) 1.



Appendix 3 A rule with a variable list

rule('Holds::Object-Ceil’(4,B,C,D,E,F,G,H,1,]),
[ goal{active helds.4,B,C) =: D,
phys_object{A,E,light,ceiling) =: F,
phys_cbjsct(ladder ,E,G,floer),
monkey(H,ladder ,nil) =: I,
- phys_object(J,K,L,A) ]

[ call({nl,write("Grab '), write{d) nl}),
replace(D,goal(satisfied,holds,A,B,C)),
replace(I ,monkey(l,ladder 4)),
replace(F ,phys_object(A,E,light ,nill}) 1).

16



