ICOT Technical Report: TR-454

TR-454

Partial Untfication over Records

by
K. Mukai

March, 1959

1989, 1COT

Mita Kokusai Bldg 21F (03} 456-3191~5

IGOT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokys 108 Japan

Institute for New Generation Computer Technology

Partial Unification over Records
Kuniaki Mukai

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

Abstract

This paper’ introduces a domain of infinite trees for linguistic information. An
infinite tree is an extension of a list of attribute value pairs or a directed acyclic
graph. A tree is supposed to be arity-free. The main results of this paper are that
{1) & theory of partial unification is presented, (2) a solution of partial equality is
defined over the domain, and (3) the equivalence between partial unifiability and
solvability is established.

Based on these results, a class of Horn clange programs is introduced and
is given hoth a maximal semantics and an operational SLD semantics over Lhe
domain. Soundness and completeness are ohtained with respect to the two se-
mantics. Furthermore, as just a contraposition of it, soundness and cormpleteness
of the negation as failure rule are obtained.

1 Introduction

Linguistic theories are theories about linguistic information and they are described
in terms of constraints over linguistic information. Then, how is linguistic infor-
mation represented? A non-controversial answer to this may be that linguistic
information is represented in a record-like data structure.

In unification-based grammar formalism, for instance, a linguistic ohject is
represented in a kind of (finite) directed acyclic graph (DAG). DAGs are often
called feature sets. The formalism studies constraints over linguistic objects, whose
basic form is almost always given in phrase structure rules.

Now, what is the declarative semantics of these linguistic constraints over the
DAG domain? Pereira and Shieber {84) gave a general picture for such semantics
based on Seott's domain theory. However, they did not give enough details so
that completeness and soundness results, for instance, would be obtained for the
semantics,

The objective of this paper is to propose a domain of a record-like structure
for linguistic information. As a record-like structure, we have in mind a list
of attribute-value pairs. The domain is called the PTT domain, which can be
seen as an extension of the (complete) Herbrand universe, We will give a simple
constraint theory similar to the equality axioms for finite Herbrand terms. The

"This is a revised version of the original one hy eliminating several errors and confusions. Alsa
this version will appear under the title “ A Constraint Logic Programming over Record Algebra® in
the proceeding of the Japanese-Swedish-Ttalian joint workshop on Concurrent Logic Programming and
Constraint Logic Programming at Pisa, June 26-27-28, 1980

most important aspect of our theory is that we can construct a solution for any
ronsistent set of our constraints. Based on this lemma, we will prove that our
semantics of a grammar or a program is sound and complete. Our semanlics,
however, takes the largest model instead of the least one which is usual. Thus, we
obtain a unified declarative semantics for PATR-IT like grammar lormalisin and
logic programming ever the PTT domain.

Let us explain one of the non-trivial points of this research. Linguistic in-
formation has partiality, that is, there is a partial order relation between items
of information. For instance, in our notation, introduced later, the information
{mfa,nfb1/c} is said to be larger than {m/a,n/b}. Moreover, {m/a,n/b} and
{ife,n/b} can be merged into {m/a,n/b,{/c}. By contrast, in the standard logic
programming over the Herbrand universe, two terms which have different num-
bers of arguments, say, f(a,b) and f(a,b,c), are guite different objects. Thus, this
partiality in our domain causes a new difficulty in generalizing the satisfiability
notion of equations in the Herbrand universe to our PTT domain. The technical
heart of this paper is to define a new satisfiability relation so that satisfiability
and unifiability are equivalent as in the standard case.

Now let us make some comments on related researches from our point of view.
First of all, Definite Clanse Grammar (DCG) [Pereira and Warren 80] is an in-
stance of unification grammar formalism, which is embedded in Prolog. However,
linguistic information is required to be represented in a usual first order term
(FOT) in DCG. Because FOT is a degenerated form(Shieber) of record represen-
tation, our rescarch may be said to give a more linguistically motivated semantics
for DCG formalism.

The PTT domain is designed to give a computational model for situation
semantics [arwise and I'erry 8] or situation theory [Barwise 85| in logic pro
gramming. Situations are central objects in situation semantics. A situation is
represented by a set of state of affairs. A state of affairs is a Lriple of the form of
{ R, a,p)), where R,a, and p are relalion, essignment, and polarity. Each relation,
say, R, is associated with a set of argument places, arg(f). The order of argument
places is meaningless. An assignment is a partial function which assigns objects to
argument places in arg{ £). Consequently, an assignment is the new type of object
to be represented in computer languages for semantic analysis of natural langnage.
Then, the PTT domain was designed to represent both linguistic information and
the assignment, which is basic in representing situations.

The built-in unification between PST's, described later in this paper, is the
same as the standard merging operation not only between complex lingnistic fea-
tures but also between those assignments in Barwise [85].

We note that Pollard [R5] proposed anadic relations, which do not use the
notion of arity, according to the partial assignment proposed in [Barwise 85]. Our
PTT domain can be used as a theoretical model for arguments of anadic relations.

Here is another general remark about relationship between the situation theory
and our research. Darwise [87] showed a model of the situation theory in the
universe of non-well-founded sets of Aczel [88). It is known that the class of
infinite trees is a model for non-well-founded sets. However, our notion of tree in
this paper is restricted to that which is at most a limit of a countable sequence
of trees of finite depth, while tagged graphs in the decoration axiom of ZFC/ATA
of Aczel are arbitrary., From this restriction, however, we can obtain a basic
proposition called a solution lemma within the standard ZFC set theory.

In his thesis, Ait-Kaci [84] extended the first order term to record-like struc-
ture. Ait-Kaci interprets the record-like structure as a type description with semi-

lattice theoretic ordering, Ait-Kaci also proposed to extend the record-like struc-
ture to have disjunction and negation embedded in the structure. Kasper and
Round [86] proposed Round-Kasper Logic over feature structure with disjunc-
tion using the automata theory. Recently, Smalka [88] gave a complete theory of
feature logic coping with disjunction and negation.

Our research, however, seems to differ from ather research in that we formalize
our theory by introducing a category of record algebras and show that the PTT
domain is canonical in the category based on the intuition that the PTT domain
is & natural extension of the Herbrand universe. 1 his paper focuses on deseription
of a declarative semantics of simplified prammars based on logic programming.
It shows that the proposed language has soundness and completeness properties
with respect to the PTT interpretation just as the usual Horn clause logic does.
By contrast, the completeness part of Ait-Kaci [84] is still open. But, this is
not surprising because Ait-Kaci [#4) works on the general semi-lattice theoretic
framework, while our research uses the caterory of what we call record algebras.
However, we do not discuss disjunctive or negative information structure in our
representation. This is an interesting topic, but outside the scope of this paper.

I. Goguen suggested that technical results in this paper may be achieved by
the theory of Order Surted Algebra [Gognen and Meseguer 85) within the equality
theory of algebra as associative, commutative, and idempotent with unit. How-
ever, it shounld be noted thatl our semantics of the lan guage takes the largest model,
not the least model or initial model as in the standard semantics of logic program-
ming. That is, our domain includes infinite trees. A, Colmeraner{82] introduced
infinite trees into Prolog. However he did not give enough logical foundation. B.
Courcelle[83] gives a fundamental theary of infinite trees, and M. Maher[87) gives
complete axiomatization of infinite tress. However, these work studies trees of
with fixed arities.

The organization of this technical disconrse follows Lloyd [84). The method in
this paper differs [rom the standard theory in that the lifting lemma and unification
lemima[Lloyd 84] for the PTT semantics cannot he used, because partiality is a
new feature in the semantics of the language. Our theory starts with the definition
of partially tagged trees (PTTs). A PTT is a tree which is allowed to have tags
only at the tip nodes. However, as will be shown in the final section, it is easy to
extend the notion so that the tree can have tags at intermediate nodes. A tree here
not anly may be infinite but may also have an infinite number of branches at a node
in the tree. Then, a record-like data structure with variables will be introduced,
which is called a partially specified term (PST), as a syntactical objects to denote
a free in the domain. A PST is designed to be always finite for computational
reasons while PT'T is possibly infinite.

The technical heart of this paper defines the unification over P§Ts and so-
lution 1o an equation go that the unification preserves the set of sclutions to the
equations. The unification algorithm is proven to have the termination property,
Assigument of variables to PTTs and notion of interpretation will be defined as
usual. Since a partial data structure js used, il 15 not easy to define the notion of
a solution to an equation between two PSTs. One might think that it is enough
to define that an assignment is a solution if and only if there is a compatible in-
terpretation of both sides of the equations in the sense of natural order of PTTs.
Unfortunately, there is a simple counter example which shows that this gimple
definition does not work well. This is the reason for using a special kind of satis-
faction based on which a solution to an eguation is defined based on. It is praven
that the unification preserves the set of solutions. This will be one of the key

lemmas to establish the soundness and completeness of the language.

We will present two systems of equality axioms. One is for defining the class of
record algebras including the P’ domain as the canonical model of the theory.
The other is for the constraint of partial equality. A system of partial equalities
which is saturated by the inferences of partial equality is fundamentally important
in this formalism. In particular, we will prove a powerful lemma called the “solu-
tion lemma” which guarantees the existence of a solution to any of these systems.
The solution lemma is the core of this work.

A program in the language is a sel of Horn clauses. That is, a Horn clause is
defined as a pair (p,B) of a PST, p, and a set, B, of P§Ts. A model of a given
program is defined as the mazimum set of PTTs which is closed nnder program
clauses roughly read that if there is an instance of the head of the clause then
there are instances of each element of the body.

A configuration of SLD derivation is represented by a pair of a goal and an
environment, which is the system of partial equations touched on above. A com-
putation will be defined based on the transition relation bhetween configurations.
The soundness of this derivation rule is proven in a similar way to the standard
one. This soundness will be that if there is a refutation then each solution to
Lhe final environment makes an instance in the model of the program. As the
final result, it will be proven that a correet answer environment will always be
displayed as a final environment of some refutation for the goal. This is a strong
form of the completeness result of the language. The correct answer environment
is a counter part of the correct answer substitution in Lioyd[84].

The final section of this paper will extend the Herbrand universe with the
PTTs, so that even nested structures of first order terms and P5T's can be used.
The paper concludes by demonstrating unification based-grammar formalism in
the extended language.

PST and its PTT semantics has already been implemented in several versions,
named CIL, on Edinburgh Prolog and ESP [Chikayama 84], and has been used
for natural language processing [Mukai 88|,

2 Partially Tagged Trees

We fix the set, £, of labels. A notation (ay,...,a,) stands for the path consisting of
labels @y, .o, Gy, whose length is n, where n is a non-negative integer. In particular,
when n = 0, () stands for the empty path. The length of the empty path is zero.

For two paths, o and 3, e+ J denotes the concatenation of & and §. The aper-
ator “#” may be omitted as usual. The concatenation is defined by the following
equations:

af) = a,
(81, ooy @) (15 ey b) = (@14 00ey @y b1y oy Ui).

Also the set of paths can be defined to be the free semi-group generated over L.
We will often identify a label @ with the path (a) of length 1 when the context is
clear,

A treeis a non-empty set, T, of paths which is closed under prefix. That is, if
af ¢ T then a ¢ T. By definition, every tree has the empty path (). The special
singleton set of the empty path is a unit tree. For two trees, T and T3, the union

Figure 1: aT, where o is a path T is a tree.

Ty UTs is a tree and the intersection T3 N Ty is also & tree. Moreover hoth the
intersection and the uuion of any family of trees are also a tree.

For a path o and a tree T, aT denotes the minimum tree which includes the
path af for any path 3 in T

oT = {fj33(3d € T 8’ = aa")}.

For a set T' of paths and a path a, the expression T fa denotes the largest set T
of paths such that o7 is a subsct of T. By definition of tree, the set Tia s a
tree if T is a tree and o is a path in 7. In our definition, a path & in a trea T
may have an infinite number of branches. That is, there may be infinitely many
labels @ such that (Tfn)fa is defined, i.e., non-empty. A path a in a tree T is a
leaf iff & is not a prefix of any other path in 7. Namely, if a3 isin T then 3 = {}.
We define lea f(T) to be the set of leaves of T

Example 1 If T = {{}, {b). (¢}, (e,d)), then aT = {(), (a), {a,8), (a,¢), {a, e, d)}.

It is easy to show that for any non-unit tree, T, there is a possibly infinite
number of distinet labels a1, ...,8,,... and trees Ty, .. T, ... such that

T=aTiu--uUa,T,U---,

The labels and trees are determined uniquely by T.

Let A be a set of tags. Also a tag is called a constant or a value depending vn
the conlext. A tagging of a tree T is a partial function f from leave(1) into A.
The domain dom{f) is possibly empty even when leave(T') is not so.

Definition 1 A partially tagged tree (PTT) is an ordercd pair (T, f) of a tree T
and a tagging f of T.

The PTT whose first component is the unit tree and whose second component
is the empty fuction is called the unit PTT. For a constant ¢, we write & for the
PTT (e, f) where € is the unit tree and ¢ is tagged with ¢, that is, ran{f) = {c}.
We often identify ¢ with 7 if the context is clear.

For a PTT t = (T, f) and a path o, we define 1o = (Tf e, g), where g is a
tagging defined by the equation g(8) = f(af). Let ty = (T4, f1) and t; = (T2, fa)
be two FPTTs. The pair t = (I UTy, fi U fa2) is called the merge of t; and {7
il tis a PTT and is written ¢; 4 f5. It is casy to check that the set of PTTs
forms a commulalive, associative, and idempotent {partial) semi-group with the
unit PTT as the wnit element with respect to the merge operation. Moreover, a
tree js operated by paths from both sides as written af and 1§ o respectively,

o

Figure 2: A PTT: A partially tagged tree: a white leaf means that the node is given a
tagg and a black leaf means that the node is given no fagy.

¥

Sfa

Figure 3: S/ denotes a sublree of S which is accessed through the path .

Here is a list of properties of PTT:

e+t=1 (UNIT)
{+e=t. (UNIT)
[ty + Iz} i3 =11 + [tz + ta) [ASSGC]_&TIVE}
P4+t =ta+ 1y (COMMUTATIVE)
t+t=1 (IDEMPOTENT)
(t=t. (UNIT)
(af)t = a(ft) (ASSOCIATIVE)
alt; + t3) = oty + aty (DISTRIBUTIVE)
ﬂ(31+"'+1‘1 for=aly bty + oo

(DISTRIBUTIVE)
tf <>=1 (SUBTREE)
(tfo)j8 = tf(af) (SUBTREE)
(th +12)fa=tfa+ tfa (DISTRIBUTIVE)
{ti4+---+1a - fa=tfa+--+tyfat---

(DISTRIBUTIVE)
(at)fa=1 (CANCELLATION)

Two paths are said to be incomparable if each of them is not prefix of the other.
It is obvious that if & and @ are incomparable then au + fv is a P'I'T for any
PTTs u and v.

A record algebru is a partial algebra (R, G, +, -, [,€) which satisfies these prop-
erties where R is a set of records, G is a semi-group which operates on records from
both left and right sides, ¢ is an element of R, and the three fuctions + : Rx K — R,
.:GxR—R, J:RxG— Rare partial. A homo-morphism between record al-
gebras is defined as nsual. The PTT algebra is characterized as the initial algebra
of the category of record algebras with the homo-morphisms[Mukai 89].

6

By repeating SUBTREE axioms, t = u follows {rom af = au. A set of PT'Ts
is compatible iff any pair of ¢ and ¢’ in the set has the merge 1 4 ¢". By #; < 1,, we
mean I} © Ty and fi © fo. Tt is quite easy to see that the set of PTTs forms a
complete partial ordered set with respect to the relation <.

Proposition 1 A compatible set of I"T'Ts has the least upper bound with respect
{o the order < |

It follows from this proposition that the PTT domain is chain complete with
respect to <.

2.1 Partially Specified Terms

Let the symbols £ and A denote the set of labels and the set of constants as
ahove respectively. We infroduced a set V of indeterminates or variables. We
assume that these three sets are disjoint to each other for simplicity. The followin I3
anxiliary svmbols are used:

{1/, 0.
Definition 2 A partially specified term (PST) is defined inductively as follows:
(1) A eonstant is o PST;
(2) A variable 13 a PST;

(%) The set {(ar/m),...,(an/pa)} @5 @ PST for any finite n > 0 and labels
ay,..., 8y, provided that ell elements py, .. p, are PSTs.

Note that we do not assume that labels i are distinct to each others. In general the
expression ac + a0’ is a PST even if ¢ and ¢ are distinct two constants, We use a
notation aypy +- - -+ aypy for the PST {{ay/p), {@x/pn)}. A PST is be regarded
as a parametric finite PTT which may have variables as tags 2. Therefore, ap and
pfa are defined just as in the case of a PTT. Thus, a PST is represented as a
finite set of the form ez where o is a path, and z is a variable or consieni. A
PST p has a unique normal form, i.e., p= Tou, where o is a path and u is either
a variable or constant. Two PTTs, v and v, are a conflicting pair if

(1) v and w are distinct constants, or
(2) Oneof u and v is a constant and the other is neither a constant ner a variable.

A PST p has a conflict if it is written as p = aru + av + g where o is a path and
w and v are a conflicting pair. A PST is conflict-free if it has no conflict.

3 Theory of Partial Equations

3.1 Axioms of Partial Equations &£:

In what follows, z, y, and z are variables, o is a path, u, v and w are arbitrary
P5Ts. An atomic formuis is of the form u = v,

(1) Tz,
sMy— gt
My, ypMr = Mz

*The notion of parametricity is rigoroualy defined in Mukai[89]

(2) uvdu.
iy = vk
(There is no general transitive low.)
(N utoMuw=uMuw
(4) ovMav =r u™ .
(5) anu4+ovMw=—=uvMwv
(6) z b u, z M v ==ub v (Restricted transitive law.)

Note that there is no transitive law as indicated above, The three axioms of {1}
state that the restriction of the binary relation # o the variables is an equivalence
relation between them.

let § be a set of atomic formulas. The elosure of § is the set of atoms which
is derivable from § by these axioms. In other words, the closure is the minimum
set of atomic formulas which satisfies these rules, From the form of each rules, it
is easy to see that the closure of § exists. It is a simple consequence of the theory
that if axr M ofy, then = #1 3y,

Definition 3 (PET) A set E of partial equations is called a PET if E has no
conflict and is closed under all inference rules of the PET theory.

3.2 Solving Partial Equations

Unification over the PTT domain is formalized simply as the elosure operation
defined above. The input is a set of atomie formulas (i.e., of the form p M 7).
The output is the closure of the input, or FAILURE if the closure contains a
conflicting pair.

By observing the equality axioms, every partial equation in the closure of a
given set E has at both sides sub-expressions appearing in E. Also the closure
is a monntonically increasing operation with regard to set inclusion. Since the
cardinality of the set of sub-expressions of those in the input is finite, there is a
unification algorithm which terminates. As a fact it is easy to see that there is a
straightforward UNION-FIND-like algorithm of unification. Although details are
omitted here, in our unification algorithm, a set of equations is represented by
using only those equations one side of which is a variable for space efficiency. The
following example shows a simplified version of our method.

Fxample 2 Let X and Y be variubles, Then,
({aX +bX % bY +al}, {{X},{Y1}
= ({X WL, X WY} {{X}{Y}})
= ({X mYV}L{X11{Y}})
= ({X WY, 1=V}, {{X,,Y}})
= ({X ™Y} {{X,LY}})
= (o, {{X, ¥, 1})}).
Example 3 Let X and Y be variables. Then,
({X ®aY +b5Y,Y aX +bX, X WY}, {{X},{¥Y}})
= ({X MY +bY,Y MaX +bX, X MY}, {{X,aY + 5V} {Y}})
= ({Y MaX +bX, X 0 ¥}, {{X,aX + Y} {Y}])

8

= ({¥ WaX +bX, X ¥Y}, {{X,aY 4+ bY}, {V.aX + 6X}})
= ({X WY} {{X,a¥ + Y}, {Y.aX +bX}})

= ({X 0Y,Y % X}, {{X,Y,aY +bY,aX + bX)))

= ({¥ 6 X} {{X.Y,aY + BY,aX + bX}})

= (6, {{X,Y,aY +bY,aX +bX)}))

The result means a singleton graph with two sclf loops with labels a and b,

3.3 Satisfiability

An assignment is a partial function whose domain is 2 set of variables. The defini-
tion of assignment can be extended to PSTs as usual. We define the satisfiability
relation, k=, between record algebras, assignments, and formulas in the language.
In the following, an assignment [assigns an element in the given record algebra
to cach variable in the relevant expressions.

Let It be arecord algebra. An assignment f satisfies oz M ofy and, symmet-
rically, afy ¥ az if fiz)fA = f(y). We write B, f F az W afyor R, f |= afy M
ax. It is easy to see that the relation |= is well-defined and exists.

Example 4 adl 4 bd2 % aX + bX. This constraint is not salisfinble, that is, for
any assignment f in R il is not the case that R, f = adl + bd2 4 aX +bX.

Proof. Assume that an assignment f satisfies the given constraint. By the
definition of satisfiability, f(X)fd = 1 and f{X)fd = 2 must hold, However,
since the constants 1 and 2 make a conflicting pair, this is contradiction. QED

We add the following rule to the rules for PET:
TMayyH iz = MW alz

We call this the unfolding rule. For a given set ' of basic formulas, the notion
of the closure C is defined in the same way as the original one. We call it the
extended closure of C. Note the extended closure is infinite in general. Also note
that the extended closure of C has the same set of solutions as the closure of .

Let T, denote the set of paths, a, such that ap M r is in a PET for some PST
p, where 7 is a variable. By definition of tree, T} is a tree. A tagping, ., over
the tree T is defined w () = ¢ if 2 M ae for some constant e. Since PET is
conflict-free, ¢, is well defined. We call the assignment f defined f{z) = (7%, Wr)
a formal solution to the PET.

Lemma 1 [f ar ™ afy is in the PET, then fly) = f(z)f8. That is, Q,f E
az W afy, where @ is the PTT algebra.

Proof. First of all, we prove that the set of paths in f(y) is equal to the set of
paths in f(z)f3. Let 4 be any path in the PTT f(y). By definition of f, we
obtain y M vz, By the unfolding rule above, we obtain z ™ fyz. By definition of
fy 87 is in the f(z). From this, it follows that v is in Sflz)f3. For the reverse
direction, let y be any path in f(z)f8. By construction of the formal solution,
* ¥ Gyz is in the PET for some variable or constant z. Applying the axiom to
this and the hypothesis z M fy, we obtain vz ™ y. By definition of f, path -+ is in

the f(y).

As the second step, we prove that the two taggings are equal. Suppose that
y M ~e is in the PET for a path v and a constant c. By definition of the formal
solution we obtain ¢,(¥) = ¢. From this and the unfolding rule we have x ® Gy
in the PET. By definition of formal solution again, ¢:(87) = c.

Let v be a leaf path of f(z)f§ such that z M Gye is in the PET. Since z ™ By
is in the PET, we have y 14 v¢. This means that the taggings have the same value
¢ at leaf v in fiz)f3. QED

Proposition 2 Any PET Eis satisfiable in the PTT algebra Q.

Proof. I is a set of constrainls of the form ez ¥ y. Let f be a formal solution of
the E. By the previous lemma, @, f | az # gy. This means that ¢, f E PET.
QED

Theorem 3 (Compact) For any constraint O = {p1 M qpy,Pn M Greeets Of
every finite subset of C' is satisfiable then C is satisfiable.

Proof. Let F' = [y ey Fa, where pow'(X) is the set of finite subsets of X
and Ey is the closure of d. Since d is satisfiable, Eg is a PET. It is easy fo see
that F' is a PF'T. Therefore by proposition 2, F is satisfiable. QED

Theorem 4 The following conditions (1) and (2] are equivalent:
(1) p and q are unifiable.
(2) For any record algebra R, there is some assignment f such that R, f EpHg.

Proof. Let () be the PTT algebra and R be any record algebra. Since unifiability,
the closure is a PET. By theorem 2. a PET has a solution f in . Since there
is a mapping from § into B by sending element ac into ac in the sense of K, we
can translate f into an assigment [’ in R. Since R is a record algebra, it is easy
to check that f' satisfies p ™ q.

To show (2)=+(1), we note that for a record algebra K and an assignment f, if
R, f = C and C' is directly inferred from C in the PET theory, then R, f EC.
Hence it follows from the definition of satisfaction that the closure of p ™ g is a
IPET. QED

Proposition 5 If [satisfies p X « and ¢ W x, then [satisfies p M g, where T 15
a variable and p and g are P5Ts.

Proof. Assume that f satisfies p # z and ¢ ¥ z. Let @ and af be leaf nodes
of p and g respectively such that p = au + p’ and ¢ = afv + ¢. By definition
of satisfaction, f(u) = f(z)fa and f(v) = f{z)faf. Applying the properties
of record algebra, we obtain f{v) = f(u)f#. Hence we obtain f k= u M fuv.
Therefore, fE pMyg. QED

Lemma 2 If §' is the closure of §, they have the same sel of selutions.

Proof. It suffices to check that restricted transitive rule preserves the set of
solutions. As a fact Proposition 5 gnarantees this. QED

The following theorem is called the satisfaction completeness theorem by Jaffar
and Lassez [84]. The theorem states that for any constraint C, if € is not satisfiable
in some record algebra, then € is not satisfiable in any other record algebra.

10

Theorem 6 (Satisfaction Complete) For any basic constraint p M g, if there
15 a record algebra in which p M g cannot be salisfied, then p < ¢ cannot be satisfied
in any other record alyebra.

Proof. Suppose that R is as above. Suppose that the closure € of p ™ g is a
FET, thal is, conflict-free, Since every record algebra in our class of interpretation
satisfies any PET, R satisfies p ¥ ¢, which contradicts the assumption about R.
Thereby, ' must have a conflict. Since no record algebra model can satisfy a
constraint which has a conflict, this concludes the theorem. QED

4 Program over Record Algebra

A program clause is a pair (p, B) of a PST p and a finite set B of P§Ts. A goal
is a finite set of PSTs. A program is a finite set of program clauses. A PTOETAm
clanse of the form {p, {p;,...,p.}) (n # 0) is written

P Plyee Pae

while a program clause of the form (p,¢) is called a unif clause and written

.

We fix a program. A configuration is an ordered pair (G, E) of a goal (7 and a
PET E.

Definition 4 A resolution step is a pair of configurations wrilten (G, E) —
(G, E"), satisfying the following conditions (1) and (2), where G and G are goals,
E and E' are PETs, and G = {p,,...,pa} for some P51's py,...py.
(1) G' = {q1yeerQhys orGF s o } for m copies g — gi, ..., gy, of some program
clouses 1 < i < n.

(2) B is the elosure of {p1 M gq,...,py W g} U E.

The constraint {p; ¥ gy,..., pn ™ gn} here is called the system of partial equations
of the resolution step. The initial PET of a goal is the finest PET over the variables
appearing in the goal, that is, {z M z | * € V' }, where V is the set of variables iu the
goal. A computation is the maximal denumerable sequence of configurations such
that for any configuration & which has the successor y in the sequence, & — y is a
resolution step. A success computation is either an infiuile computation or a finite
computation whose last configuration has the empty goal. A failure computation
Is a computation which is not a success computation. Failure computation must
be finite by definition.

Definition 5 Let p, f, and « be a PST, an assignment, and a path. A PTT 1
is of type p with respect to f if f(z) = tfa for any variuble or constant 2 and &
such thal p = oz | u for some PST wu.

By t,f : p, we mean that ¢ is of type p with respect to f,

Definition 8 A set, M, of PTTs is a model of a given program if, for any ¢ in
M, there is a program clause p «~ qy,---,qy, and an assignment f which satisfy
the following conditions:

1. ¢ f:p, that is, t is an instance of p w.r.t. f.

11

9. There are PTTst; in M such that t;, f :p; ferany 1 <i < n.

If both M and M’ are models, then M U M’ is also a model. That is, the class
of models is closed under union. We take the largest one as the semantics of
the program. A goal G can be achieved by an assignment f in the given program
model M if for any pin G there is some ¢ in M which is of type p wrt f.

Lemma 3 If G is achicved by a solution f to a PET E, then therc is o resolution
step (GL,E) — (G',E") for some G' and E' such that G" is achieved by some
ertension of [which satisfies E'.

Proof. Let p be any PST in (7. Since p has an instance in the program model
by f, by definition of the program model, there is a copy, 7, of a program clanse
whose body is achieved by some extension of f. Let C be the set of all partial
equality p ™ g such that ¢ is the head of 7 above. Take (7' as the union of all the
bodies of such copies 7. Take E' as the closure of C' U E. By proposition 4, if two
P5Ts have a common instance then they are unifiable. Hence, £’ is a PET. Thus,
the resolution step (G, E) — (', E') satisfies the lemma. QED

By the PET of a computation, we mean the union of all the PET components
of configurations in the computation. Note that the union of a monotonically in-
creasing sequence of PETs is a PET. In particular, the PET of a finite computation
is the PET of only the last configuration in the computation.

Now we are in a position to prove the following four goal theorems.

Theorem 7 (Soundess) For any solution [to the PET of any success compu-
tation from a given goal and for any p in the goal, there is a PTT in the program
maodel which is of type p with respect to f.

Proof. The idea is that since the computation is successful, the PET of the
computation is satisfiable. We prove that this solution gives an element in the
model as an instance of the element in the goal.

Let (7 be the goal. Consider any success computation. Let E be the PET of
the computation. By the compact theorem, E has a solution. Now let f be snch
a solution to E. Assume that p is in the given goal and the constraint p ™ g is in
the system of partial equations at the first resolution step in the computation. By
definition of the mode! and the system of partial equations at a resolution step,
f(q) is in the model. Since p and g are unifiable, f(p) + f(g) is also in the model.
This means f(p)+ f(g). f : p, which concludes the theorem. QED

Theorem & (Completeness) If a goal G is achieved by an assignment f in the
program model, then there is a eompulation from G whose PET has o solution
which is an extension of f.

Proof. The theorem is proven by repeating Lemma 3. QED
We write sol{ E) for the set of solutions to a PET E.

Lemma 4 Let (G, E) — (G, E') be a resolution step. Let F' be a PET such that
sol(E) C sol(F). Then we can construct a resolution step (G,F) — (G',F') by
using the same copies of the program clauses in the same way as in step (G, E) =+
(G',E"); that is, the two systems of partial equations of the two resolution steps
are egual. Furthermore, we can do so that sol{ E') C sol(F') holds.

12

Proof. Let C he the system of partial equations of the resolution step (G, E) —
(G', E'}. From the hypothesis, it follows that €' U E has the closure PET. Let ¥
be the closure of ' U F. By Theorem 4, F' is a PET. Since sol(E) C sol(F), it
follows from the construction of the closure that sel(F") 2 sol{1). QED

Let T be a success computation starting from a configuration, say, ({7, F).
Also. let T be a success computation starting from the initial PET for G which
is constructed by repeating Lemma 4. Let both (H, D)) and ([, D') be the n-th
configurations in I' and I respectively. Then, by induction on the order of the
position in the two computations, it is proven that IJ is the closure of EU D',
where n is any integer with 1 < n < the length of T(T'"). I' is called the compu-
tation associated with I'. Also, each configuration in I" is called the configuration
aszociated with the corresponding one in I

A set 1 oof variables is free in o PET F, if for any = € V and y for which
rMyc E,yis avariable not in V.

Theorem 9 Let ((7, E) be a configuration such that any variable in E but not G
is free in E. Suppose that for any solution [to E, every element in (G has an
instance in the program model w.r.t. f. Then there is a computation, T, from the
initial configuration for G such that for any solution f of E can be eriended to a
solution of the PET of T,

Proof. Let V' he the set of variables appearing in E but not in G. We can
assume that for each variable in V' there is a new constant. ''hen, snhstitute the
new constant for each variable in E, obtaining a PET F’. By repeating lemma 3,
there is a computation, I, from (G, E'). Hence, by simulating this computation,
we can construct a computation, I', from (G, E) such that V is free w.r.t. the
PET of T'". Let H be the PET of I'". Finally we get the |" of the theorem as the
associated computation to 1", Let K be the PET of I'. By the remark above, H
is the closure of E U I, Hence, since V' is free in H, V is free also in . That is,

the set of solutions of E van be extended to a solution of K.
QED

Theorem 10 {Soundness of NAF) If the computation fails then there is no
PTT in the model which 15 of the type of the goal

Proof. This is the contraposition of theorem 7. QED

Theorem 11 (Completeness of WAF) If there is not a PTT in the model
which is of the type of the given goal then any computation fatls.

Proof. This theorem is the contraposition of theorem &, QED

Thus, the soundress and completeness of the negation as [ailure rule are trivially
proven in onr domain and computation. The secret is that an infinite compnta-
tion has meaning in our case, while it has no meaning in the Herbrand semantics.
In other words, our semantics takes the maximum model while the standard se-
mautics takes the minimum one. Maximum computation may be fitted o lagy
evaluation computation and used for constraint processing,.

13

5 Extended Definite Clause Grammar

As an application of the theory of PST and PTT, we give an extension to the
DCG (Definite Clause Grammar) formalism. First of all, we give an extension of
the Herbrand universe with PT'Ts. We extend the first order terms with P5T's.
In other words, we will use both first order terms and PSTs freely in the extended
DCG. Thus, we have more natural and flexible representation for linguistic in-
formation, which is comparable with unification-based grammar formalisms, for
instance, PATR-IL
Let F be a sct of functors. We assume F 2 A.

5.1 Extended PTTs

We define an extended I'T'T as an ordered pair (T, f), such that dom(f) is a
subset of T and such that if f{z) = h then {1,..,n} = {alza € T}, where n =z 0
is the arity of h, where h is any functer. We can replace PST and PTT by
EPST{Extended PST) and the extended PTT, respectively, in the proposition
obtained so far in this paper.

5.2 Extended Term

Assuming cach functor is assigned an arity, a term is defined inductively as follows:

(1) APST is a EPST;

(2) The set {ay/p1,- - tn/pn} is @ EPST; where each g, is a label and z; is a
EPST ;

(3) The form h{py,---,ps) is a EPST where p; is a EPST and h is a functor of
arity n > (0.

Far convenience, we use freely standard infix notations nsed in Prolog.
We add the following rule to the system of axioms for partial unification:
If Bty o tin) ™ R(01, nv) , then uy M vy and ... and w, M v,

5.3 Extended DCG

We define the extended DCG by using the following examples. Rule (1) below
is a grammar rule, which is a pair of a PST and a list of P5Ts and equality
constraints. Unit clanses (2) and (3) are for lexical items. The program semantics
of the extended DCGC is an extension of the standard Herbrand model. = is
interpreted as the partial equality, ™,

(1) {cat/s, head/H}:-
{cat/np, head/H1},
{cat/vp, head/H},
H={subject/H1}.

(2) lex{jack, {cat/np, head/jackl}).
{3) lex(rums, {cat/vp, head/{subject/X,
pred/run(X)}}).

Clauses (4) to (8) form a definition of the interpreter for the extended grammar.
Unit clause (4) is to interpret the equality constraints in the grammar rules.

14

(4) X=X.
L5} parse{X-X, A=B):- A=B.
(6) parse({[X|Y]-Y, F):- lax(X, F).
(T) parse(Z-Y, (&, B)):-
parsal(X-Z, A},
parsal(Z-Y, B).
(8) parse(X-Y, F):-
(F:-B),
parse(X-Y, B}.

Exeeution of the grammar looks YHke this:

?-parsel [jack, rumns]-[], F).

F={cat/s,{head/{subject/jack, pred/run(jack)}}}.

Acknowledgements

This research has been infinenced by suggestions and comments from many people
since publication of earlier version of this paper. Among them, in particular, I
would like to thank J.A. Goguen, J-L. Lasscz, and K. Furukawa.

References

[Aczel 88 | P. Aczel: Non-well-founded sets, CSLI lecture note series, 1988,

[Ait-Kaci 84 | H. Ait-Kaci: A Lattice Theorctic Approach te Computation Based
on a Caleulus of Partially Ordered Type Structures, a dissertation in com-
pnter and information science, University of Pennsylvania, 1984,

[Barwise and Perry 83 | J. Barwise and J. Perry : Situations and Attitudes,
MIT Press, 1083,

[Barwise 85 | J. Barwise: The Situation in Logie-1II: Situations, Sets and the
Aziom of Foundation, Center for the Study of Language and and Informa-
tion, CSLI-85-26, 1985,

[Chikayama 84 | T. Chikayama: ESP Reference Manual, 1COT technical report
TR-044, 1984,

[Colmerauer 82 | A, Colmerauer: Prolog I1: Reference Manual and Theoretical
Model, Internal Report, Groupe Intelligence Artificielle, Universite d’Alx-
Marsellle II, 1082,

[Goguen and Meseguer 85 | J A, Goguen and J. Meseguer: Order-Sorted Al-
gebra It Partial and Overloaded Operators, Errors and Inheritance, SRI In-
ternational and CSLI, 1985,

[Courcelle 83 | H. Conrcelle: Fundamental Properties of Infinitetrees, Theoret-
ical Computer Science 25(1983)95-169, 1983,

[Jaffar and Lassez 84 | J. Jaffar and J-L. Lassez: Constraint Logic Program-
ming, [BM Thomas J. Watson Research Center, 1986,

[Jaffar, Lassez, and Maher 83 | J. Jaffar, J-1.. Lassez, and J. Maher: A The-
vry of Complete Logic Programs with Eguality, Journal of Logic Program-
ming, Vol. 1, No.3, 1984,

15

[Kasper and Rounds 86] R.T. Kasper and W.C. Rounds: A Logical Semantics
for Features, Association of Computational Linguistics 1986.

[Lloyd 84] J.W. Lloyd: Foundations of Logic Programming, Springer- Verlag,
1984,

[Maher 88 | M, Maher: Complete Axiomatizations of the Algebras of Finite,
Rational and Infinite Trees, draft, 1988,

[Mukai 85 | K. Mukai: Horn Clause Logic with Parameterized Types for Siluo-
tion Semantics Programming, ICOT technical report TR-101, 1985.

[Mukai 87 | K. Mukai: Anadic Tuples in Prolog, ICOT technical report TR-239,
L1987,

[Mukai 88 | K. Mukai: Partially Specified Term in Logic Programming for Lin-
guistic Analyzis, FGCS'88, Tokyo, 1988.

[Mukai 89 | K. Mukai: Merge Structure with Semi-Group Operation and Its

Unification Theory in Japanese, (English version will appear soon), 1COT-
TR480, 1980,

[Mukai and Yasukawa 85 | K. Mukai, and H. Yasukawa: Compler Indetermi-
nates in Prolog and Iis Application to Ihscourse Models, New Generation
Computing, 3(1985) Ohmusha, Lid. and Springer-Verlag, v1985.

[Pereira and Shieber 84 | F.C.N. Pereira and 53.M. Shieber: The Semanfics of

Grammar Formalisms Seen as Computer Languages, in the Proceedings of
the Tenth International Conference on Computational Linguistics, Stanford
University, California, 1984,

[Pereira and Warren 80 | F.C.N. Pereira and D.H.D. Warren: Definite Clanse
Grammars for Lunguage Analysis - A Survey of the Formalism and & Com-
parison with Augmented Transition Networks, Artificial Intelligence 13:231-
278, 1980.

[Pollard 85 | Carl J. Pollard: Toward Anadic Situation Semanfics , (manuscript),
Stanford University 1085,

[Shieber et al 86 | 5.M. Shieber, F.C.N. Pereira, L. Karttunen, and M. Kay:
A Campilation of Papers on Unification-based Grammar Formalisins Parts
I and II, Report No. CSLI-86-48, April, 1986,

[Smolka B8 | G. Smolka: A Feature Logic with Subsorts, LILOG-Report 33,
IBM Deutschland GmbH, May 1988,

L6

