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ABSTRACT

MENDELS ZONE is a concurrent programming environment, which supports program
synthesis with reusable components, using Petri nel and temporal logic. The target
concurrent programming language is MENDEL/8B, in which objects run concurrently
and communicaie with each other through streams. A MENDEL program has body parls
and synchronization parts. In MENDELS ZONE, the program synthesis consists of two
major steps: (1) the body part construction from reusable software and (2} the
synchronization part synthesis from temporal logic specification. MENDEL net, which
is a restricted Petri nel automatically generated from MENDEL body parls, is also
used in slep (2) of the above, in order to synthesize synchronization parls consisient
with body parts. In this paper, we will describe mainly the synthesis of the
synchronization part .

1. INTRODUCTION

The two major purposes of program synthesis and aulematic programming are to
increase software productivity and to generate a program that is assured of being
correct. Recently, software reuse is expected to greatly increase soflware
productivity, and many program synthesis method based on sofiware reuse have been
presenied. However, most of them are only for sequential programs and not for
concurrent programs. In concurrent programs, correciness is very important, as it is
nat easy for a human being to make a correct synchronization part of the concurrent
program. Therefore, verification and synthesis on concurrent programs using logic,
especially temparal logic, have been studied for a long time 1o assure correciness.

In Manna and Wolper [1.2], Propositional Temporal Logic (PTL) is used for concurrent
program synthesis. They show a theorem proving method which can synthesize
synchronization parts of a concurrent -program using PTL or extended temporal logic
(ETL). In this method, a model graph, generated in the PTL decision procedure, is
considered as a state transition diagram for processes. CSP program codes which
execute synchronization are generated from this state transition diagram. Also, some
other works [3.4] are done on synthesis using temporal logic.



One of the practical approaches to automatic programming in large scale applications
is a program synthesis which ulilizes an automated reasoning mechaniem with
software reuse. Automaled reasoning approach can only synthesize small scale
programs and cannot support large scale applications. In Manna and Wolper's synthesis
method, a synchronization part is genarated automatically. However, the other part,
namely, a body part in our method, must be created by the programmer. We propose a
new synthesis method, which is a combination of software reuse and an exlension of
Wanna and Wolper's method. Qur method consists of two major steps: (1} body part
construction by interconnecting reusable components and (2) synchronization parl
synthesis from temporal logic specification. Since the synchronization part has a
great deal to do with the body part, the synchronization part should be synthesized
under constrainte of the body part structure. In our method, the body parl is
represented by a restricted Petri net. Therefore, the synchronization part is
synthesized from the temporal logic specification and Petri net. The target language is
MEMDEL88. MENDEL/88 is a Prolog-based hierarchical concurrent programming
language, which is an extended language of MENDEL [51,

MENDELS ZONE is a concurrent program synthesis environment which supporls our
method. MENDELS ZONE has been implemented on the Prolog Machine, which is visually
similar to the CASE tool based on Real Time Structured Analysis by Ward!El, because
MENDEL is a hierarchical siream-based language.

In this paper, we will first provide our model of a concurrent program, then proceed
to explain MENDEL/88, the language which is based on this model. After mentioning
briefly MENDELS ZONE, the synchronization parl synthesis will be mainly described.
Please note that the body parl construction has already been described in another
paperl?l. We will show a synthesis example, called “Hierarchical Dining
Fhilosophers”, in the last parl of our paper.

2. CONCURRENT PROGRAM MODEL

This seclion provides a concurrent program maodel, using Petri net and temperal logic.
This model is the semantical base of MENDEL/88,

Petri Net

Petri net has been extensively used o model the concurrent systems. As Petri net is
a general and essential schema, it is possible 1o represent the dynamic behavior of
mes! concurrenl systems, We base our concurrent program model on Petri nel.

ii rol
The dynamic behavior of the concurrent systems has two aspects, one is a data-
driven aspect (represented by data flow) and the other is an eveni-driven aspecl
(represented by control flow). In Petri net, all behaviors are represented by only
dala-driven transitions. In Pelri net, Data flows and conlrol flows are treated in the
same manner. However, it is not suitable for general cases because a net may be loo
complicated with many arcs that act as control flows.

Some of the control flows can be substituted by controlling tfransition firing (i.e.
determination of which transition is fired) in meta-level. A "ransition conlrol
program" is used to manage this meta-level control. According to this program, only
one enabled transilion is selected out of all enabled transilions. and then fired. This
mela-level control makes a net simpler and focuses the net on dala flows. Here, we
can regard the lransition control as the synchronization supervisor, the transition
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contrel program as the synchronization part of a concurren! program, and the net
focused on dala flows as the body part.

Temporal Logic

Most of wransilion control are local and prohibitive. As a result, it is easier 1o give a
transilion control program by declarative descripiion, rather than by procedural
description. In our model, a transition control program is specified by the temporal
logic. A temporal logic specification is translated into a procedural program by
automated reasoning mechanism. A relation of Petri net and temporal logic on our
model is illustraled in Fig. 1.

Higrarchical Structure

A pure Petri net is flat, and has no hierarchical structure. Our mode! should have the
hierarchical structure as the actual concurremt system has. Therefore, the
hierarchical structure is introduced in cur model, where transition control is executed
al each hierarchical layer. This means each layer has one transition control program
(Fig.2). Each hierarchical component is called an "object”, by which we mean an
autonomous agent.

Sofiware Reuse

Each object, which has a local Petri net and a transition control program, become a
reusable component. A new objecl can be synthesized with reusable objecls. To be
more precise, a body part is first composed by interconnecting reusable objects with
transitions and arcs, and then a transition control program, that is a synchronization
part, is provided on the body part as illustrated in Fig.3. In the software reuse
environment, the synchronization mechanism should be separated from reusable
objects, such as in a path expression [8]. The transition control program of our model
satisfies this requirement,

3. MENDEL/88
A MENDEL program is identical 10 a MENDEL object, which is eilher an atomic object
or a compound object,

a. Atomic Object

(Syntax)
An alomic object consists of declaration, method, and junk parts,
=alomic objects =

atomic object <object name>

dec : | <declaration part= }
meth : { <method part> b
junk : { <junk part> |
1.
Declaralion part

The declaration part includes four items :
1} External inpul ports
inport{ <port names, ... ) ;
2) External output porls
outport{ <port names, ... ) ;
3} Internal state variables
state| <porl name::[<stale=,..] | <initial value>,...} :
openstate| <porl name:=:[<state=,..] | <inilial value,...} ;
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4) Internal dala variables
data{ <porl names=!<initial value>,...) ;

Generically we call them "ports™. Specifically, we call 1) and 2} external ports, and
3) and 4} internal variables.

Method part
The method part includes several methods. Each method is generally presented as
follows:
method { <port name= 7 <term=, ... ,<port name= ! <lerms, ... )
= <quard= | <Prolog goals> ;

Junk part
<Prolog clauses>

(Semanlics)

An atomic object can be regarded as a process. An atomic object has several external
/0 ports and internal variables, which is handied by methods.

External /0O port:

Through this ports, objects can transmit messages from/to the oulside.

Internal wariable:

Internal state variables characlerize a state of the object. For each internal state
variable, a domain should be previously delermined by [¢state=,...]. The
"openstale” declares internal state variables which can be referred from the outside.
Variables olher than state variables are internal data variables, that are accessible
only from inside of the object itselt.

An atomic object has several methods. In this method description, "?" means "“input
from a port" and "!" means ‘outpul to a port”, such as CSP [8]; """ means
commitment operator, such as GHC [19].

For example: method( age?N, place?P, alcohollT } « N > 13, P=japan | T = ok ;

One of methods is selected, which satisfy the foliowing condilions:

(1) Each of the terms after <port name=? can be unified with a received message
from the external port or & value in the variable.

(2) All Prolog predicates in <guard> succeed.

When the method is selected, all Prolog predicates in <Prolog goals> are evaluated.
Each term after <port name>!, which has been unified in <Prolog goals>, is senl
as a message to the external port, or assigned to the variable. Prolog predicates
written in <guard> have no side effect. If no method satisfies above conditions, the
object is suspended. This method selection mechanism is cimilar to Dijkstra's guarded
command.

The junk parl includes some Prolog clauses, which may be called by methods or other
Prolog clauses.

b. Compound Object
(Syntax)

zcompound object> =
object <object name> :{

dec:{ <declaration part> b
body:| <body part> b
sync:| <synchronization part> 1
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]
Declaration par

The declaration part includes 5 items :
1) External input porls

inport{ <port name=, ...} ;
2) External output porls

oulport{ eporl name>, ... } ;
3) Message gates

mgate( <gate name:,...] .
4) Signal gates

sgate| =gate names,...} ;
5} Free gates

fgate{ =gale names=....) ,

Body pan
body
innode(<porl name=7?|<gate name>,...]....) ;
outnode{<port name:=! |<gale name=..]....} ;
<chject name=|
<ppen state variable name>:[<slate=, ... ]....
<porl names! {<gate name:=, ... |....
<port names?[<gate name=>, ... |....) ;

|3
Synchronization pari

The synchronization part is represented by a finite aulomalon, as follows:
synec:{
{ [<state transition rule=,..], <initial state= §
b
<state transition rule= =
trans{<current states,<next state=,<guard condilion>,<gate namex)

(Semantics)

A compound object has several external porls, similar to an atomic object. A body
part of the compound object consists of several objecls. These objects are eilher
atomic or compound. This forms a hierarchical structure of objects. External poris of
component objects are interconnected with streams in the body part. Messages
between objects are transmitted through these sireams. The siream is a one-to-one
asynchronous cne-way path. Each stream has one unique gate, therefore, sireams are
identified by gate names. For example, if outport A has the same gate name as inport
B in the body part (i.e. obj1(A?[g1]), ... obj2(B!g1]), ...}, this means that A and B are
connecled with a stream, through which messages are transmitted from outport A to
inport B. Both the innode and outnode are interfaced to the outside of the compound
object. Gates are used for control of messages in sireams.

in MENDEL/88, a simple synchronization mechanism is provided by a method selection
mechanism. The object is suspended until it receives all required messages. However,
the above mechanism is so simple that for a complicated synchronizalion, it requires
complicated stream interconnecting. {Many of these stream are only for control, not
for data.) Therefore, an additional synchronization mechanism using gate is
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introduced. Each stream has one gate, which controls message streams. The gale
opens to let only one message pass through. When there is no message in the stream,
the gate cannol be opened. In the following section, the gate will be formalized as a
transition of Petri Net. A sequence of opened (fired in Petri net) gates can be ragarded
as a formal language, therefore, the gate control rules are represented by a finite
automata with guard conditions in the synchronization part. For example,
trans(s1,82,[g1-full, g2=empty], g1) means if the current stale is 51 and "gl=full &
ge=empty” is true, then it is possible to fire g1 and move 1o the new state, s2.

The signal gate is a gate that is connected 1o either inport (called input signal gale) or
outport (called output signal gate). This gate is mainly used as a signal generator 1o
activate objects. The free gate is a gate which is out of the transition contrgl. The
free gate can be opened at any time. Therefore no tree gate appears in the
synchronization parl. A simple example of the MENDEL/BE program is shown in Fig.4,
which computes factorial numbers.

4. MENDELS ZONE: MENDEL PROGRAM SYNTHESIS ENVIRONMENT

MENDELS ZONE is a visual programming environment for MENDEL. MENDELS ZONE

supports rapid software prototyping, which includes program synthesis method,

ilusirated in Fig.5 The program synihesis method of MENDELS ZONE consists of five

sleps:

(Step1) Create MENDEL atomic objects and register them on a object library.

(Step2) Construct the body part of compound objects by software reuse.

(Step3) Synthesize the synchronization part of compound objects from temporal logic
specification.

(Stepd) Execute the synthesized program and test the program visually.

(Step5) Register the synthesized compound cbject on a library.

The step on the body part construction has already been proposed in our former works
[7]. In this step, a body part is automalically constructed from reusable objects by
the object interconnection mechanism using semantic network. In this paper, we will
describe in detail another important step -- the synchronization parl synihesis. A
specification of the synchronization part is written by TSL (Temporal Specification
Language), which is a specification language based on propositional temporal logic. The
MENDEL net generated from MENDEL body parts, is also used to synthesize
synchronization parts which are consistent with body parts. In the following section,
we will begin with MENDEL net and TSL, and then proceed to describe how a
synchronization part can be synthesized using TSL and MENDEL nel.

We have already implemented MENDELS ZONE on a Prolog machine, which includes the
MENDEL interpreter. MENDELS ZONE provides five windows for user interface (Fig.6):
(1) System window, (2) Object library window which displays MEMNDEL reusable
objects, (3) /O port window which shows external 1/O ports, (4) TSL window which
shows a temporal logic specification for a MENDEL synchronization part, and (5)
Graphic programming editor window in which we can edit and construct a MENDEL
body part.

5. MENDEL NET

A schema of MENDEL program can be viewed as a reslricted Pelri net, which is called
MENDEL net.

Definiti



A MENDEL net is specified by the following elements;
OBJ: A tinite set of objects

IPi(ie OBJ}: A set of inner places in object i.

PP (icQBJ): A set of port places in object i

We use P to denote U (PP IPj).

MTi{ieOBJ): A set of method transitions in object i.

GT: A setl of gate transitions .

We use T to denote; L _MTj U GT.

b A set of arrows. Each arrow is a pair (p.1) or (t,p), such that peP, 1€
T.

Pinilic P: A set of places, which have input arrows to transition 1. For each place
PEPin(t), a=(p1) € A

Paut(tiC P: A set of places, which have output arrows to transition 1. For each

place pePgytit), a=(t,p)€ A.
Here, if t € GT, then Pip{t) and Pgyi(l) have maximum one element respectively, and
FPin(lluPgutll) is not empty. Fer each t € MTj, if all pePjn(t) have a token, the method
transition t is enabled. For each te GT, if all pinePjn(l) have & token and all pgute
Pout(t) have no token, the gate transition t is enabled. This is a special rule of
MENDEL net. When transition t fires, one token is subtracted in each p & Pin(t) and one
token is added in each p & Poyt(l), in the same way as in the Petri net.

Hepreseniglion by Diggrams

MENDEL net is represented by diagrams almest similar to Petri net. The basic

conventions are as follows:

e Each inner place is represented by a circle

® Each porl place is represented by a rectangle .

# Each gate transition is represented by a bold bar l

e Each method transition is represented by a fine bar .

e Each objeclt is represented by enclosing places and transitions belonging to the object
with a line " "

I ion of I

A MENDEL program can be transformed to MENDEL net automatically, in the following

mannear:

o Individual inner variables and external I/O ports are transformed to inner places and
port places respectively. Particularly for state variables, which is a kind of inner
variables, they have different places for differenl slates. An example is a state
variable flag which takes two stales: on and off. They are fransformed to two
inner places, flag=on and flag=off.

® |ndividual gales and methods are transformed fo gale transitions and method
tfransitions respectively.

e Arrows in MENDEL net are generated according 1o the following rules:

{We denote gate and method by 1°, I/O external port and inner variable by p* in a
MENDEL program, which are transformed to transition 1 and place p in MENDEL net
respectively.)
(R1} If an output external port pj* of object i and an input external port pj* of object
j are connected by gate g*, then Pjp(g)= {pj} and Pout(g)={pj}-

(R2) If a method m* has input ports (ipy",ip2",.....Ipk"} and output ports
(op1*,0p2®,.....opn*} then Pip(m)={ipi, ip2, ..., ipk} and Pout(m)={op1, opz,
s OPn} in principle. Additionally, there are some special modifications: In the
case of a data variable p*, if p¢IPj and PePin(m), then add p to Pgyt(m). In the
case that a state variable s has domain D, if s=x & IPj, s=x € Pgyut(m), and s=fﬁ
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Pin(m) for some state x in D and any slale y in D, then add s=y 1o Pin(m) for all
states y in D. A MENDEL net of the program in Fig.4 is shown in Fig.7.

6. TEMPORAL SPECIFICATION LANGUAGE

This section introduces a specification language for a synchronization parl of MEMDEL
program, called Temporal Specification Language {TSL). A synchronization part of a
MENDEL compound object can be synthesized from a specification written by TSL.

{1} Definition

TSL is based on a linear time propositional temporal logic (PTL). It differs from FTL in
having single-state conditiens for each element. Also, TSL syntax is specialized as a
specification language of the synchronization parl. TSL is defined as follows:

Synlax

The sel of formulas are defined from a finite set of elements E and a finite set of

states S inductively as follows:

elte EandseDCS, then e(s,D)is aformula. D is called the domain of element e.

e If 11 and 12 are formulas, then ~f1, 11 &2, figf2, 1==12, [ |1, «<=f1, @t, and
t1 & f2 are formulas.

For example, if switch € E and D={on, off},
[liswitch(on, {on,off)} => @switch{off, {on,off})) is a TSL formuia.

Semantics
intuitively, operators have the following meanings:
~ T NOT, & : AND, #:0R, =>:IMPLY, <=>: EQUIVALENT

[ 1t iread always f) @ f is frue for all future states,

<=l iread eventually f) . f is true for some future state,
@f {read next f) : f is true for the next siate,

f1 & 2 (read f1 until 12} : f1 is true until f2 becomes frue.

TSL has the same semantics of PTL with a single-state conditions. TSL formulas are
transiormed 1o PTL formulas with a single-state condition:

/N VelsD) A /N ~(e(s1.D) A e(s2,0)),
ecE feb 5,52 €D

and then interpreted in PTL semantics. A single-stale condition means each element
has only one stale in its domain each fime. 1t is an extension of a singie event condilion
in [2].

{2} Model of TSL Specification
In a TSL specification of synchronization part, elements and its domains are
restricted, as follows:

Element Domain

fire a finite set of gates except free gales

<gale name> {empty,full,eos,mq,m2,...mp,others}
<alomic object>:<state variables a domain of a state variable

A formula fire(<gate names) corresponds 1o an action to fire the gate transition in
MENDEL net. That is, "fire(g) is true” means "a gate lransition g is fired". In the
same way, "<>fire(g) is true” means "a gate transition g will be fired al some
future time”, and "[Jfire(g) is true" means "a gate transition g Is always fired".
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Moreover, it is assumed that only one gale transition can be fired at a fime, because
of the single state condition for the element fire. Formulas <gate names(<states)
and =object>:<slale variable=(<states) show states of gates and internal state
variables respeclively. That is, "g1(full) is true” means "a state of a gate g1 is
full”, and so on. These formulas correspond to the <guard condilion> in the <state
transition rules= of a MENDEL synchronizatron parl.

{3} Abbreviation
In a specification of synchronization parts, the following abbreviations are introduced
for readability:
# a domain is uniquely determined by each element, therefore a domain can be omitted.
ex. &(s,0) ---» els)
® fire <gate names } is abbreviated lo <gate names.
ex. hire{gl} ---> gl
e il gek, =D, g(s) is abbreviated to e=s.
ex. gi{full) --= g1=full, aaa:fllag(on} --> aaa:flag=on.

(4} Example
A specification, "gates g1 and g2 are fired by turns unless the gale is full® s
expressed by the following TSL formulas:

[ g1 => @(~(g2=full) => g2 }) &

({ g2 == @{~(g1=full) == g1 ))

7. SYNTHESIS OF SYNCHRONIZATION PART

The synchronization part of a MENDEL compound object can be synthesized from TSL
specification and MENDEL net. TSL specification means constraints given by the
programmer, and MENDEL net means constraints given by the structure of the body
part. A walid synchronization part has to satisfy both of these conslraints. The
synchronization part synthesis consists of the following six sleps (Fig.8).

(1) Synthesize a TSL model graph (TM) from a TSL specification (TS).

(2) Generate a MENDEL nel (MN) from a body part of MENDEL program (BP).

{3) Extract a structure graph (SG) from a MENDEL net {MN).

(4) Generate a model graph (MG) by merging a TSL model graph (TM) and a structure
graph (SG).

(5} Generale program codes of a synchronization part from a model graph (MG).

(1) TSL specification --» TSL Model Graph

TSL formulas can be translated into PTL formulas, as described in the section 6. PTL
is decidable, and the lableau method [2,11] is one of decision procedures, which can
compute all possible models of TSL farmulas, represented in the form of a stale
transition graph. This is called TSL model graph (TM). In TM, each edge has a label
that represenls atomic proposilions (<gate name> and <guard conditions) in
conjunctive form. Here, every model of TSL formulas is represented as an infinite
path on TM, which is identical with an infinite sequence of labels. A brief summary of
the synthesis method is as follows:

{Step1-1) TSL formulas are translated into PTL formulas.

(Step1-2) PTL formulas are decomposed into curren! formulas and future formulas by
the decomposition procedure. Current formulas does not include
temporal operator. Future formulas are also decomposed into curren! and
future formulas from the next time point of view. Afler every type (a
finite number) of fulure formulas has been repeatedly decomposed, a



graph is derived. This graph is an incomplete model salisfying
specilications other than the eventuality formulas, such as <>F, ~[|F and
~{~F1 § F2).

{Step1-3) Edges with unsatisfiable eventuality formula are deleted from the graph by
the elimination procedure. The graph remaining after the elimination
procedure is a complete model of the initial TSL specification.

The TSL model graph for the TSL example in the previous section is shown in Fig. 9.

{2) MENDEL Body Part -> MENDEL Net
This step has been described in the section 5.

(3} MENDEL Met --» Structure Graph

A structure graph (SG) is a finite automaton over infinite transilion sequences is
generated by means of reduction in a reachability tree ot MENDEL net (MN)
{Appendix).

{4) TSL Model Graph and Structure Graph --> Model Graph

Both 8G and TM are finite automata, but only TM has eventualily edges. Therefore, an
intersection graph of SG and TM is first generated with inheriting eventuality edges
from TM, and the elimination procedure is subsequenily carried out for this graph
involving eventuality edges, in the same way as in the tableau method in {1).

{5) Model Graph --> Synchronization Parl

MG, which is also a finite automata, is nothing but a synchronization part of a MENDEL
compound object. Transition rules are translated from MG, In atomic propositions on
each label, an atomic proposition representing a gate corresponds to <gate names= in
<transition rules> of a synchronization part, and the cther atomic propesitions
corresponds to <guard condition> in <iransition ruless. The transition rules are
compleled by adding the following “fairness strategy™

Fairness Strategy: If there are several enable transitions rules, one which has
never been selecled or for which the maximum time has elapsed from the last
seleclion should be selected.

While the MENDEL interpreter fires a gate fransition according to these transition
rules and the fairness strategy, the sequence of fired gate is a model of lhe
specification.

For clearer meanings of this synthesis, especially in the case when MG is emply, we
define formal languages on a set of transitions and show a theorem without proof.

Refinition

LetZ be a set of transition. A infinite transition sequence is a infinite word onZ . A
language L{BP) denctes a set of all words which are possible on a body part BP. In the
same manner, L{IMN), L{SG), L(TM) and L(MG) denote seis of all words which are
possible on MN, SG, TM, and MG respectively.

Corollary

(c1) LIBPICLIMN)CL(SG)
(c2) L(TS) = L(TM}

(c3) L(MG) = L(SG) r L{TM)



Mate: In this corollary, {c1} means MN is derived from BF with the loss of some
consiraints in the step (2}, and SG is also derived with less in the step (3). (c2) and
(c3) give meanings of the synthesis step (1) and {5}, respeclively.

Iheorem
 LIMG) = & , then L(BP} A L{TS) = & , which means that a TSL specification TS is
unsatisfiable over a body parl BP.

MNotel: On this theorem, if MG is empty, the synthesis system nolifies a
programmer thalt TS is unsatisfiable over BP. In this case, the programmer has lo
modify TS or BP,

Mote2: If MG is non-empty and the MENDEL interpreter executes according 1o
the synchronization part derived from MG, there remains a possibility of the program
falling into dead-lack or starvation, because LIMG)CIL{BP) m L{TS)) is not valid. This
is due to the transformation from BP 1o SG wilh the loss of some constrainis.
However, we think this is small matier in the practical program synthesis.

8. SYNTHESIS EXAMPLE: HIERARCHICAL DINING PHILOSOPHERS

As an example of symhesis of MENDEL/8S, let's consider the hiararchical dining
philosophers. This program (#hierarchical_dining_philosopher) has two layers
(Fig.10a}). The top layer has three objects: two #phmain and one #logfile. Each
#phmain forms the two dining philosophers problem. In #phmain, philosophers seize
two forks and eat something, and then release the forks and think. In #logiile,
"starttime” when one philosopher siarls to eat and “finishtime” when he finishes
ealing are accumulated from each #phmain, and summarized last.

Here, we will show synchronization part synthesis only for #phmain. Other
synchronization parts can be synlhesized in lhe same manner. This subprogram
consists of two atomic objects (#philosopher, #fork) and one compound object
(#phmain} shown in Fig.10b. MENDEL net (MN) of the body part (BP) of #phmain are
given by Fig.10c. This MENDEL net presents the essenlial properly of the program. A
structured graph (SG)} is generated from MN. To synthesize a specification parl of
#phmain, we give a simple TSL specification TS:
TS: | Jirt1 <=> @ri2) & [ |(r21 <=> @r22) & - (1)
[ Je>(s11 # s12) & [ J<>(s21 # s22)) - (2)
This specification means: (1) The philosopher must continuocusly release both the
forks, which prohibits the philosopher from keeping one of forks constantly. (2) Both
of philosophers are dead-lock free and starvation free. Note that since t11, t12, 121,
122, 11, and f2 are free gates, they do not appear in TS and SG. From TS and SG, a
model graph MG (Fig.10d) and the following specification part are synthesized:
sync{ { [ trans(n1,n2,[],[s21]}, trans(n1,n3,[],s22),
trans(ni,nd [],[s11]), trans(ni,n& [].s12),
trans{n2,né,[].[s22]), trans(n3,n& [].s21},
trans(nd,n8,[|.[s12]), trans(n5,n8,[].s511),
trans(n6.ng [][r21]), trans(ng,nit [],r22),
trans(n8,n10,[],{r11]), trans(ni10,n11,[],r12},
tarns(n11,n2,[],[s21]), tarns(n11,n3,[],s22),
tarns{ni1,n4 [],[s11]), tarns(ni1,n5,[],s12) I

nt )} .
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8. Related Works

Our synthesis method is the extension of Manna & Wolper's work [1.2]. in Manna &
Waolper, the only synchronization part of CSP is synthesized, while our method can
synthesize both synchronization and body parts consistently using Petri nel.
Moreover., in their method, there exists one scheduler process, with which each
process can only communicate, that is, normal processes can not communicate with
each other. This scheduler process is indispensable for the synthesis using lemporal
logic, however, seems sirange for CSP programmers. In our concurrenl pregram
mode! and MENDEL/BB, this scheduler is well formalized as a transition control
program on Petri net.

Seme works are carried out for synthesis and verification using Fetri net and
temporal logic [12.13], These works are similar to our approach in the section 7, but
ditfer in correspondence between Petrl net and temporal logic. In these works, alomic
propositions correspond to marking in places, while atomic propositions correspond to
transition firing in our method.

ENVISAGER system 114] is a visual programming environment on UNIX workstation,
which is similar to MENDELS ZONE. This syslem adopts Interval Temporal Logic as a
specification language, however, Interval Temporal Logic is used only for simulation,
and not for program synthesis.

10. CONCLUSION

We have proposed a hierarchical concurrent programming language, MEMDEL/BE. For
this language, the program synthesis method is presented. This method consists of
two major steps: {1) Construction of the body part by reusable objects (2) Synthesis
of the synchronization part which is consistent with the body part, from a TSL
specification and a MENDEL net. Unique features of this method inciude: (1) A targel
language MENDEL/8B involving a unique hierarchical synchronization mechanism using
gates, and (2) A combination of software reuse and synthesis using temporal logic and
Petri net. We believe this approach will be practical enough 1o help prototyping on a
qualified domain, such as concurrent business transactions. This is the reason why
data flow diagrams written by the Real-Time SA are basically easy o be converted 1o
MENDEL programs.

Al present, much remains to be explored:

(1) Main drawback of synthesis using Petri net and temporal logic is the exponential
time complexity. The hierarchical synthesis approach will be able to make up for this
drawback.

(2} The degree of concurrency is low because of the limitation wherein only one gale
{ransilion can be fired at a time, except for "free gales”. It seems possible 1o relax
this limitation for some independent gates in the future.
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APPENDIX

Sir r i |

(Slep1) Make a reachability tree (RT) from MENDEL net (MN).

{Step2) If MN is bounded, RT can easily be transformed to an equivalent slale
transition graph STG. If MM is unbounded, generate STG by relaxing the RT
wilh the threshold of token number.

{Step3) Reduce STG to the structure graph (8G) by eliminating methud transitions,
which are regarded as the £-aclion in the automaton.
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stateis: [active.sleep]'sLeep) ;
} dataicount'(>
meth: |
methadiss lepp. number?N, s lactive.count !Ny
methodisYactive.count?N. count 'M.send My <=
M0 1 Mis N -1
metnodis?active.count?N.s'sieep.end'sianal ) <=~
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true | K is MN=M
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inportinumber? 3
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vutrnodedanswer![a3])
generatord{number![al].send?(aZ2).end?[s1]}
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Fig.4. MENDEL/88 Program Example (Factorial Program)
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