ICOT Technical Report: TR-439

TR-439
Distributed Implementation of KLI
on the Multi-PS1/7V2

by
K. Nakajima. Y. Inamura. N. Ichiyoshi,
K. Rokusawa and T. Chikayama

December. 195Y

ATORR 1COT

Mita Kokusai Bide. 21F (3T 46148 =5

|GDT 125 Mita 1-Chome Teios WCOT 132464

Minato-hu Toky o TR Tapan

Institute for New Generation Computer Technology

Distributed Implementation of KL1

‘on the Multi-PSI/V2

Katsuto Nakajima Yu Inamura Nobuyuki Ichivoshi
Kazuaki Rokusawa Takashi Chikayama
lnstitute for New Generation Computer Technology (ICOT)
4-258, Mita-1, Minato-ku, Tokye, 108, JAPAN

Abstract

KL1! is a stream AND-paralle] logic programming language based on Flat GHC. This paper
describes the iiplementation issues of & paraliel KL1 system. The target machine of this system
i a non-shared memory multi-processor, Multi-P31/¥2, in which up to 64 processing elements
(PEs) are counected by a message passing network. The key issues are {1) how to achieve
efficient intra-PE and inter-PE garbage collection, (2) how to reduce the amount of inter-FE
communication. and {3) how to avoid making redundant copies over many processors.

The well-defined semantics of KL allowed incremental intra-PE garbage collection by the
Multiple Reference Bit (MRB) technique and ineremental inter-PE incremental garbage col-
lection by the Weighted Export Counting {WEC) technigue. The communication required for
inter-PE process control is minimized by the Weighted Throw Counting (WTC) scheme. We
introduced a global structure management technique to avoid making duplicate copies of the
same large dala

The implenentation is completed, and the system is being used to research parallel software,
and ta evaluate for refining it and also for designing the future system, the parallel inference

machine, PIM

1 Introduction

The Japanese Fiftli Cieneration Coniputer Project has a target to build a parallel inference machine,
PIM [Goto 88], for running large-scale logic based programs. It aims to achieve hundreds of times
the performance of the preseut computer systems by using a parallel processing mechaunisin. In the

initial stage of the project, we realizmd that research in parallel software is important for designing

a highly parallel inference architecture, because the architecture is influenced by the nature of
application programs and little was known about it. The problem was that no machine existed
that had the capability of running parallel application programs of realistic size, The Multi-P51
machine was developed to fill this gap [Taki 88]. It also served as a workbench for evaluating
various new implementation technigues.

The Multi-P51 is a non-shared memory m&llivprﬁcessnr, whose processing elements (PEs) are
the CPUs of the personal sequential inference (PSl) machine, which are readily available. Up
to 61 ’Es are connected to each other to form a two-dimensional mesh network with a message
switching and automatic routing capability. The Multi-PSIfV1 (up to 6 PEs) used the first version
of the PSI as PEs. and the new Multi- PSI/V2 uses the more compact and faster version, PSI-11
[Nakashima 87] as FEs.

Non-shared memory architecture was chosen for the Multi-PSI, since the machine was to serve
as a prototype of a scalable PLM, the number of whose processors rules out strict shared-memory
architecture.

After we developed & distributed implementation of the KL1 { Kernel Langnage version 1), which
is an AND-paralle! logic prograniming language, on the Multi-PSI/V1 [Ichiyoshi 87], we continued
with our research in efficient implementation, and came up with an improved implementation on
the Multi-PSI/V2.

This paper describes the problem we faced in designing our KL1 implementation, presents the
way we (partially) solved these problems, and reports on the current status and the remaining

problems.

2 KL1 Features and Implementation Issues

2.1 KL1 (Kernel Language Version 1)

KL1 {Kernel Language Version |} is a stream AND-parallel logic programming language based on

Flat GHC. The K11 pragram i< wade up of a collection of Guarded Horn Clauses, whose form is:

=i, [Y PO Mo, (m=>0, n>0)
s o

guard banily
wlhere M s called vhe hend, @ the guard gonds, and 11, the body goals. The vertical bar | | }is ralled
e ceepserneid nave mid eeju 1T, The lowical Tt‘.alﬂing of 1he clauses is the same as GHC [L.ETJH Bﬁ]

B s provided witl the follosing metaprogesanning functions so that it becomes a practical

and efficient pa;ajlna:l language not only for describing application programs but for an operating

EYSiem.

(1) Shoen mechanism: A shoen is a meta-logical unit to control or monitor the KL1 goals in it.
It has a pair of streams, named confrol stream and report stream. The control stream is used
Lo start, stop or abort the goals from outside shéen. Termination of all goals or events that
occurred inside a shoen, such as a failure or an exception, are reported on the report stream
from inside the shen. Shen can be nested to form a tree-like structure (shoen tree) whose
leaves are KL1 goals.

{2) Resource management: The system should be safe from a wastefully running user goal such
as an erroneous infinite loop. Shéen should be given some resources for the execution inside
it through the control stream. The resource shortage is reported on the report stream.

{3} Priority pragma: Scheduling by using priority contributes o efficient problem solving. The
shden has a priority range and each goal iuside it can have individual priority within this
range. The priority is specified by a priority pragma with a relative value in the allowed
range in the source program (..., B@priority{ Prio}, ...}

{4) Throw goal pragma: A throw goal pragma (..., B@processor(PE]),...) in the source pro-
gram denotes the static load distribution. It also contributes to efficient execution on a

multi-processor machine.

2.2 Implementation Issues for KL1

To execute KL1 on the network connected parallel machine, the lollowing points should be kept in

mind in designing the system.

2.2.1 Garbage Collection

As goals are not executed in the depth-first manner. the stack mechanism used in most Prolog
implementations is not suitable for KL1 implementations. Therelore, heap based memory manage-
ment must be used for flexible memory use, although memory reclamation is generally inefficient
with this scheme, The time spent in garbage collection (GC) oy seriously affect the system per-
formance. On a non-shared memory multi-processor, the degradation by GC should be considered
more seriously, because naive inter-PE GU might take time propoortional to the length of the refer-

ence chains over wmany processors. Implementing taeremental G0 with low cost= for inter-P17 and

intra-PE data is one of our major issues because it is better than non-incremental GC' in terms of

the accessing locality, which leads to, for example, a good cache hit ratio.

2.2.2 Data Management

K1.1 has a property where data objects that have been instantiated once can be copied, while
keeping the program logic. To allow local accesses, data shared by PEs should be copied. However,

indiscreet copying leads to neediess data transfer.

2.2.3 Messape Communication

Message passiug communication is more expensive than communication on a shared memory. The
communication delay is also large. We have to pay attention to reduce the amount of inter-PE

communication and to maintain quick responses.

3 KL1-B and Its Implementation

3.1 Execution Model

KL1 programs are compiled into the sequence of a WAM-like abstract machine instruction set, kL1-
B [Kimura 87). It is a register based instruction set and serves as an efficient interface between
language and machine architecture.

Goals in a PE are categorized as: (1) ready goals which are waiting for execution, (2) current
goal which is being executed, or (3) suspended goals which are hooked on variables to be instantiated
(Figure 1).

A reduction evele is described as follows. When a current goal calls a pm!ir:ﬁe, the guard parts
of the clauses for the predicate are tried one by one. If no clanse commits and at least one clause
is suspended, the goal is hooked to the causal variable of the suspension. I s clause commits and
there is no suspended clause, a faifure is reported on the report stream of 1he parent shden with
the goal information. In both cases, a uew goal is popped from the goal stack 10 evaluate. If one af
the clauses commits, all the body goals sxcept for the leftmost one in the sonrce code are pushed
to the goal stack. Tihe leftmost goal is clhiosen as the next one Lo evaluate. When a clause without
body goals commits, another goal is popped from the goal stack.

Every reduction cvele, request for (non-ineremental) GO and message ariivals from the net work

are cliecked, and they are processed if necessary, This timing. ralled the slit heck, is most suitabbe

for switching the process because the PE is free from goal contexts.

3.2 Executing KL1-B

The KL1-B instructions including some tens of instructions for built-in predicates are directly
interpreted by the microcode to atlain a reasonable execution speed as a practical tool for software
research.

The microcode of the PE can perform various functions in parallel, such as tag insertion, two-
way or multi-way branching on a tag, specially prepared counter and flag operation, ALU operation
and memory access operation. The arguments for the unification are put on the registers at every
reduction cycles. The control information such as the priority and the shoen resource is manipulated

on the registers as long as the execution context can remain unchanged.

3.3 Goal Stack

Strict scheduling with priority can be managed by having only one prioritized goal stack in the
system. However, the rush to such a global resource causes a serious bottleneck. To avoid this, every
processor has a prioritized goal stack, at the sacrifice of scheduling strictness. In our experience,
local goal stack management is realistic and efficient enough to control the execution in the system

in most cases.

3.4 Memory Management

As stated in 2.2.1, efficient GC is vital in a KL1 implementation. We have developed the MRB
technique [Chikayama 87] for intra-PE incremental GC. In this scheme. the pointer has one-hit
information to tell whether it is the only pointer to the referenced data. Even with one-hit counter,
most, but not all, garbage cells are collected because data objects rarely have multiple referencers
in kL1 programs. Collected cells are linked in the free lists to be reused. We have several individual
free lists for records of various sizes.) When records in a free list are exhavsted, a pro-determined

number of new records is created on the heap top and linked to the list,

"In the current implementation, the sizes are from 1 to &, 16, 32, 64, 128 and 236. Record over 250 w is allcated

on the heap top.

4 Inter-PE Processing

Goals with throw goal pragmas in a shoen are distributed by throw_goal messages over many
processors. Distributed goals communicate with each other through the shared variables by read
or unify messages. This section discusses how the shared data is accessed from outside the PE,

and how the distributed goals are monitored or controlled in these situations.

4.1 Inter-PE Data Management
4.1.1 Copying Shared Data

When a goal is thrown to another PE, its arguments are also carried with it. If the argument is an
atomic value, the value itself is attached to the goal. If it is an unbound variable, a pointer to the
variable is created and carried. For a strueture argument, there are three choices. One is to create
and carry a pointer to the structure (zero level). The contents are read when they are actually
used in a unification. The second is to copy all the elements of the structure including all nested
substructures {infinite level). The third is to copy all the elements at the surface level (one level).

In a distributed system like the Multi-PSI where the cost of the inter-PE reference is relatively
high, it is better to copy for later accesses in many cases. However, copying at an infinite level may
canse unnecessary duplication because the passive or active unification for the structure might fail
at any level. It seems better to limit the copying level according to the situation. In our current
implementation, copying at zero level is done at goal throw timing and copying at one level at
unification timing. However, if it is known that the element of a structure will be read early or
late (such as the tail of a stream), it is better to copy the elements at one time as long as they are

bound to a value. This is left as a future optimization,

4.1.2 Export/Import Table

When a PE exhausts its heap memory, garbage must be collected. If the PE does not know whether
a cell is referenced from other I'bs, or whether it is garbage, the PE cannot perform GU for its
niemory without cooperation by all PEs, The global GC, where all PEs performs GC at one time
with exchanging messages of marking and telling movements of ohject cells, is a solution, but it is
very e consuning,

In a large scale non-shared memory multi-processor. local (non-incremental) GC, where the PE

perforing GC alone for its mewory when exhausted, is desirable in terms of the system performance,

It is possible if the objeﬂ; cells referenced from ontside are represented by a kind of global 1D for
the external PEs. The garbage collecting PE only has to maintain the translation table according
to the Jocal object movements at a local GC. The table is called the ezport table (Figure 2). The
object cells referenced from the external PEs are said to be exporfed, and on the referencing side,
they are said to he imported. The global 1D is represented in the form < pe, entry >, where pe is a
PE number and .entry is the entry position of the export table. The global ID is called the external

1D,

4.1.3 Incremental Inter-PE GC by WEC

In order to reclaim the garbage cells pointed to by the export table, the entries of the table have
to be collected when they become garbage. We employed the weighted export counting (WEC)
method [Ichivoshi 89] to perform inter-PE incremental GC. This scheme is based on the weighed

reference counting {WRC) principle [Watson 87] aud has the following novel features.

« When an importing pointer is divided in two, its weight is split and no message is sent to the

exporting PE to maintain the reference count.

» No racing occurs in terms of count {weight) zero checking at the exporting PE.

An integer representing some WEC value is attached to an exported pointer and is stored in
the import table. Each entry far the imported pointers accumulates 2 WEC when the same data
is imported again. (See 4.1.4) The number of the import, the import count, is also counted. When
the contents of the impoarted pointer become unnecessary, release message is sent to the exporting
PI 1o return the amount of the WEC. Release messages are sent when: (1) an instantiated value
i~ returned by an answer_value message as the response of read message, (2) the import count
rearhes zero by incremental GC by using the MEB mechanism. or (3) the imported pointer becomes
gurhage by local GO in the imported PE, (See 4.1.6)

When an expor! enftry receives a release message, the WEC in the entry is maintained. u
i1 hecomes zero, the entry is reclaimed. In this case. the exported object cell itself may also be
oo lnimed when the export table entry is known to be the single reference to the cell by the MRB

T hATISIm.,

=3

4.1.4 HRe-exporting

The same variable may be exported to the same PE. If the re-exported reference to a variable is
given with a different external 1D, it cannot be determined as an variable that was originally the
same. Therefore, the importing PE may send read messages twice and if the object is a structure
data, it is brought twice by answer.value. This can be avoided by reusing the same export Jimport
table entry. For this purpose, the ezport hash table and the import hash table are provided on each
side. The expart hash table associates the exported chject addresses with their external IDs, and

the import hash table associates the imported external IDs and the import table entry.

4.1.5 White or Black Export by Using MRB

Our external reference management with WEC has overhead in terms of maintaining both WEC
and import count. and of looking up the hash table to check the re-exporting. Fortunately, the MRB
mechanism can Le used to aptimize this. In order to export a single reference pointer at a low cost,
a simplified pair of export and import tables, called white ezport and import table, are used. The
original table is called black expori/tmport table. From our observation, once duplicated pointers
will often be copied again later. In contrast, a single reference pointer will not be duplicated after
heing exported somewhere else. Thus, the white export and import table do not have the hash
tables because the exported pointers are rarely exported again for the same reason.

The white import table can be considered as an import table for the pointers whose WEC and
import connt equals one, and its entries are immediately released when the imported pointers are
collected by the MRB GC.2 The white export entries for them are also released by only receiving
release message. The effectivencss of this optimization depends heavily on the programs and the

evaluation is one of pur future areas of research.

4.1.6 Local Garbage Collection

Tl current implementation of local GO is based on the conventional copying GC scheme. The
girhage collector moves all data cells reachable from the prioritized goal stacks and the export
table to a new hoeap area. After copying, valid entries in the import table are swept. If un_ma.rli-:d
eniries are foun . release messagrs are sent to the exporting PEs to retury their WECs.

The local GU van be a big facior in the total performance because PEs communicating with

“If an ilnpu:rti-:| |asmter is s['.!i:.. ihe VR of both poinlers is turned on so that the import entry is not released

wihen one of tle peeniers becomes garbag- .

the garbage collecting PE have to wait for its termination. -One solution to improve the GC time
would be the generation GC {Lieberman 83]|Nakajima 88, which avoids moving long life objects

at every GC. This is an on-going study.

4.2 Global Structure Management

In our export system, the external ID originates from the exporting PE. For example, if PEg has
a copy of the structure in PE4, and PE¢ has external references to both the copy in PEg and the
ariginal in PE 4. their external IDs are not the same. PE~ will have two copies after reading them.
If the structure is big and will live long like the program code, it is inefficient in terms of both the
memory space and the data transfer overhead. In the worst case, as many copies as the number of
PEs in the system can be created in a PE.

To solve this problem, we introduced the structure ID for such structures, which is a global 1D
attached to an instantiated structure. By using this, the same structure is duplicated only once in
a PE even if the external data to be read is in a different PE. Currently, we manage the structure
ID for only program code objects.

When a read message is sent to a PE for a structure with structure ID, only the ID is returned
in the ansver value message. If the PE requesting read receives only the 1D, it looks up the
structure 1D hash table with the returned 1D o search for the structure address if the PE already
has the structure. If it is not found, the read message is sent again to copy it. The other hash
table, the structure address hash table, is nsed when the PE returns the structure ID instead of the
struneture itself in the answer_value message.

The problem in this scheme is the collection of the garbage ID, which needs a kind of global

GO scheme, and is belt for future research.

4.3 Goal Control by Shiien and Foster Parent

A shden and the goals in it {rheld goals)f have o communicate for the execition control from the
shden such as stopping and abortion, and for the report from the child goals such as the goal
termination and the resource sliortage, In order to reduce the message traffic towards a shoen, we
can emplev a cache techuigue. When a goal i~ inoved from the shoen PE (FE in which the shoen
exists) to another, a foster porent is created von the PE to whicl: the goal wigrated [Ichiyoshi 87].
Only one Inster parent is created for the shoen on each PE whivh has goals belonging to the shéen

{Figure 3).

The loster parents have the shien status, that is running, slopped, aborted, etc., and the child
count, which is the number of child goals created on the PE and the cached resource information for
it. Goal termination is checked at the shoen only when one of the foster parents sends a terminated
message to report that the child count in it has reached zero.

The detection of the goal termination is one of the difficult problems in parallel language
systems, especially, when messages may be in transit on the network as in the Multi-P51. Even if
all the foster parents report termination, the shéen is not necessarily terminated because there are
goals in Lransit.

Cur solution for it is the weighted throw counting (WT'C'), which is also an application of the
WRC scheme. In this scheme, each shoen manages the amount of the count. WTC is attached
to a thrown goal or a unify message, and the foster parents accumulate WT'Cs on receiving the
messages. Foster parenis can split it when they throw child goals. When all the goals in a foster
parent terminate, the amount of WTC kept by the foster parent is returned to the shoen. The
shéen can determine the true termination of the child goals when all WTC are returned back.

For a full description of the WTC scheme, see [Rokusawa 88].

5 Conclusions and Future Works

This paper discussed issues of implementing K L1 on a loosely-coupled multiprocessor, and described
the way we have solved them in our implementation on the Multi-PSI/V2, The parallel operating
system, PIMOS [Chikayama 88, and several application programs are now running on the Multi-
PSI/V2. The performance on a single PE is 150 K reductions/sec for KL1 append. The system
performance with large programs will be mweasured in the near future. We also have plans to
evaluate the effectiveness of the various ideas for optimization, such as white export/import table,
global structure management, and incremental intra- and iner-PE garbage collection by MRB and
WEC.

We want to extend this research to lowd belineing, one ol 1lie major topics in parallel processing,
Currentlv. we are interested in: {1} defining the load, taking account of the priorities as well as
the number of executable goals in & PE, and {2) coordinating the load locally by using only local
information. The P* (processing power plane) scheme [Taheda 88] is a hopeful candidate of the

load balancing mechani=m on a scalalle mnfiprocessor sysim like the Multi- P51

1|:|

Acknowledgments

We wonld like to thank the 1COT Director. Dr. K. Fuchi, and the chief of the fourth research
laboratory, Dr. 5. Uchida, for giving us the opportunity to pursue this research. We would also
like to thank the researchers of [COT and the cooperating companies, who have worked with us in

designing and implementing the KL1 system on the Multi-PSI/V2.

References

[Chikayama 7] T. Chikayama and Y. Kimura Multiple reference management in Flat GHC. ln Proceedings
of the Fourth International Conference on Logic FProgramming, 1987,

[Chikayama 3] T. Chikayama, H. Sato and T. Miyazaki. Overview of the Parallel Inference Machine Oper-
ating System (PIMOS}. In Proceedings of the International Conference on Fifth Generation Computer
Systems, 1COT, Tokyo, 1588,

[Goto B8] A. Goto, M. Sate, K. Nakajime, K. Taki, A. Matsumolo. Overview of the Parallel Inference

Machine Architecture (PIM). In Procecdings of the International Conference on Fifth Generation
Computer Systems, ICOT, Tokyeo, 1958,

[lehiyoshi §7] N. Ichivoshi, T. Miyazaki, and K. Taki. A distributed implementation of Flat GHC on the
Multi-PS1. In Proceedings of the Fourth International Conference on Logic Programming, 1087,

[lchivoshi 88] N. Ichiyoshi, K. Rokusawa, K. Nakajima and Y. Inamura. A New External Reference Manage-
ment and Distributed Unification for KL1. In Proceedings of the International Conference on Fifth
Generation Computer Systems, 12OT, Tokye, 1988,

[Kimura 87] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and Its Instruction Set. In Proceedings
of 1937 Symposiem on Logic Pregramming, Sep. 1887,

[Lieberman 83] H. Lieherman and C. Hewitt, A Real-Time Garbage Collector Based on the Lifetimes of
Objecte. Commun. ACM, 26(6): 1083

[Nakajima 88] K. Nakajima. Piling GC — Efficient Garbage Collection for Al Languages. In Proceeding of
the [FIP W@ 10.8 Hf'nr.i.'mg Ccrn_i":r:n-:(on Parallel Fractss:'ng, 1985,

[Nakashima £7] H. Nakashima and K. Nakajima Hardware architecture of the sequential inference machine
: PSLIL In Proceedings of 1987 Symposinm on Legic Programming, Sep. 1987

[Hokusaws 88] K. Rokusawa, N. Ichiyoshi, T. Chikayama. and H. Nakashima. An efficient ternination
detection and shortion algorithm for disiributed processing systems. In Proceedings of the 1988
Imicrnatiomal Conference on Pamllc! Processing, Vol 1, 1988,

[{Takeda 88] Y. Takeda, H. Nakashima, K. Masuda, T. Chikavama and K Taki. A load Balancing Mecha-
nism for Large Scale Multiprocessor Systens and its Implementation. In Proceedings of the fnierna-
tional Conference on Fufth Generation Compater Sysiems, ICOT. Tokyo, 1088,

[Taki 88] K. Taki, The parallel software research and development tool: MultiPSI system. Programming
of Future Generation Computers, Elsevier Seience Publishers BV, (North-Tiolland), 1988,

[Urda 86) K. Ueda, Guarded Horn Clauses: A Parallel Logic Programming Language with the Coucepl of
a Guard. Technical Repert TR-208, ICOT, 1486,

[Watson 87) P. Watson and T Watson An efficiom garbage collection scheme for parallel computir archi-
tectures In Proceedongs of Parallel dvchalectures and Languages Eweape, Jrue THET

Continuous reduction

Current goal

Suspension
Pop a goal Push a goal

Suspended goals Resumption Ready-goal stack
with priority

Figure 1: Goal State Transition

Proe FProcessorg
e 50Ty lnipur'-r table F:-xp-::rl takble

EX cell Exporied data

B 51 o X

Figure 2: Export Table and Import Table

Frocessor;

Processory

: Shien A

. Foster parent for shoen A

@@ : Gozls in a shden

Iigure 3: Shoen and Foster Parents

12.

