ICOT Technical Report: TR-437

THR-437

WEIGHTED-GRAPHS — Tool for
Studving the Halting Problem and Time
Complexity in Term Rewriting
Systems and Logic Programming
by

P. Devienne

MNovember., P985

RS, 10T

Mita kokusai Bide. 21F 1L 436 1141 - 5

H :D | 4~28 Mita 1-Chome Telex ICOT 132634

Mmate-ku Lokyve 108 Japan

Institute for New Generatidn Comﬁﬁf&f_?éthnoiagy

WEIGHTED GRAPHS
a Tool for Studying the Halting Problem and Time Complexaty
in Term Rewriting Systems and Logic Programming

Philippe DEVIENNE®
Institute for New (leneration Computer Technology, Tokye, Japan
Universite de Lille - LIFL |, Lille, France'

November 21, 1988

Abstract

This study is based on the halting and complexity problems for a simple class of logic
programs in PROLOG-like languages. Any Prolog program can be expressed in the form of an
overlap of some simpler programs whose structures are basic and can be studied formally. The
simplest recursive rules are studied here and the weighted graph is introduced to characterise
their behaviour,

This new syntactic object, the weighted graph, generalises the directed graph. Unfoldings
of directed graphs generate infinite regular trees that I generalise by weighting the arrows and
putting periods on the variables. LThe weights along a branch are added during uniolding
and the result {module of the perind) indexes variables. Hence. their interpretations are
non-regular trees because of the infinity of variables. This paper presents some of the formal
properties of these graphs, finite and infinite interpretation and unification.

Although they have a consistency apart from all possible applications, weighted graphs
characterize the behaviour of recuraive rules in the forre L - —R . They express the most
general fixpoint of these rules and range across a finite sequence of recursive rewritings.
Within global rewriting systems, narrowing and logie programming, the halting problem
and the existence of sohutions are proved to be decidable for this simple recursive rule with
linear goals and facts, and the complexity is shown to be at most linear.

Althougl these problems are undecidable for slightly more complex schemes, it is hoped
that from the weighted graphs of each recursive sulesiructure of a Prolog program, the
whaole behaviour of the program will be understandable. Then, the weighted graphs would
be the nucleus of an efficient and methodological logic programming, which could be called,
Siruciured Logic Programming.

1 Introduction

Estimating the termination and complexity of a program from its structure is not an original
idea. Although [Béhm and Jacopini 66] proved that all programming can be done with at most
one while loop, usually the structure of a well-writien imperative program gives good behavioural
properties.

Within logic programming, this structural approach has not given comparable results; how-
ever, this approach is more coherent hecause the language nucleus is based on one and only

*Supported by INHIA grant
'On leave duering 1988

one operation, called inference or rewriting, but it also seems to be more complex because this
operation is very powerful [Dauchet 1987].

The guestivn of termination has been studied in different contexts, namely, term rewriting
svstems, narrowing and Hom clauses with or without function symbols; they share the same
basic operation, rewriting. However, within Horn clauses, the term global rewriting must be
used hecause the whole term, not a part of it, may be rewritten,

Decanse termination is in general an undecidable property [Huet and Lankford 78], many
works have beer devoted to introducing methods for proving that particular systems or programs
are terminating or non-terminating, but even in this case, in spite of their simple appearance,
they are complex and show the expressive power of rewriting. Let us look at some of them:

- Term rewriting systems, more geueral than our context: A set of rules, R, terminates
iff. for any ground term, T, no infinite derivations are possible. [Lipton and Snyder 77] assert
that three rules suffice for undecidability. [Dershowitz 85 and 87| give the same result for two
rules. Finally, [Dauchet 87] proves that it is possible with only one rule io simulate any Turing
machine., Thus, the uniform termination of one rule is undecidable, too,

Horn clauses without function symbaols, more particular than our context: The structural
approach has been studied; for example, if it is possible to eliminate recursion from a program,
then it is said Lo Le bounded. This property is undecidable even for linear programs (that is,
eacl rule contains at most one occurrence of a recursive predicate) [Gaifman and Mairson 87].
This property is decidable for linear programs with a single rule if the intensional predicate is
hinary and its complexity is shown to be NP-complete [Vardi 88].

- Horn clauses, context studied in this paper: This termination problem is often asked about
a set of rules, R, and ane term, T: R and T terminate iff no infinite derivations of T are possible.

However, even in the case of a single rule, there is no good tool for checking termination and
for understanding the basic recursivity. If good intuition is possible about simple rules such as
the following :

1. friend(X.Y) = friend(Y.X). (infinite)
Xisa friend of Y if ¥V is a friend of X

2. put(milk) - put{coffee). [finite)
I prefer white coffee

3. integer(suce(X)) :- integer{ X). (depending on goals)
succ(X) is an inleger if X is an integer

unfortunately, the non-linearity of the terms, the existence of some variables on one side of the
clause, and the permutation of variables during rewriting generally make intuitive comprehen-
sion of behaviour impossible.

Weighted graphs have been introduced [Devienne and Lebegue 86] as an attempt to give a
first answer element. They generalise the notion of infinite trees [Courcelle 83].

Directed graphs are well known: their unfoldings generate infinite ralional trees. Informally,
a weighted graph is a graph with a top, nodes and arrows, but the arrows are weighted by
relative integers, and the variables may have a period. During the unfolding, the weights along
a branch are added and their sum {modulo of the period) indexes the variable. These unfolded
treeg are non-rational because of their infinity of variables: their formal properties are studied.
The most important properties, unfolding in a counter range and wnification with occur-check,
are presented here, The whole formal presentation is a generalisation of definition, interpretation
and the unification algorithm of directed graphs.

Although they have a consistency within the algebraic theory apart from the halting and
complexity problem, weighted graphs express as clearly as possible the beliaviowr of rules, de.
noted I — B within term rewriting systems or L = R in logic programming,.

Any loop-generating rule, L i~ R, has a computable weighted graph whose interpretation is
its most general fixpoint and whose finite interpretation is a range of the most general sequence
of finite inferences using this rule. This means that all the information about its behaviour is
concentrated in its weighied graph.

L]

2 Why Yet Another Syntactic Object?

Tl basic syntactic objects used in term rewriting systems and in logic programming are trees,
directed acyelic graphs (dags) and directed (or oriented) graphs.

In Prolog, any literal of a rule is a finite tree, that is, the basic object in a Prolog program.
In a tree, each different node of the root has one and only one father node:

TN
/\ /\

T a W W
Fig. |

In term rewriling systems, the term which has to be rewritten is ground, that is, without
variables. The tree (fig. 1} is not ground because of variables U and V. A tree is said to be
Jinearif there is only one occurrence of its variables, The tree (fig. 1} is also not linear becanse
of two occurrences of variahble V.

Directed acyelic graphs (dags) were introduced for improving the memeory size and the uni-
fication algorithm. In this new structure, a node may be shared by several father nodes, and
i1 is possible to suppose that there are not two different nodes labelled by the same variable.
Hence, we need not search all the occurrences of a variable to apply a substitution during the
unification. Thus, the form is a graph whose arrows are directed, but this graph has no cycle.
B+ unfolding, they characterise the finite trees.

&
s
b”//

AL (D

Fig. 2

L

Another generalisation exists in the form of a directed graph which may contain cycles
[Courcelle 83} and [Fages]. These unfolded graphs are regular trees, that is, solutions of a finite
svstem of equations, or composed of a finite set of sub-trees. The interest is to unify without
aceur-check {as in Prolog IT). For example, the unifier of A and f{A) does not exist with oceur-
check. However. if oceur-check is omitted, then A V f{A) is represented by the directed graph:

Lo — Unfaiding — f(f(f{--- ({(infinite tree}

Unfortunately. these syntactic objects are too poor to study the behaviour of a recursive
rule. Using them. the results are onlv partial and their proofs are complex. Lheir structures are
1ot adapted to allow a good comprehension of the basic recursivity. This is why we are obliged
to generalise them and to introduce weighted graphs.

2.1 What is a weighted graph: Informal presentation
A weighted graph is a directed graph where:

1. the root is weighted by a relative integer

2. the arrows are weighted by relative integers

3. the variables may be periodic.

game’ This looks like a directed graph:
PR “\‘ - there are six nodes labelled by
P2 o function symbols (game, o) or variables (F, M),
\) +1 the arrows are directed, and this graph contains loops;
o - however, the root {game) is weighted by 0,

/ twao arrows are welghted by -1 and +1,
M and variable I' has period 2.

Let us look at two examples to understand the meaning of these new notions, named weight
and period.

2.1.1 Weight
The most general infinite list can be expressed in the following form:

[Vo.Vi,..., Vu,... whereV; are variables

Tr’u/ o\ o
N

or In tree lorm:

\n
1*':/ \\‘em.

Let us consider rule r: | V, U] — U. This list is its most general fixpoint,
The directed graph cannot be used to express the list becanse of the infinite number of variables:

/ﬂ\"':.) = Lnfolding = V/ \\\\'::|

v PN
v .

™
"u,

n]
N
V ele,

However, if a weight, 1, is put on the looping arrow, the index, i, of the variables, V:, can he
computed as the sum of the weights along the branch from the root 1o the leal:

a]
0 — ~ Unfolding — +1 = Index computation — /-’
+1 i
// _) v \‘o Va \"]
V / \-(H "'/ \
¥ . W

2.1.2 Period

Let us consider a chess game between two players, Fy and Py, who play any move, M;, in turn.
The chess game can be expressed in list form:

[Fo, Mo, o.My, Fo, Mo,y Famedzs Moy oos

Plaver Py plays move Mg, then Py plays My, and Fy plays Mo, and so on. Move M, is, therefore,
plaved by player Py moq s
In equivalent tree form, that is:

Fn/f \\o
PN
Mgy .
\“D
R:::D::\U

M:l/ \etc.

For describing the periodicity of variable P, a period is pul on this variable. In this way, the
index is the sum of the weights modulo the period:

0 = Unfolding — it = Index computation — 0
7N i AN 7 N
P:2 o ' u 4
/7N 7N
i M . My .
M +
P2 \ﬂ Fy mﬁu“z\\ﬂ‘
s N

M €lc f etc.

2.2 Definition of a weighted graph
Definition 1 A weighted graph iz a graph in the form

wg = (X, Lab, Suee, Period) [(Root, wg)

where - X 5 a sel of nodes
- Lab is the label function from X to F'U Var
I is the alphabet and Var is the set of variables
- Succ is the successor function from X x Nto X X 2
Succ(z,i) = (24,w;) means that z; is the i** successor of z
and this arrow is weighted by w;,
- Perind is a function from Var fo N
FPeriod(V) = p means that p is the period of variable V:
¥ k¢ E (interval of interpretation), Vi = Vi mod p-
- (Root, Wg) is an clement of X x Z, that is, the weighted root.

game’ - X = {2y, 22,23, 74, 75}
’{j—l \\ - Lab(z,) = game , Lab{zy) = P, Lab(zs) = o
P2~ o Lab(ze) = o, Lablzs) = M
AN) +1 - Suce(1,1) = (23,0), Suee(z,,2) = (22, -1
o Suce(zy,3) = (23,0), Suee(zy, 1) = (25,0} ..
- Period(P) = 2
M - Raoot = z; and Wg =10

Hemark 1 Directed graph and weighted graph
1. The directed graph definition is the same, bui the underlined parts have been added,

2 Another definition is possible: pertods on the nodes [Devienne 87] The advantage 15 unification
without occur-check, but the major disadvantage is that interpretation is much more comples.

2.3 Interpretation of a weighted graph

In the intuitive presentation. the weighted graph was unfolded withont control, but for a good
and powerful interpretation. twa new notions must be introduced.

2.3.1 Counter range (CHR)

For computing the index of variables, the sum of the weights along the branch is calculated using
a counter. During unfolding, any weight found on the branch is added to the counter. Using
the counter, a control can he defined. While the valune of the counter belongs to the interval,
(I, the unfolding is applied. As soon as this value becomes invalid, the unfolding of this branch
stops, This is why a special variable must be associated with each node.

Let us look at an example with CR = [0n]:

Weighted graph {1 Value of the counter Unfclded tree for CR = [0.n]
o — Unfolding ° Index computation ©
- i+1) T tnde -
/ D 41 v/ \D R lon] Vn/ \Q
v PN < N\
V . 14 .
N N\

N 2N
eic,

A special variable, U, is associated with node o. After n unfoldings of the weighted loop, the
value of the counter becomes (n+1), so unfolding stops and the leafl of this branch is labelled
by U4, that is, the variable of node o, indexed by the value of the counter. The obtained tree
expresses the most general list composed of more than n elements.

If CR = Z, unfolding is applied without control, and the interpretation is the most general
infinite list.

2.3.2 Initial weights (IW)

In addition to the weights of the root and the arrows, an initial weight is used. This is equivalent
to eonsidering that the counter contains an initial value.

a
o = Initial weight: k € CR — /
e \—D +1 CR=[0,n] v \D
v

W
\ L]
Vi Uns1
- Initial weight: k § OR — L

L8]
' +1 CR = [1.n)
v \\

In this way, the most general sequence of n rewrites using rule r: [V, U] = U :
i~ r s tg= Tt e = tnay

can be expressed from the previous weighted graph. The ith term of this sequence is the inter-
pretation of wg with the initial weight, i, and CR = [1u}:

o —r—= o e e == Unq
1’]/ \o Vz/ \a H—./ N Usgr
PN 7N\
Va . Va _
N, N,
1";1/ \ U‘I’IJ.-i Vﬂ/ \ U..,+1

Definition 2 The paths in a weighted graph are defined through the following recursive function,
called Descendant. Let m be a path in the form iy.dz...ix € N¥
Desecp((z,w).e) = (z,w) {£: empty path)
Deseopl(z,w),21.92... iy} = Deseppl{zn,wn + T.L?:I,‘i:g sea tk;I ifwe CR and
Suce(z, 1) = (2a,10a)

Definition 3 Unfolding of o weighted graph wy for a counter range, CHK, and an mput weight,
k.

Let { Root,wg) be the weighted root of wg, then the unfolded graph demoted Uénl'_wg) is:
wm such that Desc((Root, wr + k), m) = (z,1)

Uiglwg)(im) = f if wc CRand Lab{z) = f € F (function symbol)
= Vo mad period(V) if we CH and Lﬂb{-’-"} =V eVar
=Vzy if w@ CR and Vr is the special variable of .

Notes: The definition of the module function and the highest commen factoris extended to £ to simplify
this presentation:

1. The medule function from Z to N
W & Z,wmod 0 = w means that a variable has at least period 0.
The modulo function is an equivalence relation, where any element of an equivalence ¢lass can be
chosen as a canonic element. This canonic element will be taken in the interval, CR, lor example,
the smallest positive element if there is one, otherwise the greatest negalive one.

2, The highesi common factor function from 7 x 7 to N
vw,w' € Z, hef(w,w') = hef(|w|,]w'|) and hef(w,0) = hef(0,w) =} w | .

Theorem 1 The weighted graph is a generalisation of the divected graphs and it can ezpress ¢
subset of non-regular trees:

Finite trees = Dags C Directed graphs C Weighied graphs € Trees

Proof Any directed graph is a weighted graph whose weights and periods are null, or a weighted
graph with any weights and whose period of all the variables is 1.

The weighted graph can express some non-regular trees hecause of the infinity of variables,
Therefore, they cannot express the non-regular ground trees, for example, the infinite list of
natural integers,

Definition 4 Interpretation of a weighted graph for an input weight interval
The interpretation of a weighted graph for a counter interval, CR, and an input weight interval,
IW, is a set of pairs in the farm (input weight, unfolded from this input weight):

I (wg) = {(k, Ulg(wg)) [VkeIW}

Example fl[;::]"' 1]{wg} expresses the most general sequence of n rewrites using (VU] — U (<f

2.3.2).

2.3.3 Path and loop in a weighted graph

Definition 5 Loop and basic loop
A loop is a path from @ node to itself using the descendant function. This loop is said fo be basic
if all the nodes, except for the first and the last, are different.

Generally, there is an infinity of loops, but always a finity of basic loaps.
Definition 8 Weight and gign of a path
1. The weight of a path is the sum of the arrow weights along it.

9. The path is said to be positive (resp. negative, null) if its weight is positive (resp. negative,
null).

Proposition 1 A weighted graph contains no null finite loop iff all the basic loops from the
same node have the same sign and are not null.

Proof It is obvious that these conditions are necessary. Let us show that they are sufficient.
For any node, y, appearing in a loop from node x, there exists a basic loop from x through y.
This basic loop is also a basie loop {rom y threungh x.

Hence, all the basic loops from a node appearing in any loop from x have the same sign.
Moreover, the weight of a loop is the sum of some overlapped basic loop weights which are
pither all greater than zero or all less than zero. This means that any loop weight is never null.

Corollary 1 If a weighted graph conlains no null finite loops, any looping node can be said to
be either positive or negative because of the same sign of itz loops.
2.3.4 Finite weighted graphs

Definition 7 A weighted graph is said 1o be finite if it contains no null finite loops, that is, iff
it contains no null basic loops and there are no positive and negative basic loops from the same
noide,

Therefore, it is easv to define an algorithm for checking whether a weighted graph is finite
because of the finite number of basic loops. This property corresponds to the occur-check in
unification.

The weighted graph in Fig. 1 is finite, but the following weighted graph is not finite because
40
a

of node b
) +1
P2 b
1 :

Theorem 2 The unfolding is finite in all finite counter ranges iff the weighted graph is finite:

¥k, ¥ finite CR, Ukg(wg) is a finite tree & wg is o finite weighted graph.

The depth of the unfolding of o finite weighted graph is bounded by a linear funetion of the size
of the counter range.

Lemma 1 For a finite interval, CR, the unfolded result of a finite weighted graph is a finite free
whose height is bounded by a linear function of the size of CH.

Proof Let k be the input weight and wg the root weight. A path in the weighted graph is a
path from the root to a function node in the unfolded graph iff any left subpath of this path has
a weight, w,, such that k4 wgp +wy € CH.

However, CR, is a finite interval and w, belongs to a finite interval.

Moreover, any path in the weighted graph can be expressed in the form:

. doop(zy).ma.loop(zg) ... Mk doop(zi).mes

where the paths, m;, contain no loops and the nodes, z,, are all different.
All the parts of this path have a limited length:

10

1. k< Card{X), that is, the number of nodes in the weighted graph
2, ||m; |l £ Card(X)

3. The length of each foop(z;) is limited becanse all the basic loop weights have the same
sign, Therefore, the length is less than Card{X) x Card(CR) because the length of any
basic loop is less than the number of nodes of the weighted graph and the weight of any
basic Joop is at Jeast 1 or -1. This means that the length of each loop is bounded by a
linear function of the size of CR.

Lemma 2 [f @ weighied graph, wy, is not finite, there exists a constant, M, which 15 compulable
such that:

Card(CRY> M = 3ke CR, Ukp(wg) is an infinite tree.

Proof If the weighted graph is not finite, there exists a finite path, m, containing a loop whose
weight iz null:

dm path such that m = my loop(z) and wgupz) = 0.

Let us define [Wyin, Wmaz] as the smallest interval which contains zero and the weights of every
left subpath of one path, m. It is then easy to see that all the following paths have the same
weight:

Yne N, myloep(z)”

and the weights of their left subpaths belong to [Wmin, Winsz-

Thus, if interval CR contains more than Cerd{wmin, Wmaz)+ | wg | elements, from the input
weight, (in f{OR) = wmin) (if wg 2 0], or, (sup(CR) — W) (if wp < 0}, the unfolding i=
infinite because of the paths. mjJoop(z)".

2.4 Partial order
Notation 1 Letf ¢ be a subsittulion,

1. Domain{m) is the set of variables which are substifuted by o.

2. Range{a) is the set of variables which appears in the trees associated with the varables of
domain(a).

domain(c) = {V; [AVi—ti)€o } and renge(r)=Jiv . &0 range(t;)

3. A substitution can be applied to a term by simultancously replacing all vccurrences of each
variable of the domain. The term obtained is denoted oft).

Definition 8 Jet wg and wg’ be two weighted graphs, then the following partial order 15 defincd
by

IMiwg) € I (wg') if 3o, a substitution such that o IR (wg)y < 11 (we)
That iz, of:
LW o iw

11

5 there erists a substilution making the unfolded iree of wy equal to the unfolded tree of wg’
Jor vvery input weight of JW.

Proposition 2 Let WG be a weighted graph struciure, that s, WG = (X, Lab, Succ, Period)
and let us define IW, IW’, CR and CR’ as four intervals of Z such that IW C IW' and
hic CR.

There is a substitution, o, which verifies:

V(Root,wp) € X x Z, wg denotes WG /(Root,wp) , o If%i(wa)} C I (wg)

Proof For any value of the counter belonging to CR-CR, the interpretation of the nodes is
Jifferent. Let ¥ be a node and Vx its special variable; for a value, ¢, of the counter, this node
will be interpreted during the unfolding as:

1. Va. from CR
2, Ugg(WGE/{2,0)) from CR

This iz different, iff value ¢ belongs to CR’, but is not an element of CR. Therefore, this substi-
tution can be cxpressed in the form of an indexed substitution:

¢ ={Vz, = Usny(WG/(2,0)) | ¥z € X , Ye € CR' — CR)
This substitution does not depend on the weighted root and verifies of J&E(wg)) C
Ié-}g;l.rwg].
Corollary 2 Let wg be a weighted graph and IW, IW", CR and CR’ be four intervals of Z:
IW C IW and CRCCR = IP(we) £ Ifn(wg)

The greater the counter range, the more precise and deep the interprelation 15,

2.5 Unification of finite weighted graphs

Definition 9 Two weighted graphs are said to be unifiable from IW and in CR if the following
systern is solvable:
{Ufp(wg) = Utrp(wg') | YheIW }.

Let o be the most general unifier, then the result of the unification is denoted:

I (we) V I (wg) = {(k,o Ukglwg)) [Vk € IW)

Example Unification on CR = [0,n] and IW = {1,u]

game’ V gurme !
AN VAN
F P’ o P’ P R

,/

P

\o
SN
M R

12

Does there exist a substitution making the trees equal for all k € JTW ?
game == gome

PR TN <

P P a Py Py Hga
VN
i o

7N
My Ry

Remark 2/t is well known that unification is a fundamental concepl and a crucial property
in algebraic theory. If TW is infinite, the weighted graph unification is equivalent to solving an
infinite system of equations.

Unfortunalely, the result of the unification of two weighted graphs, wg and wg’, is generally
not a weighted graph. However, 1l 1s possible to compute an approzimate weighied graph, wgvwy',
which does not depend on the JW and CR intervals and which ranges across the resull of the
unification:

1. By decreasing CH, the unfolded trecs of wgV wg' are smaller than the untfication of the
unfolded trees of wg and wg”.

L]

By increasing CR, the unfolded trees of wg v wg' are greater than the unification aof the
unfolded trees of wg and wg’.

This weighted graph, writlen wgV wg', is a good approzimation of the unification of wy and wg’,
That is the meaning of the following theorem, and the next pages will prove that. The definttion
and the interpretation of weighted graphs are a generalisation of the directed graphs. The proof
of the unification algorithm is also a generalisation of the directed graph algorithm,

Theorem 3 Let wy and wg' be two unifiable fintle weighted graphs, then there exst two con-
stants, a and b, such that the range of unification of wg and wg’ from IW in CR is obtained by
the interpretation of wg V wg’ from IW in (IW NCR)ja——yy and in (JW U CR)jap):

TP (wegvwg') < § < Iph, (wg v wy)
where 5§ = Iéﬁl[wg} W Igﬁ(wg’]
CRyp = (ITWNCOR)amib
CRsup = (JW U CR)jg ity

This means that the side effects of the unification have a constant size equal to a for the
left-hand side effects and b for the right-hand side effects.

This is ane of the most important properties, hecause after removing side effects, the ap-
proximate solution does not depend on the interpretation intervals. Within logic programming,
this will give important consequences for characterising a finite sequence of recursive rewritings.

13

Corollary 3 Let IW and CR be two intcrvals sharing ot least (a-+b) elements, then wg and wg’
are unifiable from IW in CR iff they arc unifiable from Z in Z.

From propaosition 1, it is obvious that if two weighted graphs arc unifiable from Z in Z, they
are nnifiable from and in any intervals of Z. This corollary gives the reverse implication, that
is, two weighted graphs are unifiable from 2 and in Z if there exist two finite intervals, IW and
CR, sharing sd elements where they are unifiable,

A consequence will be the decidability of the uniform termination of one global rewriting
rule.

Corollary 4 If IW and CR are cqual to Z, the weighted graph unification is internal, that is,
the result is another weighted graph:

I {wg)) V fﬁz{“fﬂ'“} = -’E(u-‘g‘-.fwg’j

A consequence will be that the most general fixpoints of global rewriting rules are weighted
graphs,

Lemwma 3 The weighted graphs ean be supposed to share the same weighled structure. This
means that they are similar, cxeept for the weighted roots.

Proof The semantics of the periad obliges the weighted graphs to share the same period function.
Moreover, it 15 easy to join their sets of nodes and the associated functions, named Lab and
Suee.

S0, let us define:

wg = WG/ Root,wg) and wg' = WG/ (Root', wy) |, where WG = (X, Lab, Suce, Period).
Lemma 4 Let wg and wg’ be two weighted graphs and [W, ITW’, CR and CR" be four mtervals:
IW CIW' and CRCCR = 1M (wg) V I&E(we) <€ 158 (we) V IEE (we')

Proof Directly from proposition &

Notation 2 Let [I5] be an interval of Z and o, b two positive integers.
[I+ a,§—b] is denoted by [I, §)jueyy and I —a, 5+ b by [, Slia—p

that s, the interval whose size hus been udded or reduced by constants on both sides.
It the same way, this operation will be applied alse to infinile infervals, for example:

] = 0, 5]{&—”—5} =]_ ‘11&5 - h... ar zfﬂ—ﬂ—il] = z:n-——-b} =&

These intervals are sawd fo be a resiriction or an ertension of an interval, and are denoted
I =~ 1I'(Ilis a restriction of [’} or [~= I' {I is an extension of 1').

Lemma 5 Weighted graphs wg and wg’ share the same rool node (Root = Root'}, bul the reet
weights are different [wg £ wjy J:

14

1. wg must be an acyclic weighted graph, otherwise the veeur-check will not be verified for
somie fintle JW and CR intervals,

2. Let h be the weighted graph, wg, all of whose periods are replaced by the Highest Commen
Factor of this period and (wg — wg):

oy < IMwe) VO IBRwe) < IER,,(h)
where C Ryuy <~ (IW NCR) and CRayp ~» (IW UCR).

Sketch of proof:

1. we is a eyelic weighted graph.
The weighted graph is supposed to be finite. For a well chosen finite interval CR, there is
an input weight, k, such that:
I = my.doop(z)my and Ulp(wg)(m) = UEp(wg’) (my.my) = V.
A loop whose weight is a multiple of wh — wp is encugh. That is, the occur-check is not

verified and unification is impossible. So now the weighted graph, wg, will be assumed to
be acyclic.

9. To decrease the CR interval: C R,y
There are two constanis, oy and by, (depending on WG, wg and wl) such that:

Vk e TW, = (TWNCR),,——s,), the unfolding of wg and wg' is complete,
that is, the unfolded trees of wg and wg' are similar, except for the indices of their variables.

It is possible to show that there exist a; and by (depending on WG, wg and wy) such
that the mgu of J2% (wg) v T {wq") is greater than the following substitution:

o= {1}: mod period (V] = .Fl mod hc}'[Ferfad'[V:l:Mrh—ulﬁ} frvt € IHr[u.:.—u—b;}}

The only condition is that (JW N CR),,——s,) contains at least period(1’) elements,
Let us define W& = (X, Lab, Suce, Period), wg' = (X, Lab, Suce, Period'} and

YV € range(WG) . Period' (V) = hef(Period(V),wg — wr).
Hence, for CRup = (IW N CR (a3 mby)

Bhtwg) v I(wgy > 155 (wg) v ILE fwg) >
o 11 (wa)) v al IFE, (wd'),

o(IDE (wg)) = IME (k).

Therefore, I we) v I8E(we'y 2 fgg,_ﬁ[h).

14

3. To increase the CR interval: CH,.p
For well chosen censtants az and b3, the unfolding pf wg and wg' is complete on the counter
interval, OBy = (JW U C)5 s,y The mgu of the unification is less than:

g= {Vf mod perind{ V) = Vi mod hef(Period(V), (wr—w'y)} [ViE C-H-:up }

Il twg) v I (wg'y < IR, (wg) v IE%, (we') <
o IE%,. (wa)) v o(IFR, (wd")).

Thar is: fhiwg) v I (wg') < Ig?l}tr,w{hj'

Example Let V! and V=1 he two weighted graphs,
MLV) < IO VMO S L0 2

where C Ryt = (IW A CR) ey and CRuup = (IW U CR) 1y,

Lemma 6 The weighted graphs, wg end wg’, have different root nodes. Let wg’ be the weighied
etructure, W5, whose Suce function has been modified as follows:
Ve e X, Suec(z,1) = Suee(z,i} = (2", w) if w# Hoot'
= (Root,w + wg — wy) 1f Suee(z,i) = (Root', w)
That is, the node, Hool', has been replaced by the node, Root, with a correction of the arrow
weights (wy — wy). Let us define h and h” as the weighted graphs obtained this way:

h= WG [(Root,wp) and K = WG/ Rool',wq).
Then, the following ineguation is verified:
Iuh) VI < Ifwe) V IR (we) £ Igp™t(h) V Iop™(R)

where C Ry <~ (IWNCR) and W, ~> (IW UCR).

Proof To obtain a good property for unfolding, suppose that all the counter values of Roet’
{root node of wg') belong to IW it | o i)

In this case, the fundamental property of the directed graph can be generalised.

For any unifier, o, of wg and wg™:

o(IBR(wg)) = o(IZE(h)) = o(ID%(we)) = o L% (K))

This is proved by induction on the length of the paths in weighted graphs wg, wg'. k and h".
Let m be a path and k be an input weight of k.

Suppose, first, that || m ||= (. Then the result is obvious because the roots are unchanged.
Next, suppose that the results hold for || m ||< n = 1. Consider a path, m = 11,9z ... 1.

1. There exists no 1 such that Descpp((Root, wg + k). 1.0) = {Hoot' w).
Then the descendant function js unchanged on the path:

o Ukplwg) J(m) = o Ukp(h))(m).

16

9. There exists i such that Descor((Hoot, wg + k) 11,5) = (Root',w).
Then the Descendant function has been changed in this path:

Desel-pl{Root,wr + k),m) = Descop((Root,w + wp — wg). dies win)
(a) of Ufg(wg))(m) = of g ™ (wd') Yikss win)

(b) o UkR(R) Ym) = o USR (R} Niks1-in)

However, the induction hypothesis can be applied because w — wi € TW:

a(U:Ewh{wﬂ;] Wikgr-n) = of U:;wh{h} Mikg11a)
Using equations (2) and (b) and the induction hypothesis,
o Ubp(wg) m) = a(Ug(h))(m)-

Similarly, for wg’ and b o Ukg(we’)){m) = a{ USg(h"))(m).
However, the hypothesis was that all the counter values of Root” (root node of wg') belong to

IW (ol
Hence. it is possible to increage IW or to reduce CR:

CRews <~ (IWACR) and IW,,, ~> (IWUCR)

Lemma T Weighted graphs, wg and wg’, have different root nodes and the node of wg’ is labelled
by a varinhle, V:

1. If V is periodic, weighted graph wy must be acyclic, otherwise the unifier does not exist.

2 Let & be the weighted g’,TF‘ﬂ-j'J‘h, g, whose CUCTY pr,nr.}d 15 r‘Ep!nr:Bd by the Hl:gflr.:ﬁf Common
Factor of this period and (wr — wh):

#

EE < ERwe) VO IER(we) < TR (R)
where C Hgwy <~ (IW N CR) and CRoup ~= (IW L CR).
Proof If variable V is periodic, lemma 3 is applicable because there exists TWo <~ (IW nCR)
such that:
IMetng) V IMewa) VI8 (we) V I(we) < IBR(wg) V IR (we)
and
Bwe) v 1) £ IPR(we) V IB(wa) V IR (wg)

where wg; has the same root as wg, but the root weight is wp + Period(V).
Hence, applving lemma 3, there exist C R,y and C R, such that: let h be the weighted graph,
wg, all of whose periods are replaced by the Highest Common Factor of this period and {wyr—1wp):

fév'ﬂ'm(h\l W L‘T;L;‘_&I:wg") < Iﬂ{;hug} W Ié‘;’{{wg’]

ey v PR wey < TEE 0V OIER (e,

17

Moreover, weighted graph wg can be assumed to have no occurrences of variable V (Lemma
4% The unfolding of h is complete on ' R,y and the periodicity of variable V is verified in the
nnfolding of h:

) v oI (we) = IER, ().
This means that this inequation is verified:
) < ffwe) VO IER(we) £ TER(B)
where CRap =~ (IW N CR) and CRyyp ~= (ITWUCR)

Lemma 8 Weighted graphs wg and wq’ have different root nodes, but these nodes are labelled
by function symbols.

1. The label must be the same, otherwise the unifier does not exist.,

2. The unification of wg and wg’ can cover the vange of the unification of their sub-graphs in
well chosen intervals of interpretation.

Proof For a well chosen IW,,, interval, the unification of wg and wg’ is equivalent to the
unification of all the couples of their sub-graphs. It is the same for CR.up. Let us choose
a=b={wp|+|wg|

TWoy = {IW nﬂR}[a_,,_“ and GR”, = I:IWUC-‘R:I{,__H.

For these intervals, TW,., CR or JW, CR..p, finding the mgu of wg and wg’ is equivalent to
finding the mgn of (wg:, wa Jo<icarity)-

18

Using these lemmas, a unification algorithm can be presented in the form of a generalisation
of the directed graph algorithm of [Fages]. Let us denote the highest common factor as hef.
This algorithm is composed of two steps; the first is the application of the unification procedure,
and the second, easy to define, is the finite weighted graph-check, that is, occur-check:

Procedure Unification ({ Root, wg), (Root', wi]) ;

Begin
If { Root = Root’)
Then
If wg # wh
Then % wg must be acyelic %
YV £ wg, Period(V) := he f(Period(V),| wg = wg [}
Else
If (Root’ is labelled by the variable V')
Then % To replace the arrows going to Root’ %
Yz, il Suce(z.i) = (Root',w') then Suce(z,i):= (Root,w' + wp — wg)
H Period(V') # 0
Then % wg must be acvelie %
WU € g, Period(V) := hef(Period(V), Period(V')}
Else
If (Root is labelled by the variable V)
Then % To replace the arrows going to Root %
Vo, if Suce(z,i) = { Hoot,w) then Suce{z,i}:= {Reot',w+ why — wR)
I Period(V) # 0
Then % wg' must be acyclic %
YV € wy', Period(V') := hef(Period(V), Period{V'))
Else
If (Moot and Roct® are labelled by the same function)
Then % To replace the arrows going to Root’ %
¥z, if Suce(z,i) = (Root',w’) then Suce(z,i):= (Root,u’ + wp - wh)
Forir=1An Do
% Suce{Root,i) = (zi,wy) and Succ{Root',i) = (z},w])%
Unification ({z;,w; + wg), (=], w; + g}
Dope
Else Fail - The unifier does not exist.
End

Proof of theorem 1 The unification algorithm computes a weighted graph, L, such that:
Wi .) Wour
Iy < Ip(we) VO I8K(we) < Toru(h)

where [Wui. O Ry <~ (TW N CR) and Wy, CHgpp ~>= (TW D CR).
Moreover, it is easy to understand that:

19

if -’“ (wg) V 1105w < ""[-‘}

lhen fcnl"’ﬁ’:‘ i IG.H{tLg"} E E%“p{h}

In a similar way, there exists C R, , such that:

Y wg) VI (wg'y 2 IGpe(h) then IRE(wg) V IZR(we') 2 Igp. (R)
Let us define { Root” w™) as the weighted root of L and for simplicity let us suppose that TWy,, =
[a, bl

If all the indices of the special variable of Root” belong to [a+w",b4+w"], then the interpretation
of hon IW and C R, can be split up into three independent parts:

d W ”~ e
I () = Igg (h) U Iggt(h) U ICE (R)

awdk

where JW — IW_,, = TW, U IW, and using the following remarks:
GR."‘“{h} < IIW"“’[M hecause O R, C C R

2. IL% (k) and I (h) are lists of distincts variables.
rub T b

Hence, the conclusion is that this algorithm computes a weighted graph wyg V wy', such that:

I (wgvwg) < 1ER(wg) VO IfR(we) < IER,(wevowg)

where C Rop <~ (IW N CR) and C Ruyp <~ (IW NCR).

The occur-check must be verified. However, some unfolded results of wg vV wg' from CR.u
or (' Hyyp are infinite iff wg V wg' is not a finite weighted graph. The unification is possible iff
the algorithm computes a finite weighted graph.

Remark 3 Weighted graph and directed graph algorithms.

The weighted graph unification algorithm is the same as the directed graph one, except for the
computation of weights and periods which has been added. The termination of this unification
algorithm 13 verified as in the directed graph algorithm, that is, at each procedure call one node
disappears.

Corollary 5 Let wg and wg’ be two weighted graphs and wg V wg' be their unifier, and let us
define g, ¢’ and dfwg V wg') as the directed graphs obtained from wg, wg’ and wg V wg' by
removing the weights and periods:

wg ¥V wg' erists == gV g exnists and 15 equal to dfwg V wg')

Proof Weighted graph unification is a generalisation of directed graph unification. Moreover,
if the weights and the periods are removed in weighted graphs wg, wg' and wgVv wg’, then the
result corresponds to directed graph unification,

Example Let us compute the following unification:

game” W game™!
VAN AN
P P o P’ F R

\0
N

M R

20

This unification will characterise the behaviour of the following rule:
qame(P, P/, P o M o K} = game(F', P, R)
which expresses a chess game hetween players P and P
1. The first argument is the name of the player who has to play.
2. The secund argument is the name of the player who will have to play at the next turn.

3. The third argument is the list of the name of the players and their moves:
P{:-MQDPIG.M1¢PD M;q...

The first weighted graph is the left term of this rule with a null root weight, and the second
one is the right term of this rule with a root weight of -1,
Let us apply the unification algorithm:

1. The root nodes are labelled by the same function symbol and the unification of these
weighted graphs is obtained by the unification of their sub-graphs:

2. Unification of the first weighted graphs: P® and P’
Node P is replaced by node P with a correction of 41 :

preto AL po
The unification becomes the following:
game’ \ game™!
/ "\ +‘.I"_/ "\
RS 0N,

P/ \n
M/ \H.

3. Unification of the second sub-graphs: /! and P!
These weighted graphs share the same root node. Period 2 is put on variable I":

P'v P~} = pP':2 = P12

The unification becomes the following:
game" v game™?

F’:E/‘)H\o P+‘2: 'j \R
N
P2 o
VAN
M R

4. Unification of the third sub-graphs:

21

OU 1,|‘|.' n- 1

P:2 o
M R
Node R is replaced by node o with a correction of +1. The unification becomes the

following:

game® ¥ game ™!

N\ V)N

P2 ~7 P2~ 0 -
AN }+1 \ :|+1
o — o

e -

M M

The unification is now finished and one of these weighted graphs can be chosen as the ap-
proximate weighted graph, for instance, the first one:

Ea_maﬂ v game"? =

game’
AN 7N N
P o P P R P2 o —,
N ™~ !

N i
M R

It is possible to verify that €' R, = (JW NCR); . g and CRyp = (IW U CR)—)
This weighted graph characterises the behaviour of the rule:
game{P, P, P o M o R) — game(P' F, R)

The periodicity of the first and second arguments is expressed by the period of P and the third
argument js characterised by the third sub-graph, already used for introducing the period notion
(ef 2.1.2).

Because the definition, interpretation and unification algorithm are generalisations of the
directed graphs, the equation is still true within the directed graphs if the weights and the
periods are removed in the unification equation.

22

3 Systems of Equations, Algorithms and Properties.

3.1 Introduction

Generally. the idempolent most general unifier is used for expressing the constraints of unification
[Eder 85]. A more general syntactic object is the system of equations, that is, a set of equations
of the form t = ¢ where t and t’ are finite trees.

However, the advantages of the systems of equations are, first, the memory size; and second,
the efficiency of the unification algorithm, and also that within the context of termination
and complexity, the behaviour of resolution can be understood better through the constraints
between Lhe variables than from the final susbtitution of these variables.

The reduced systems of equations introduced by [Colmerauer 84 express this feeling which
is strongly linked with the representative notion introduced by [Huet 1976]. The directed acyclic
graph and the directed graph are based on the same idea: common information is shared [Fages
§3). Similarly, within intelligent backtracking, an important aspect is to express the dependency
graph of variables.

The goal of this section is to show that the shortest expression of a reduced system can
be used to express as clearly as possible the constraints generated by a system of equations;
however, it can also be used as a complexity measure to understand the convergent, invariant
or periodic phenomena for some recursive Prolog programs.

3.2 Reduced systems of equations

A system of equations is said to be soivable if there exists a grounding substitution, ¢, which
makes t and t’ ground and equal for all equations, ¢ = ¥, of the system. Two systems, E1 and
E2, are said to be equivalent if they have the same grounding substitutions.

Definition 10 An endless system is a system of equations in which every term which occurs as
the right-hand side of an equation also occurs as the left-hand side of an equation [Colmerauer

84].

Definition 11 A system of equations is said to be reduced if the left-hand sides of ils equalions
are distinct variables, and it contains no endless sub-system [Colmerauer 84] .

Definition 12 A system is said to be acircular iff it hos no sub-system where every variable
which occurs as the right-hand side of an equation also occurs as the left-hand side of that
equation,

Proposition 3 A reduced system of equations verifies the occur-check iff it is acireular,

Proof There is no cyclic sequence of equalities between variables because the reduced system
containg no endiess sub-system.

Notation 3 Let t be a tree, E be o system of equations and rs be a reduced system. Then we
will denole;

- depth(z) = 1 when z is a varable or ¢ constant
depth{ f(11,- - tn)) = 1+ maz(depth(t;})
- size(z) = 1 when z is o variable or 4 constant

51‘z£[-f{t11 T rlal)) = E S:I-Eﬁ'“."_]]

- domain(rs) is the set of variables occurring on the left-hand side of r5.

23

Reduction algorithm
The reduction algorithm is a non-deterministic series of six types of transformations:

(V) flty,oo-otn) = fltg,--013) replace by the equations t; = 1},---, 1, = 1,
(2) flt, i) = glth, - 410) halt with failure
(M =1r delete the equation
(4)t = U (t € Var) replace by the equation U/ =1
(5) U7 = V (VeVar, V#U) if there are other occurrences of U, replace U
by V in every other equation.
VU =t, U =t (t,t' ¢ Var) replace (U = t') by (t = t7) if depth(t) < depth(t')

Within the finite trees, the occur-check must he verified, that is, the system is acircular:
2(Uy=t1)y- Uk = ty) where Y2 <1<k, U; € var(ti=y) end U) € var{ty)

Remark 4 In the [Lassez, Maher, Marriott] algorithm which defines the most general unifier
of a system, the last two transformations are replaced by the following one:

" =t where { s differend from U if U appears in t, then halt with failure (occur-check),
otherwise, replace U by t in every other egquation.

Hence, in the usual algorithm, no variables may occur on both the right and left hand sides of the
solving system of equations. In this case, the size of the solved system is much more important,
and contains many redundancies.

Theorem 4 The reduction algorithmn applied to o set of equations, K, will return an equivalent
sel of equations in a reduced form if and only if E is solvable. It will return failure otherwise.

Proof Let depth be the following function from the set of systems of equations to N, the set of
natural integers:

- depth(t = t") = maz(depth(t), depth{t’))

- depth(E) = T(-p)ep depth(t = 1)

Using this function, the termination of the algorithm can be checked:

- (1) and (3) : strictly diminish the depth of the system.
- (2): halts the reduction algorithm.
- (4}, (5) and (G): do not change the depth of the system, but can be applied
successively at most a finite number of times { = number of equations),

It is easy to verily the correctness. None of the transformations affect the grounding solutions
of the system and if transformation (2) generates & failure, this means that there is an equation
{t=1") where t and t’ are not unifiable, that is, the system is not solvable.

If the system of equations obtained after the first stage without failure is circular, the nceur-
check is not verified. Transformations (3) and (5) have deleted all the cyclic equalities of vari-
ables.

Thus, if the algorithm, with or without occur-check, terminates without failure, then the
system is solvable within the finite or rational trees, and one of its idempotent most general
unifiers can be easily computed.

Theorem 5 The idempotent most general unifier of a reduced sysiemn can be defined through o
Sunction, called repregentative;

24

reprl f(tyee o ta)) = Srepr(ts). o repr(ts)
repr(ll) = repr(t) if AU =t} ers
reprill) o otherwise.

A most general unifier of the reduced system, rs, 1s: {U/ — repr(U) /¥ U € domain(rs) }.

]

3.3 Congruent systems

Definition 13 A congruent syslem 15 6 Congruence, R, and a mapping function from Var /R
to (M(F,Var)— Var)/R, that is, the set of finite trees (¢ Var) built from F (set of functions)
and Var (set of variablesj modulo of the congruence, R,

A congruent system can be ezpressed from ils congruence and a set of equations of the form
(€ =1), where Cis a class of R and t € (M(F, Var) - Var)/#.

Definition 14 A congruent system is said to be acircular if it does not contain any sub-system
where every class which occurs as the righi-hand side of a congruent equation also occurs as the
left-hand side of an equation.

Proposition 4 A congruent system verifies the occur-check iff it &5 acircular,

Definition 15 Let rs be a reduced system, then R, is the congruence on the variahles defined
from the equalities of variables (U = V) of vs, that is, the reflerive and transitive closure of:

UR,V if 3(U=V) € rs

The congruence of a reduced system expresses the equalities between variables explicitly
written.

A congruent system is an alternative to define a reduced system, that is, any reduced system
can be expressed in the form of a congruent system. However, in this last form, there is no
ambiguity abont the form of the equations of variables (I = V) = (V =).

[t is the rezson why the definition will be used in the following. Within the congruent systems,
the reduction algorithm can be easily translated to a congruent algorithm because the notion of
variables has been just substituted by the notion of class (or distinct set of variables):

Congruent algorithm

Let E be a system of equations. Let us suppose that all variables of E are substituted by the
class composed of itself: U replaced by {U}, that is, the class of U in the empty congruence.
The algorithm is a non-deterministic series of six types of transformations:

(1) flty, -t} = fltgaroaty) replace by equations £y =], 4. = 1

(21 Jr“lr"ﬁiﬂ} = g{:ianr;l:l halt with failure

(3Cc=C delete the equation

4t =0C replace by the equation C =1

5)C = delete the equation and merge C and C”
{C,C"— CuC'}

(gjc=1t,C=1t replace (C =) by {t = t') if depth(t) < depth(t’)

Within the finite trees, the occur-check must be also done:

A(Cy =t1),+ (Cp = 1) where V2 <1<k, O € i and Oy €4

25

Example Let 15 be the following reduced system:

U =a,V=UX=HUU)Y=U2Z=X}

Hence, an eguivalent form is: {Cy = @,Cq = b(C1,C1)}

where (' and C; are the classes of R, C; = {UV,Y}, Gy = {X,Z}

Proposition 5 Within the finite or rational trees, any reduced system can be expressed in the
form of a congruent system which ts cireular or acircular according to the reduced system.

Congruent unification algorithm
A unification algorithm of two congruent systems, csy and csg, will be the same after a harmon-
isation of their congruences, ; and ;.

1. Let ® be the transitive closure of &, UR2, then all the rlasses of Ry and Rz in cs, and esy
are replaced by their new classes of ®.

9. After this merge of the two congruences, the congruent algorithm can be applied to the
union of the congruent equations of ¢s] and ¢s5.

The usual notion of eliminable variables of a system of equations depends on the chosen
reduced form of it. For example, U is the eliminable variable of (I = V'), but not of (V = I7}.
However, there is no ambiguity in the system, (I = V , V = a). We will use the notions of
eliminable and possibly {ree variables.

Definition 16 A class is said {o be free if there is no congruent equation where it occurs on the
lefi-hand side, otherwise, it is said to be substituted.
The variable, U, is said {o be

1. eliminable if its class is substituted: eliminable(cs) = Ujomiee. €
2. possibly free if its class is free: pfree(cs) = {U € vars{es) [2(U =1} € cs}
The notion, fully free variable, will be a varioble belonging to e free singleton class.

An eliminable variable is substituted in any idempotent most general unifier, and a possibly
free variable is free in some of them. Obviously, in this definition, there is no ambiguity, that
is, two equivalent variables (in ®.,) have the same type. Moreover, the type of a variable is the
same in any congruent form of a solvable system of equations.

Proposition 6 Two equivalent congruent systems have the same eliminable variables, and the
same possibly free variables:

csy =es; = eliminable(csy) = eliminable(cs;) , pfree(esl) = pfree(es;)
Twe equivalent congruent systems also have the same fully free variables.
Proposition T Let cs; and cs; be two congruent systems, and cs be the congruent sysiem of

thetr union, then:

26

1. eliminable(es) O eltminable(csy U eliminable(csg)
2. pfreeles) C pfree(es;)Upfreelesy)

Proposition 8 Lef csy and esy b two congruent sysiems having no common eliminable vari-
ables, and cs be the congruent system of their union, then:

s o= 8y L ocsy
thal is, obteined by the union of their congreences and their congruen! equations,

Any congruent system is solvable and its idempotent most general unifier can be defined
throngh the function, representotive. Let us denote . the canonical element of the class, C, of
EUHE‘L—TIH!'IT.'E_

repr(f(tiin)) = fll?‘ﬁ';}’rﬁ-]j._---,i't_'prl:t“:l}
repr(C’y = repr(t) if3(C=1t)€es
repr{) = C otherwise,

A most general unifier of the congruent system, s, is:
(U — repr(l7) [¥ U € vars(es), U # repr(U) }.

The following functions have be translated in the congruent system context. Let L be a
congruent iree and cs he a congruent system, then

- fsize(t) = Number of function occurrences
[size(es) = Treen foizell)
- depth{z) = 1 when x is a class or a constant
- vars{es) = the set of variables of the congruence, .
- dim{es) = the number of free classes in ¢s.
(that is, {he number of free variables in the idempotent mgn}

3.4 Minimal systems

in some cases, il is important to express the constraints between the variables as clearly as
pussible, This corresponds to the shortest expression.

Definition 17 A congruent system, cs, is said to be minimal if for all equivaient congruent
systems, cs', fsize(cs') are greater or equal than feize{es):

Yes' = es, fsize(es') > fsize(es)
The viewpoint is quite epposite to the usual idempuotent most general unifier,

Example Let ¢s; be the following congruent system:

{0y = a0 = ba,Y), 0 = a,Cq = bV, a}}

where C; are the classes of congruence: ¢ = {U, V), C2 = {X}, (3 ={¥}, Csy = {Z}
Hence, 1ts minimal form is:

{0y = a,Ca = bC1,C1)} where Cy = {UV.V}, G = {X.2)

Let esp be eqnal to {7 = afa{C))} where C is a class of congruence,

27

then its minimal form is: {C = a(C)}

The minimal form corresponds 1o the shortest expression (fsize), but also to the most com-
plete congruence (R), that is, all the constraints of equality between the variables are explicit
in the minimal system.

Moreover, the minimal form can be used as the normal form of a solvable system and
complexity measure:

Theorem & There czisis one and only one minimal form aof o solvable spstem of cquations.
Two selvable systems of equations are equivalent iff they have the same minimal form.

Lemma 9 Let I be a solvable system and ms be its mimamal form, then
feize(ms) < fsize(E)

Proof Any solvable system. E, has a reduced form, re, such that:
fsize(rs) < fsizelE)

This is a consequence of the reduction algorithm of Colmerauer. Moreover, it is easy to see that
there is a congruent farm of rs which has the same fsize value, that is:

YE . Jes= E, fsize(cs) < fsize(E)
Lemma 10 Let @ b the idempotent most general unifier of @ minimal systern, ms, then
URes V. & o(U) = alV).

Proof By contradiction, let us suppose that there exist two variables which are substituted by
the same tree in the mgu, but do not belong to the same class of congruence. It is easy to see
that by merging the classes of these varables, the obtained system would he equivalent, but
smaller becanse ome congruent equation would be redundant.

Proof of the theorem By contradiction, let ms; and ms; be two different equivalent minimal
syvstems, then there exist two different equations, {C) = t;} € ms; and (Cy = t2} € mss, such
that &3 N Ty is not empty.

Using the previous lemma, these classes must be equal:) = O | that is, the congruent terms,
t; and ty, must be different.

Let ty A t2 be the following term: ¥Ym € dom(t;) N dom(ty)

ity A12)(m) = t{m) if ty(m) is a class
= tzim) otherwise

If #; A 12 has the same fsize as those of 1; and {2, then terms #; and {3 are equal. except {or
some classes occurting in them.
Thus, there is an immediate contradiction. The variables occuring in these different ciasses must
be substituted by the same tree in the mgu, and must, therefore, be equivalent, that is. belong
to the same class of congruence,

If t; A 12 does not have the same fsize as those of 1; and 12, then this [size must be smaller
tlian at least the fsize of one of the two terms. Moreover, it is easy to see that we may substitute

28

t, and t; by ¢, A 12 in the equations of ms; and ms;. The new systems are equivalent to the
systems, ms; amd mag, but the fsize of at least one system has strictly decreased. Hence, in
this case, there is also a contradiction.

Remark 5 For any solvable system, E, in addition te dim(cs), the following notions are well
defined and can be used as complezily measures:

1. fsizemin(E) is the fsize of its minimal form.
2. Roorl E) is the congruence of its minimal form.

Corollary 6 Let By, and E; be two solvable systems of equations, let us suppose that By Uk,
is solvable, then:
HMEI{EI UEﬂj . H:mq:[‘El} 0 a'?mﬂ.tl:Eﬂ]

fsizenin(Ey U Es) £ fsizeminl 1)+ f8iz€min{ E2)

Although the minimal notion can be defined within the finite or rational trees, a simple
minimalisation algorithm is described here within the acircular congruent systems:

Theorem T A acircular congruent system, cs, is minimal iff for any pair of congruent equations
of es, (('y = 11) and (Cq = 13), the terms, 1y and {3, are different und neither of them occurs in
the other one as a sub-ferm.

Proof

=
Any congruent system verifies the given property about the pairs of congruent equations; oth-
erwise, it would be easy to build an equivalent congruent system which would be smaller by
replacing this subterm by a class,

=
Let ¢ he a congruent system which verifies the given condition about uny pair of its equations,
and ms be the minimal form of cs. Let us show, by contradiction, that these systems are equal.

Let t; and 15 be two terms. If they verify the condition expressed in the theorem, then terms
t; and {; will be said to be stromgly different, denoted #; #, 12 .

Let U be a variable, (s = tcs) be an equation of cs, and (Cpy = s) be an eguation of ms
such that U belongs to two classes, Cg, and Cy,,. If these equations are different, then either
the classes are different or the congruent terms are different.

1. I the classes are different, then because of the minimal hypothesis, T, must be a subset
of Cpns and thus there exists at least one other congruent equation, (Cf, = 1(,). such that
(', is also a subset of Cp,

f::;; ?{' Cm, = EEC;’ = t::,] N C.:g “Cms ?.I" H 2 :r.-a '-.‘tr-! I:s

2. 1 the congruent terms are different, that is, there exists a path, m, such that f,,/m and
t../m are different.

{a) If these both sub-terms are classes, then Lhere exist two equations, (C1; = tlas) and
(C2.. = 12.,), such that C; and C'; are subsets of the same class of ms.

29

(b) If only one of these sub-terms is a class, then there exist two other different equations,
(C!, = t.,) and (C},, = {5}, such that (e and Cms have common variables.

By recursive applications of that and becanse of the acircular hypothesis, this reasoning gener-
ates a contradiction.

Minimal algorithm
This algorithm is based on a non-deterministic series of two types of transformations:

(1) (C1=t), (C2=t) delete (C3 = ;) and merge C; and (%
{Ca, O~ CHUCH]
(2) (L =13) . (Cz =12} (f: occurs im iyl replace the sub-term, £z, in 15 by Cy.

Theorem 8 The minimal algorithm applied to an acircular congruent system, cs, returns an
equivalent set of congruent equations in the mintrnal form.

Proof This new algorithm terminates. Fach transformation strictly diminishes the size of the
cvstem, without affecting the grounding solutions of the system. By construction and because
of the previous theorem, the algorithm computes the equivalent minimal form.

Although this algorithm computes the minimal form of an acircular congruent system, it can
be applied on the circular systems, because of the finite number of congruent systems whose
{size is less than that of the computed system. This means that the minimal form of any solvable
svstem is computable.

3.5 Orthogonal systems

In order to show seme invariant phenomena during the resolution and, in particular, for some
recursive goals, an interesting notion is the orthogonal system.

Definition 18 Tuwo solvable systems of equations, £y and Ey, are said to be orthogonal if there
exist two reduced systems, rs, and rsy, respectively equivalent to Eq and Ey, such that the union
of r&y and rs7 is also reduced {and equivalent to EfUE):

Ey L E; if drsy=Fy, Jrsg=Ey, rsyUrsgis reduced

Intuitively, two systems are orthogonal if their union does not produce new in formation, that
is. all the information has already been explicitly written in one of these systems. If the systems
of equations, E; and Ejp, are solvable and do not share any variable, then they are obvicusly
orthogonal.

Theorem 9 Two congruent systerns, ¢s; and esp, are orthogonal iff the congruent form, cs, of
their union erists and verifies:

pfree(cs) = pfree(es;) N pfree(css)

Obviously, this condition is equivalent to:

ar eliminable{cs) = eliminable(es;) U eliminable(esg)

an

Proof Directly from the definitions of orthogonal systems, possibly free and eliminable vasiables

If two systems are orthogonal, a simpler unification algorithm can be nsed on their congruent
forms and not on their reduced forms hecause of the ambiguity between (U =V)and (V = U}

The unification of two vrthogonal congruent systems cal be obtained by selection of one
congruent equation and deletion of e other equation for any variable which occurs in two
different clusses.

Corollary T et sy and ¢sy be twn orthegonal congruent systcis, then o congruent form of
csq U ceo can be computed by successive applications of the Jollowing transformaiton:

(IO, =1) € ey, (Ca=1z) € vsa, delete one of these equations and
CnCy#@ merge Oy and Oy

Some variants of this algorithm can be intreduced in relation to the choice of the deleted
equation, for example, the deepest one. However, although ¢s; and ¢s; are minimal, the wb-
tained svslem is generally not minimal.

The unification algorithm for orthogonal systems of equations is very simple. Thus, the two
following operations are based on the choice of equations of the firsl congruent system.

Definition 19 Let csy and csy be twa congruent sysloms of equations.

1. 8y S esg i o congruent sysfem composed from the sunion” of the congruent equations of
esq und cey and a series of the following trensformations:

(1){Cy=1t;) € ¢s o (7 =12} € esg, deleie the second cquation and
(hyrnCy#1 merge O and (g everywhere,

8 ey Soesy oas oo smallest spsten sirele that:

ey = (es1 S sy T o8y

Proposition 9 The aperaiion § verifies sume immediate properiies:

1. ¢3p L oesg = CEy o oEp = 08 505
2. 05 = o8 = CAy E cay = 08g) sy

From the previous theorem, an important consequence is also the following one:

Corollary 8 Lef msy and msq be two minimal syslems and cg be a minimal form of es, U ces,
If migy and msg arr not orthogenal. then the following propertics are ahwoys verfied:

1. fsize[ma) < fsize(ms;) + fsize(msa}
2 pfree(ms) C# pfreeles)) O pfreciess)
3. eliminable{ms) 2# eliminable(cs;) U eliminable{csg)

This shows that if some new information is produced from the union of ms; and sy, then at
least one redundancy appears in this univn. Hence, the increase of the domaiu (ot the decrease of
1lte number of free variables) is closely linked with the decrease of function symbol ocourrences.

41

4 Weighted Graph and Sequence of Global Rewritings

This sevtion shows the nk hetween weiglited graphs and global rewriting rules. They are called
idobal veariting vides, becaose the whole term, not a part of it, is rewritten with respect 1o them.
These rules are denoted L - 10 in Proleg or L — K in term rewriting svstems. L and R are
finite trees. This paper uses the notation, L — R, used also in Prolog 11 [Calmerauer 79].

Definition 20 . term, I is said to be globally rewritlen to anether term. T with respect lo
Lo+ I qf there cpisls o substitution, &, such that 8 L) =T and 8{R) = T,

The L= H rule is applied globally, which means that a term can be globally rewritten by
the rule il the term taken as a whaole is an instantiation of the left term of the rule {see the
exaniple in the introduction),

The expressions reduced term and reduction are usually used for describing this notion, bat
these terms [psinuate that the rewritten term is, for example, smaller or shimpler than the first
one within a nndefined measure of complexity, Moreover, this measure menerally cannot exist
becanse any Tering machine can be simulated from the rewriting of one ground term by one
rule.

Another delinition could be global rewrriting with instaniiolion, that is, a term, T, could he
globally rewritten with instantiatios to another term, TV, with respect to L — B if o[T') were
zlobally rewritten to T with respect to L — K where ¢ is the most general unifier of T and
T.. In tevm rewriting svsteins, this notion, rewriting with instantiation, has no meaning because
the rewritten lerms are ground. Obviously, term T and the L — R rule are assumed to share
ne variables,

4.1 Most general sequence of global rewritings using one rule

Proposition 10 Tie most goneral sequence, Sq. of n global rewritings w.rt, L — i i the
mast general sofution of the fallowing systom:

{Li=R._; /vicl2na]).
Let oy be dts minst general unifier, then we will denofe:
o= L (L.SH), (2.50) (n, 85T, (n41,5™)

where, Wi € [1.al, 8] = oni L))
and Wi € 2on+ 1, 5 = o4}

.1 T oo T n T pmel
= bTa—‘E’vl_' _hSn_.‘:"n 5

Proof The variables of L — R have a local meaning which meaus that the variables must be
renamed before applying the rule. A the i'® giobal rewriting, rule L, — R; is applied.

Definition 21 A rule 1+ smd to be lonp-genterating if it has a most generml infinite sequence
of global rewritings. In others words, I — R iz loop-generating iff 1 gencrates an infinity of
reweritings for some gools,

The mest general fizpomt of @ globai rule is the most general term which is vewritten fo an
eginrtalent term by this rale.

Proposition 11 Applying rule L — R n times & equivalent to applying S — 57 anee. that
is, L — I ean generate norewritings for term T ff T and 5 are unifiable.
Stmilarly, L — R can generaie an infinity of rewritings for T of T and 51

o

are unifinhle,

32

4.2 Weighted graph and global rewriting rule
The following theorem gives & fundamental iustification of this new syntartic object.
Theorem 10 Let I — R be a global rewriting rule. Lel us denote L" and R™7 as the weighted

graphs built from L and R by putting null weights on the arrows, no period and a root weight
equal to 0 or -1, then

So o= 2Ly N AR,

Proof For all i of [1,n], L; is the unfolding of LY from the input weight, i, and in [1,n]. Sim-
ilarly, for all i of [2,n41], Ri_, is the unfolded result of R™' from the input weight, i, and in [Lal

Vie[Ln] . bi=Uj(L° and Wig[2n+1], Ry = Uj (R

Thus, the following unification characterises the most general sequence of n global rewritings:

5, = I[‘rﬂ]{Ll}} Y Jr[in‘*]*' ll{R' 1) — I[lrﬂ+1]{Lﬂl] \ [Ln+1] [R'l)

[1,n] [11] M)

Example Let the chess game rule be:
game(P, P',F- M - R} — gume(P'. P, R).

The first argument is the name of the player who has to play, the second is the name of the
player who will have to play at the next turn, and the third is the list of the name of the players
and their moves.

L? = game” and Rt = game™!
PATIEN AN
P P’ o P’ P R
7N
P o
PN
Wi E

Theorem 11 : Let L — R be a rule. Then there exists a constant, ng, such that if R can
generate a sequence of ng rewrilings then the finile weighted graph, LYy B%, erists and there
are four naturul inlegers, a1, az, by and by, such that:

[1m+1] - 1041 -
J1I["‘:;ﬂi-‘"-—fi'l] (LG v E 13 £ 3 2 IElfnn,l+h:] LLH VR]]*

Proof lmmediate application of fundamental theorem 3 .

Hence, the behaviour of L — R is characierised by the weighted graph, L° v R™1, that is,
this weighted graph can be viewed as a meta-term of the rule.

Because of this theorem, all properties of weighted graphs can now he applied within logic

programming for a better understanding of recursive behaviour. The following theorems illus-
trate this.

The finite weighted graph of the chess game rule has already been computed:

a3

il:
My it = g

IR

T D +1

/

M

Bl

I!I

The periodicity of the first and second arguments is expressed by the period of P and the third
argument is characterised by the third sub-graph that introduces the period notion (ef. 2.1.2) .

The unfolding of this weighted graph. from k and in [0,n], is the k** term of the most general
sequence of n global rewritings, that js, the state of the chess game of n moves after the first
(k-1} moves.

Remark 6 If the terms, Loand R, are not unifiable within the directed graphs, then L9 and B™1
are not unifiable within the weighicod graphs.

Unifiability (without occur-cheok) is a neccssery comdition for the exisience of the weighted graph,
L%V R

Example The rule, putymilk) = put{caffee |. has no characteristic weighted graph, because

put(milk) and put{coffee; are not unifiable.

4.3 Infinite sequence of global rewritings and most general fixpoint

Theorem 12 A rule is logp-goucruting, that {5, 11 can generate an infinite sequence of global
rewritings if s weighied grupl crisfs.

Proof By application of theoren 11

Conjecture 1 [f its weighted groph docs not crist, the length of the longest sequence of global
rewritings is lees than or egual to 27 where n is the number of variables of the rule,

eg. S flg U0V WX — A JIW-- IV LU R)

Thiz whole study j& based on unification with occur-check, but a similar theorem can be
casity proven within nnidfication withont occur-check,

Theorem 13 A rule, L — K . can gencraic o non-bounded sequence af global rewriiings

pithout pecur-check off T and B are anifialble,
Proof

1. L and R are unifiable. it 15 obvious that L v R is a fixpoint of this rule, which means
that it can be globally rewritten infinitely using rule L — R .

2. If there is an infinite sequence of global rewritings, then [53°) is an infinite increasing
sequence and its limit, 555, is the most general fixpoint of the rule, This means that:

(a) there exizts a substitution, #, such that (1) = §%°

(LY #{R) and (L) are equivalent {that is. equal to using renaming)

ad

Let us consider & grounding substitution, p, which instantiates all the variables with the
same constant, then:

p(8(L)) = p(#{R)) = Loand R are unifiable without occur-check.
This unifier, p{#(L)}, is generally infinite, so the unifier exists without occur-check.

Theorem 14 The most general fizpoint of a loop-generating rule, L — R, is expressed by the
unfolded result of its weighted groph from any input weight without control (CR = Z):

Most general firpoint of L= R = UZ(L® v R™Y)

Proof The most general fixpoint of the rule is the most general tree which is globally rewritten
in an equivalent form by the rule. Thus, 53 is the most general fixpoint of the rule iff it expresses
the most general bi-infinite sequence of global rewritings:

b (SZ) S -a(85) e BalSZ) D o L 0a(ST) D Buna(ST)
where §; are renaming substitutions. This corresponds to the system of equations:
{Li= 8, [YVEkE Z}
that is, the unification of L% and R~% on Z:
1200 v IERTYy = IELY v RTY
Example The most general fixpoint of the rule, Chess game, is the unfolding of the weighted

graph, that is, the most general infinite chess game:

garme
N

P/ \\o
r:mwl."/ \

A“fﬁ elc.

We can see in this examnple that the generalisation of the direrted graph by puiting weights
and periods is necessaty for expressing the most general fixpoint of this rule. Moreover, this
generalisation has been proven sufficient.

Hence. this new ohject is perfectly adapted to the understanding of the basic recursivity.

Theorem 15 For any loop-generating rule, the depth of terms Sk is bounded iff its weighted
graph has no positive basic loap.

For any loop-generating rule, the depth of terms SPF1 is bounded iff its weighted graph has no
negative basic loop.

Proof The depth of terms S} is bounded iff their limit, 51 does not exist or is finite. In the
first case, the weighted graph does not exist, and. morcover, §1_ s finite iff the weighted graph
of rule has vo positive basic loop:

is finite ift for any k, ‘JJ_: = also finite:

i 5L

Foo =

(a) if §1. is finite. after k global rewritings, the term, 5%, is also finite because of
unification with acenr-check,

{(b) S%.. is the most general tree which can be globally rewritten infinitely by the rule,
but 5% can also he globally rewritten infinitely. Thus, §1,, < § LI
This means that if §%5 . is finite, then §3 is also finite,

2, There exists k such that S5 is infinite iff the weighted graph of rule conlains positive
basic loops.
Dy application of thearem 1, there exists k such that §% _ is infinite ifl there is an input
weight k such that Ufp (L9V R7') is infinite.
It is easy to verify the equivalence to the existence of positive basic loops in the weighted
araph of the rule,

Similarly, by reversing the rule, the limit of terms, $7F!, is the smallest tree which can be
alobally rewritten infinitely using rule — L. Moreover, the weighted graph. 19 v B~1, of rule
I, — R and the weighted graph. R v L™), (or rather B' v L' } of the reverse rule are quite
similar. Ouly the signs of the weights are opposite.

4.4 Finite sequence of global rewritings

I'he range of this sequence using a weighted grapli interpreted from two counter range intervals
idefined from theorem 11 expresses the side elfects of the rule.

4.4.1 Finite sequence = Finite weighted graph 4 Side effects

Remark 7 There are side ¢ffecis even within this purticular use of the weighted graph. There
exist rules for which there &5 no weighted graph b such that:

Wn sufficiently great, 5, O I1[i::-:;]}[h}

where a, b are constanis belonging to 2.
Example The most general sequence of 1 globul rewritings of f{UU) — fIV, W} s
AU & [l U)o 5 fUaUnd & J(Va, W)

A more complex example is: f(T 0 g(V(W XY — AV.W X 9lU Y.
All the variables appear in both parts of this rule, and the zside effects appear in all the terms
of the sequence,

Conjecture 2 [If the terms of the rule are lmear, there ensts o weighted graph, wy, such that:
W sufficiently great, 5. 2 If;at_!‘]{wg]l

where o ond b ore constants belonging to 2.

‘I'he last Temark shows that the semantic power of a weighted graph is not enough for ex-
pressing precisely a finite sequence of global rewritings. There are side effects whose size is
known and bounded. The principle of the next proofs is based on the fact that information
about these side effects can be computed finitely.

4.4.2 Finite sequence and congruent system through weighted graphs

Definition 22 The set of symbols of variables, EV (eliminable variables), 1s the set of symbals
oecurring in LY or R™Y, which have been substituted by o function symbol in the unification of
LY and R™L.

Example In the weighted graph associated with the chess game rule:
EV = { R} because R has been substituted by the function symbol, o, during the unification.

Proposition 12 Let csy be the congruent form of {L; = Hiy [Vi € [2,n] }, and let p be the
period of the weighted graph, L°v R™7, then there exist two natural integers, I, (left sude effect)
and r.e (right side effect), such that:

EV x[14+{,,n— 15| C eliminable(cs,}) C LV x [1,n]

Proof Using theorem 11, comparing Ly, fliy; and [f:d{ﬂ}[fru\." R=Y), apart from the side effects,
it is easy 1o see if any indexed variables in L; have been substituted by a function symbol in the
weighted graph.

This means that the beliaviour of any eliminable indexed variable in the congruent system,
¢s,. is well-known except for the indices belonging to the side effects.

MNotation 4 Let t be a term buill from F and Var w 2. We will denote t™" the term t all of
whose indices are incremented by 1, o relative inleger:

t= f[xﬁ"-q‘}'i‘) = t_.{ = f[xp-]-l'!.'?r}’q-ki}

Similarly, let es be a congruent system of equalions, then cs™ ix the congruent system, cs,
in which all the indices of varinbles are meremented by i

The following theorem expresses that the recursivity of one global rewriting rule can be
characterised by an iterative transformation:

Theorem 16 For any loop-generating rule, there exists a constant, ng, such that from no, the
congrueni system, es,, can be iteratively expressed:

Vn 2 ng, €8y4 = a & {cﬁ“n)_.‘ = cép B wint)
where o and w0 are fwo constant congruent systemes.

Proof

1. £8n47 i5 a congruent form of es, U (esy)™t

37

Cing1 = | Li= M [Wie[lnt 1]}
{Li=Rioy f¥icln]} U {Li=Hoy [Viedntl]]

es, Lles)t

o

4 There sxists & constant, ny, such that for all o greater or equal than ny, the congruent
systems. cs, and {es,)71, are arthogonal:

oy, ¥ 2 Ry, £8p L [c:-ﬂ}_'l.

From theorem 9, it is equivalent to show that:

Tny. ¥n o2 ony, eliminable(es,py) = eliminable(es,) U eliminable{(cs,)”").

Using proposition 12, if a new eliminable variable appears in €spy, then the index of this
new variable must belong to the side effects, [1,[;]U[n — ree + 1,n]. The size of these side
effects is bounded; therefore, this phenomenon can appear a finite number of times, that
is, there exists a comstant, #;, such that for all n greater than ng, ¢$, and (esp)™, are
orthogonal. We may assumie that there is no hole in the indices of a climinable symboal,
that is:

i<i, Vi, V, € eliminablelcsn) = Vk €[i,j], Vi € eliminable(csn)
Obviousty, this is true for all u greater than no = 2m because of

G, = €8, U{esg)7

3. Let @ be equal 10 ¢8,, & {es, 17" then from the definition of the operation &, and
from proposition 12. it is easy 1o show that:

ehainablela) © Varw [1.0..]

that is. ¢ expresses the lefl side effects in the most general sequence of n rewrilings.
It is alss easy to see that the the indices of the eliminable variables in o, are the lowest
indices. and, therefore:

Wi > na, eliminable(a) N eliminable({cs)”") = 0

that iz, n and {es,)71 are orthogoenal.

Cong41 = @ U fes,)71 {bv definition}
= Cng4z = C8ypar T lesgar)T
= a & {eany 70 A TN b
a U (e8!
O [EF 4 it fev L 5551=¢+J]_Ll}

i

il

In 2 similar way, this is true for all v greater than ng:

YN ony . eSaey = a U {es.) 70

35

4, Let w be equal to (c8,,)7 ™) & {ca.._,.,]"i'“"‘”] then we can prove in the same way:

Wn = g s Ciugl = €8y I :*J—c-t'r;_LI.:l

The congruent system, w, expresses the right side effect of the most general sequence of n
rewritings, ad its domain is included in Varx|n — 7y 1)

Remark 8 An equivalent form of the theorem is: ¥n 2 ng
8y = a @ ol @ - @ a—inme=1) o (l:.!,m]"‘“_"'“]
€8y = Cipg @ wlnetl) @ et @ Lo @ W)

Remark O For the usual recursive rules, the size of the side cffects 15 nearly zero, bul for some
rules, this size is an exponential function of the number of variables of the rule:

u/ N W W/ \ o
a2 N
e N\,
a/ ™ U Li/ \ a

If this rule contains M variables (U,V, ..., W), then oM global rewritings must be applied
before detecting a constant phenomenon. In this case, this rule becornes completely constant,
that is that all the 1erms of the sequence S, for n greater than oM are equal to the following Iree:

o
/°< >”\
SN SN SN
o o o 0
SN\ NN
Conjecture 3 Let M be the number of variables of the rule or the depth of the rule terms, then
the constant ng is less than or equal to 2M:
M = Card(range(L) U range(R)) or sup(depth(L).depth(R)) = np = 2M
Example The chess game is characterised by the following rule:

game — game

P’/,i:'\u }"‘I(/ L\R

3%

A sequence of norecursive applications of this rule is characterised by the following svstem of
equations:

By = {gmucl Py L ol Pio(My, B) = gamel P, Fioy, B} [¥i € [2,m))
Iis winimal form s:
mew = | My = olFy, of M, i) ¥ i €(2,n))

where the congruence, R, . is composed of:

e

1. Wiel,u), B; = {R;].
2. Wie [1,n). My = (M},
3. ¥ie [Ln) P = {P, /¥5ellin), j=muzt) U P /Yhe [Ln], k=puzi+ 1)

4V € Lmg, Pl (P /¥ € L), J =pasz i) U (P /Vk € [1n], £ =posz i 1)

In this example, the constant ng is equal to 1, that is, there are no side effects:
-msy =0
-mey = a = (w)T? = = { i _m.r'g o{ Ma. 2)) }
and R, = {R,} B = {P].P:}, P" = {F ,F}}.
- Mgy = a & (mey) = ms, & |t..u]—'f"“?

This can be checked in the weighted graph of the rule:

Q‘ﬂ.mf"}
/ /'I!_["'f \1\
paa2=—* 4
. _— -——-—-—-_\

NIDA

{H]

M

4.4.3 Behaviour of the first and last terms of a finite sequence

Definition 23 The lowest comman multiple of the periods of the weighted graph is said to be
the peried of this weighted graph.

Theorem 17 The period of the rule is the period of its weighted graph and the growing branches
aof the terms 51 and 5% increase linearly.

Let p be the period of the weighted graph. There exists a function. f, linear or constant, such
that:

Ym € Dom(5)). ¥m' € Domi 87, Yn 2 flsupi| m] m').

S,]{{m} = .‘:',"_}"'ln,’_rr.-} ==p .5,4_,,?{1:1] = ﬁ':_:;:*l[:m]

40

Lemma 11 The lengths of the growing branches in S5} and §n41 ynerease linearly.
There erists a function, f, linear or constant, such that:

¥m € Dem{lim(5})), ¥n 2> f(|m|), m¢€ Dom{5L)
vm' € Dom{lim(§3*1)), ¥n 2 f(| m'[), m'€ Dom(S8+

Proof Using theorem 16, the term S, can be defined as the term S} modified by the new
constraints, w= "+ g ... @ w—"*Te) knowing the previous set of constraints, ¢sy,.
Thus, an indexed variable of 5} will be substituted in §1, by a function symbol iff its
index belongs to the right side effect ([n,n + r]) and its symbal of variable belongs to EV.
Therefore, the depth of the growing branches of 51 increases at least linearly by 1 befare 7.,
new rewritings.
Symmetrically, 5:;_",‘:‘” can be defined as ($711)™1 modified by the new constraints, a & -+ &
a—lre knowing the previous constraints, (csy)™""*".

Thus, a weak and lazy evaluation of this increase is:

depth, > (n—mng)/maz(lse,7se)

Moreover, we know {theorem 2) that the depth of the weighted graph interpretation is also
hounded by a linear function of n; therefore, from theorem 11, the depth of the terms of a finite
sequence is bounded by a linear function.

If the weighted graph is acyclic, the depth of the terms, S} and §°*1. is bounded, that Is,
function { is constant,

Proof of the theorem Let m, m’ and n he such that:
m € Dom(8}), m' € Dom(SEY), n > flsup(| m|,|m])),

then if the labels of the paths, m and m’', are function symbols, it is true from the proof of the
previous lemma:
Yn,n' 2 f(|m), Sim)eF = §lim)e F

va,n' > f(Im]), SiTHm)eF = SMF(m) € F

Moreover, (52)z and (S5)nys are increasing sequences, that is, if §2(m) is a function symbel,
for any n' greater than n, Si(m) and §;77(m) are equal.

Thus, let us consider that the labels are indexed variables, but are never substituted by
function symbols for longer sequences of rewritings.

Then, for n that is sufficiently great (linearly depending on the lenghts of m and m’), these
variables can be shown as periodic, and their indices can be chosen such that they do not belong
to the side effects.

Looking at the range of the finite sequence (theorem 11}, we know the behaviour of the
periodie variables (symbols of variables which are periodic or su hstituted by a periadic symbol
in the weighted graph). The periods correspond to the periods in the weighted graph of the
rule; therefore, the periodic equation will be true for the lowest common multiple of the periods
of this weighted graph, that is, what is called the period of the rule.

41

5 Application within the Terms Rewriting Systems, Narrow-
ing and Logic Programming

In this section, some open problems are solved using the characterisation of a recursive rule
through its weighted grapli.

5.1 Global rewriting systems

Propesition 13 A ground term, T, can be rewritien n times by the rule, L — R, iff §} and
T are unifiable.

Theorem 18 The wriform terminalion of one global rewriting rule is decidable.

fiwle r generates finite global rewritings for all finite ground terms iff the
weighted graph of the rule does not ezist or contains positive basic loops.

Proof Obviously, if L° and R~ are not unifiable, that is, the weighted graph of the rule does
not exist, then uniform termination is verified {¢f. theorem 11)

In other cases, rule L — R verifies the uniform termination iff the term 5. is infinite. From
proposition &, this is equivalent to the existence of positive basic loops in the weighted graph.

Remark 10 This property is undecidable within rewriting systems. One rule is enough to sim-
ulate any Turing machine [Dauchet 87/

Theorem 19 The uniform termination of onc glebal rewriting rule and pne fintie ground term
is decidable. There erists o function, [, either linear if the weighted graph contains positive loops,
or constant olherwisc, such that o finite grownd term. T, is globally rewritten finitely iff it can
be rewritten more than f{depth{T).

Proof Based vu theorems 2 and 15

5.2 Global narrowing

T'he only difference between global rewriting systems and global narrowing is that the term
which is globally rewritten iz not ground, but it may contain some variables.

Definition 24 A ferm, T, 12 said to be globally rewritten with instantiation iff there exist a
substitulion ¢ and o term T such that o(T) is globally rewritten to T .

Proposition 14 A finite term, T, can be rewritten with instantiation n times by the rule,
L—=R,if 51 and T are unifiable.

Theorem 20 Within global narrowing, the uniform termination of one rule L — R is decidable.
For all terms, the rule generates o finite scquence of global rewritings with instantiation iff its
weighted graph (L% v R=') does not exist.

Proof Obviously, the rule generates a finite seqnence of global rewritings for any term iff that is
true also for the most general term expressed by any variable, This is equivalent to the existence
of a bounded sequence of global rewritings | thoorem 12} .

42

Remark 11 Here, the problem of the uniform termination is linked lo one rule and one term.
That is, rule r and one term, T, verify the uniform termination iff the term, T, is firutely glob-
ally rewritten with instantiation wrt rule r.

Theorem 21 The uniform termination of one rule L — R and one finite linear term, T, is
decidable.

There exisls a function, f, either linear if the weighted graph contains positive inops, or constant
otherwise, such that a finite ground term, T, is globally rewritten finttely iff it can be rewritten
more than f(depth{T]).

Proof of the theorem If the term, T, is linear (that is, there is one occurrence of each vari-
able), then the proof of the theorem is simple. From theorem 17, for n greater than f(depth(T))
{positive loops) or a constant (no positive loops), there exists a constant substitution, gg, such

that SIv G = og(Ia)

Example The recursive definition of the natural integers: suce(U7} — U.
The term, succ™{zero), is globally rewritten at most n times, but the term, suec™(V') can be
infinitely globally rewritten by instantiation of the variable, V.

This theorem is still a conjecture in the non-linear case.

5.3 Logic programming

Let us consider the following structure of Prolog programs, called Prolog While because of its
behaviour:

whﬂi‘.{ﬂcud] .
while(tye pore) = while(typrer) .

Theorem 22 The SLD tree of a Prolog While program is finite for all goals, while(tpepin), iff
the weighted graph of the rule does not erisi,
Proof This is equivalent to the theorem about nniform termination within global narrowing.

Theorem 23 The SLD tree of a Prolog While program is finite for all ground goals, while(tyegin);
iff the weighted graph of the rule does not exisi or contains positive loops.

Proof This is equivalent to the theorem about uniform termination within global rewriling.
Theorem 24 The termination of the SLD resolution of ong linear goal is decidable.

There exists a function, f, linear [weighted graph erists and contains positive loups), constant
(otherwise), such that the SLD resolution of a Prolog While progrum and a linear goal is finite iff
there is no sequence of global rewritings whose length is greater than or equal to fldepth{goal)).

Proof This is equivalent to theorem 20 within global narrowing.

43

Theorem 25 [u the case of & Prolog While program whese fact is linear, the eristence of solu-
tiniie for a linear goul 15 decidable,

Phere exisis o funetion, [, linewr (wcighied qroplh erists and contains positive loops), constant
totherwise), such that the SLI reselution of a Prolog While program and o linear goal generate
solfutions iff some of then are olluined before fiede pth{gonl))+ period{rule) recursive rewritings.

Proof The proof is based on the same iden as the prool of theorem 21 within global rewriting
svstems.
Let ns suppose that the fact and the goal are Linear, (that is, there is one occurrence of each
variable), Because the terms, S} and S777. lucrease linearly according to n, then for all n
greater than foaidepthigoal}) and fugrtde pifi} faet)), all the branches smaller in S than in
(i are constant and all the branches smaller in 57" are constant (in relation to n) or periodic
icf Theorem 17).

After a number of rewritiugs Lncarly depending on the depth of the goal, there exists a
constant substitution, g, such that &' v Gonl = @[S1) because the goal is linear.

Let p be the period of the tule. There exisi & substitution constant in relation to n, denoted
nr“. and a fnite number of constant substitutions, denoted oy mod p such that:

'q'::-!-. Il"ll Facj = ':H-r?l e g U U?n]LS:-'.I.:I
where Demioy,1 N Dem{g7"} is empty.

A solution exists for n recursive rewritings il
5, U (Goal = 81 U {Fact = 5771} is solvahle.
For n greater than fme-(depth{gonl}) and fooo{depth] fact]}, that is equivalent to og, o7,
and (o)~ are unifiable.
Therefore, if there is no solution for a nember of recursive belonging to

[foezldepthigoal}) + fas(depthl fuct)) . fuaeldepthigoal)) + fmae{depth(fact}) 4+ pertod(rule) |

there will be no solutions for longer sequences of recursive rowritings.
(Jtherwise, if there are solutions, the number of solution paths in the SLID tree is infinite.

Theorem 26 In the case of a Prolog While program whose fact is linear, the eristence of finile
number of solution paths i decidable for o linear goal. There exists a function, J, linear (weighted
graph ezisis and contains positive loops), constant (otherwise), such that the SLD tree of a Prolog
While program and a linear goal has a finite number of solulion paths iff some of them are
obtained for @ number of recursive rewritings belonging to | f(depth{goal)) . fldepth{goal}) +
period(rule)].

Proof Included in the proof of the previous theorem
Definition 25 4 Prolog program is said to be bounded if it is possible to eliminate recursion
from the progrum.

Theorem 27 The boundedness properiy is decidable for o Prolog While program whosc fuet is
lineor,

Proof The problem is equivalent to the decidability of the existence of a finite number of
solutions of the following program:

while(tund) -
1t?hif£[1[,5jp,-¢} - w.ﬁﬂﬂ[iu;”,—} .
. while(X) -

This problem is decidable if the fact and goal are linear.

Theorem 28 A Prolog While program is bounded if one of the following properties is true:
1. It has no weighted graph (L% v Rt~} does not erist).
2 The fact is ground and the weighted graph has al least one negative loop.
3. The fact is linear and the weighted graph has no pesitive loop.
{. The weighted graph is acychic.

Proof :

(1) is equivalent to theorem 20 within global narrowing.

(2) is the symmetric result in relation to thecrem 18:

If the weighted graph of the rule contains negative loops, then the depth of the terms 53+t is
not bounded, that is, after a constant number of recursive rewritings, the depth of Sp! will
be greater than the depth of the ground fact. Therefore, no solutions can be found after this
constant number of rewritings.

(3) By extending the previous proof (theorem 25), after a number of rewritings which depends
linearly on the depth of Goal, the solutions are:

(06 V 01y oy ¥ (1)1 57)

Moreaver, if the weighted graph contains no positive loop, then after a constant number of
rewritings, S5 is constant.

(4) If the weighted graph is acyclic, then the size of the terms, 51 and 5pF! is bounded. Because
there exists a finite number of pair (52, §¢+1), recursively applying rule L == R is equivalent to
applying once a finite number of rules, 53 : - gu+t,

Remark 12 Tn condition (3), the linear hypothesis about the fact is important. Let us look af
the following program, whose fact is nonlinear:

integer(X, X .
infeger{ X,Y) - integer{suce(X).Y) .
- integer{zero, Y] .

This program has an mfinite number of solutions (all natural integers), but its weighied graph
contains no positive loop.

In a few words and using an array, we can express. simply, some of the properties and the
link between o Frolog Wiile proson amd its weighted graph:

Webglited graph unification

toeore V iujue e dovs ot exis = T ¥ £y i, do€s TOL exist
No null Joops in the weighted giaph == Occur-check verified
Weighted graph Prolog While
while(tema) -
fg,;,,.,., v z‘:!‘;:” = while{tye fore) = While{lsfrer) -

= while{tpegin) -

Weighted graph exists == Infinite SLI) resolution for some goals
Infinite unfoiding == Most general fixpoint

Period of tle weighted praph —= Period of the Prolog While program
Positive loops + Ground maal = Finite SLD resnlution

Negative loops + Ground fact — Boundedness

{3 equivalent nonrecursive prograin

Acyclic weighted graph == Houndedness
Linear lact and linear goal — 3 f, lincar, such that. in the SLD resolution
+ Positive loops terpuination, existence of solutiong, existence

of a finity of solution paths can be checked
atter f{depth(goal)) rewritings

Linear fact and linear goal == in the SLD resolution, termination,

+ No positive loops existence of solutions, existence of a finity
of solution paths can be checkod
alter a constant number of rewritings

6 Examples within Logic Programming

6.1 Chess game

This is an abstract of the properties proven along this paper about the chess game rule.
A chess game is characterised by the following Prolog While program:

game(P, I", Nilj .
game(P, P, P o M o R) :~ game(P’, P, R) .

The fact means that a chess game between two players, P and ', may be empty. The
recursive rule expresses that if R is a chess game between the first player, P', and the second
player, P, then the chess game whose two first elements are P and M and the rest is R is a chess
game whose first player is P and second is P

The behaviour of this rule is characterised by the unification of two weighted graphs: its
left term whose Toot is weighted by 0 and its right term whose root is weighted by -1 (theorem 11):

game” A" game™? = game"
P,/ i" \a P/ 11" \ R P ':'ZU..-'-_I\\E
P/ \u \u—-—-') "
W W

The SLD resolution is infinite for some goals because ite characteristic weighted graph
exists (theorem 22}

The following program will generate an infinite SLD computation (with an infinity of solutions}):

game(P, P°, Nil) .
game(P, P, P o M o R) - game{P", P, R) .
= game(kasparov, karpov, %} .

The most general fixpoint of the rule, that is, the most general term which is rewritten
by the rule to an eguivalent term, is the infinite unfolding of the characteristic weighted
graph (theorem 14}

M, ete,

This term represents an infinite chess Fame.

The most general finite sequence of recursive rewritings, 5;, is ranged across by the
finite interpretation of the weighted graph of the rule from two intervals appraximately
equal to [1u] {fundamental theorem 11):

f[l.n+1j]IfLﬂ VTN < 8, < I[l.nnl](L{lvﬁ—l}

[14a; m—iy - [L=gzmbs

In this case, these constanis con be chosen as, respectively, 0, 0, 0 and 1. The inequation
about the first element is:

LV BT & 5, 2 Ufy i LY v R7Y)

garne < Slo< game
i AlTH
f/' | \\ L | \\
P.;]. .F']_ /0 Fn 1 /!}
2N X \,o
7N\ N
Ay . Mg)
.,
o ~ o
RN <
Pn v 2 ‘:‘-'\ Pl‘l mod2 @
7N, N
;'H,;. fl’.-1+1 ﬂ'fn L

7N

Pﬂ-rlﬂwliz o

7N\

Mgy ¥ AT

The low value of this inequality is the raal value of Si.

For all finite ground goals, thic sule will generate a finite computation because of the ex-
istence of positive loops in the weighted graph.

Any finite ground term can be rewritten n times iff it is unifiable with &). ‘The depth of
51 increases linearly aloug the positive loop of the weighted graph.

The period is 2. that is, the lowest common multiple of periods in the weighted grapl
(thearem 170,

The only periodic phenomencn will be hased on the names of players because they play in
turn.

For linear goals, termination. existence of solutions, finity of solution paths can be
checked afier depth{goal-1)/2 recursive steps (theorems 24, 25, 26).

1. The SLD resclution is finite iff there is no sequence of recarsive rewritings whose length is
greater thay deptdifgowd- 102

There are solutions iff some of them can be found for sequences of recursive rewritings
whose length is less than depth(goal-1}/2 + 2.
There is a finite nurober of solutions il none of them can be found for sequences of recursive

rewritings whose length is an element of

[depth{goal-1}/2 , depth(goal-1}/2 + 2

Let us look at some examples of goals:

1.+ game(X, Y, R).
Infinite computation, infinite number of solutions.

9. - game(X, Y, kasparov o e2ed o karpov o e7e5 o Nil} .
Finite computation (at most two recursive rewritings), one sclution.

3. - game(X, Y, kasparov o M o P" o M’ o karpov o R).
Finite computation (at most two recursive rewritings), no solutions.

Let us change the fact of the program:
game(hal, kasparov , Nilj .
game(P, P, P o M o R) :— game(P", P, R} .
.~ game(kasparov, karpov, Chessgame) .

This gives an infinite computation without solutions.

44

6.2 Commutativity

friend(faizo, hirohisa) .
friend(X%] = friend{Y . N} .

‘The fact means that taize is a [riend of hirohisa, and the recursive rule is that X is a friend of
YOIl Y is a friend of X,

The behaviour of the rule is characterised by the following weighted graph:

friend” W {riend—1 = friend”
7N AN C ;jﬂ
X Y Y x X -

‘The SLD resolution is infinite for some goals because its weighted graph exisis.
The following program will generate an infinite SLD computation (without solution):

friend{raizo, hirchisa) .
friend{X.Y) = fend{Y X} .
friend{ X, katsumi) .

The most general fixpoint of the rule is the infinite unfolding of the characteristic
welghted graph:

rLr'u‘llE!_.':' — uniolding — friend
L | +1 / \‘-\
el Xo X

This term is finite becanse the weighted graph is acyelie.

The most general sequence of recursive rewritings, Sa, is ranged across by the interprelation
of the weighted graph of the rule frem two intervals approximately equal to [1,n]:

SN U ARTY o) BRSNSt B O ALY)

i'.l.-l-r.--. n=h; [1=agm4bs

These constanls can be chosen as, respectively. 0, 0, 0 and 1, that is, the real value of the
sequence, Sy, is the npper hound of the inequality:

S = e v R

friend 1 friend @ ---o-e K friend
AN PN N
Xo X X, Xo Ximod2 Nkl mod?

Fur some finite ground goale, the SLD resalution is infinite because there are no positive
laaps in the weighted graph.

Any ground instantiation of friend [X.Y) can be rewritten infinitely.

The period of the rule is 2, that is, the lowest common multiple of the periods in the
weighted graph.

The rule expresses the commmutativity of the friend relation.
This program is bounded because its weighted graph is acyclic.

The following two programs have the same solutions:

1 - friend(t;, t2) . a-friend(ty, 12) .
friend (X, Y) :— friend(Y, Xy, friend{tz, 1) .

Therefore, the complexity of the rule is constant. There is a constant, 1, such that:
1. The SLD resolution is infinite iff the recursive can be applied once.
2 There are solutions iff some of them can be found with & ot one recursive rewriting,

3. There is a finite number of solutions iff none of them can be found for one or no Tecursive
rewriting.

Let us look at some examples of goals:

1, = friend hirchisa, Y .
Infinite computation, finite number of solutions (one).

2. - brother{hirohisa, Y -
Finite computation (no rewriting is possible), no solution.

3. i~ friend(Y, katsumi) .
Infinite computation, no solutions.

6.3 Function "less than 10" on the natural integers

bessthan 10{enee™ zerol) .
lessthanl 0N - JessthantU{suee| X}y

The fact meaus that U is less than 10, and the recursive rule is that X is less than 10 if suce(X)
verifies the same thing.

The behaviour of the rule is chiaracterised by the following weighted graph:

lessthan 10V V' lessthanin=! jessthan]0?
| l L
R sNoe = sueC -1
| W
*
x

The SLD resolution is infinite for some goals because its weighted graph exists.

The following program will generate an infinite SLI) compatation:

lessthanl{l succ™{zero)) .
lessthanl({ X} = lessthanIO{sucr{ X1,
— lesgthan 10/ zero] .

The most general fixpoint of the rule is the infinite unfolding of the characteristic
weighted graph. here, the rational and ground term: lessthanl0{suce™).

For some finite ground goals. the SLD resolution is infinite because there are no positive
loops in the weighted graph.

There is no periodic phenomenon during the SLD resolution, because there is no period in the
weighted grapl.

This program is bounded because its weighted graph contains one negative loop and the
fact is ground. Therefore, the complexity of this Prolog While program is constant.

The following two programs have the same solutions [or all goals:

1 - lessthanlO(succ®{zera)) . 2 - lessthani0{succ®(zero)) .
lessthand (] X)) = lossthan10{suec{ X 1) . lessthan10(suce®(zero)) .
lessthanl{dzero) .

The second program is composed of 10 pround facts, and its complexity is constant.

6.4 Occur-Check

Let us consider the following rule:
[f
PN RN
X X Y E
!
Y

This rule is not loop-generating because the longest sequence of rewritings has length 1. Two
recursive applications of this rule are not possible because of the occur-check:

f f f f
X1/ \x Yl/ \T xg/ \X= l’zﬂf \?

1 ¥a

non-unifiable

1

The weighted graph which is computed by the unification algorithm is:

0

|
)

This weighted graph is not finite, that is, there are null loops {from node g). Hence, the
unification algorithm fails because of the occur-check.

The complexity of the rule is constant: the SLD resclution is finite for any goal {at least

one recursive rewriting), and any goal has a finite number of solutions {at least two solutions).
There is no fixpoint and no periodic phenomenon.

53

6.5 Similar patterns, different behaviour

Let us louk at the following three recursive rubes which have no real meaning, except for the
first rule which expresses the associativity of the addition:

Rule & Hule 6

+ : + + +
~ N N PN <N
+ ' X + 7. Z

Rule 7

- :
AN / N
g Yy
They have the same patierns, but their behaviour is quite different. n recursive applications
of the rules 5 and 6 are equivalent to one application of the following rules:

(Rule 5"

-~ \21 .-/ \\

~ 1'“:' .r
- \‘r; },; ~
r’/ _+
x.:‘/ \1 1-'1‘/ \zl

Wiz 1, (Tlule 6)"

+f,,f-*’ H"\\Jr -- //"’J:l-\-_h_ .
AN %

xl N3 A n wrpa 4 :11-2 med 4 -'}L.n+l mad 4 J¥n+3 e 4

The longest sequence of recursive rewrilings using rule 7 is:
’/ ~ L /, “‘x icl f \ T, +‘/""“\‘+ L +
/\ z’\ f\ ;’\ x\ ,/\ Ef’\hlf\ N AN

Let us compare and check their recursive behaviour by computing their weighted graphs.

Rule 5 Rule 6 Rule 7
$ $
/ \-\1 o D'H No weighted graph
O\ 0~ i
+ . 0 D-ﬁ-z
Y x.:d-
Rules, 5 and 6, can generate an infinite SLD resolution for some goals, because they have

their characteristic weighted graph; however, rule 7 always generales a finite SLD resolution
because it has no characteristic weighted graph.

The most general fixpoint of rules 5 and are the infinite unfoldings of their weighted graphs:
Rule § Ruleé
+ +
. / \\‘ .) / \\\+
+/ \Yc. Y.f/ >—|— Xﬂ/ \\X, X,// \X3

N, v
+’/ \+
f.t.r'../ \\fu Y-n{ \elc
The fixpoint of rule 5 is infinite because its weighted eraph is eyclic. This fixpoint is irra-
tional because it contains an infinite number of variables; and therefore, cannot be expressed by

a directed graph. The fixpoint of rule 6 is finite because its weighted graph is acyclic. Rule 7
has no fixpoint because it cannot generate an infinite sequence of rewritings.

For all finite ground terms, rules 5 and 7 generate a finite SLD resolution because weighted
graph (5) contains positive loops, and weighted graph (7) does not exist.

However, for some finite ground terms, rule 6 can generate an infinite SLD resolution. Any
ground instantiation of its finite fixpoint can be rewritten infinitely.

There is no periodic phenomenon in recursive rules 5 and 7, but rule § has a period 4 from
the period of the weighted graph.

The complexity of rules 6 and 7 is constant because weighted graph (6] 1s acyelic, and
weighted graph (7) does not exist. After four rewritings in each case, the termination (rule 6),
the existence of solutions (rules 6 and T} and the exislence of a finite number of solution paths
{rule 6) can be checked. However, the complexity of Tule 5 will be constant if the fact is ground
(existence of negative loops), but its complexity will gencrally be linear (existence of positive
loops).

; Rnle 1 Hule 2 Rule 3 Rule 4 Rule & Rule 6 Rule 7
el [Friend) {inf} {ocour-check] | [assooativity)
1nfinite SLD
for some goals
= Yeu Yes Yes Mo Yes Yo Mo
| Finite weighted !
graph exists !
Lufinite SLD for |
some ground goals |
= | No Yes Yes Mo No Yes Mo
t Finite wg :
t 4 positive loop
I 1 |
Period of the rule | ‘ i
= 2 2 ! 0 0 0 4 0
Period of its fwg ‘ ‘
| | | -
Boundedness | No | e | Yes Yes N Yes es
{constant lacyclic wg) | {ground fast+ (o fwg) {acyclic wg) | (no fwg)
complexity) | negative lnnp)
|
| Wumber of recur-
sive rewritings
i for termination,
golutions, ...
Avy goal, fact | 1 4 i 4 4
l Lincar goals, facts | x/2 ."L

(57 depth{goal))

ol

7 Conclusion

This syntactic and structural study of termination and complexity in logic programming began
.n 1084 at the Laboratoire d’Informatigue Fondamentale of Lille.

The first part of this report in troduced a generalisation of the directed graphs, called weighted
graphs, by putting weights on the arrows and periods on the variables. It presented some formal
properties of this new syntactical object, finite and infinite interpretation’ and unification.

From weighted graphs and through adequate sysiems of equations, the second part of this
work was devoted to establishing the decidability of the termination and the existence of solutions
for all programs with the following structure:

W.Fi'r:ff [:end} .
while '['ll_-.,,_rg.-,::l : = while ['I,”'f_‘,-:l .
: — while (Lpagin) -

where the terms, teng and laegin, are linear M It is expected that these properties
ate true even for non-linear facts and goals.

The features of this approach are, first, some coherence for studying the recursive manipula-
tion of terms: these terms have been generalised in the form of weighted graphs which are based
em the same algebraic theory and share the same basic operations; second, these results can be
understood on three levels:

(1) Algebraic theory: weighted graphs can be studied formally independent of all applica-
t1ams.

However, through the equivalence between the behaviour of a rule, . — R, and its weighted
graph, L0 B~1, the weighted graph properties can be applied within logic programming in two
directions.

(2) The weighted graph is a tool of proof and automatic evaluation of termination and
complexity for linear recursivity, and can therefore be used for improving strategy or proving
the decidability of some properties, for example, the uniform termination of one global rewriting
rule.

(3) The weighted graph is 2 methodological tool that can be used by the programimer for a
better understanding of the behaviour of recursive rules, :

Although the Bhm-Jacopini theorem has an equivalent formulation in Prolog, that is, any
pure Prolog program has a strongly equivalent program of the form [Devienne and Lebegue 88):

choice (fy) .

choice (t2) .

while ftgﬂd:l .

while ({pegore) — choice (t), while (tafter) -
¢+ — while {{pegin) -

it is hoped that this result is not a real limit, as the [Bohm and Jacopini 66] theorem was not
a teal Limit in imperative programming, and that by using the weighted graphs of recursive
cub-structures of some Prolog programs, it will therefore be possible to understand their whole
behaviour.

Then, the structured logic programming will be established as an efficiont and methodological
approach.

Acknowledgements

1 am mest grateful to Max Dauchet for illuminating discussions. I would also like to thank
Bruno Courcelle, Pierre Deransart and all the other participants of the working group Méthodes
et outils théoriques en programmafion legique for their helpful comments.

References

[Bohm aud Jacopini 66] “Flow diagrams, Turing machines and languages with only two forma-
tion rules”, Communicalions of the Association for Compuling Machinery, Vol 9, pp.366E-371,
1966.

[Colmerauer 79] "Prolog 11, Manuels de reference, thecrique et pratique™, GIA, Marseille, 1979.

[Colmerauer 84] “Equations and Inequations on Finite and Tafinite Trees", FGOS'EY Proceed-
ings, Nov, 19584, 85-898,

[Courcelle 83] "Fundamental properties of infinite trees”, Theor. Comp. Sei, 17, pp.95-169,
1883,

[Courcelle 86] "Equivalence and transformations of regular svsiems. Applications to recursive
programs schemes and grammars”, Theor. Comp. Sci., Vel 42, pp.1-122, 1986.

[Dauchet 87] "Termination of rewriting is undecidable in the one rule case”, Internal Report
IT110, LTIFL Lille, France, 1987,

[Dershowitz 83) "Termination”. First International Conference on Rewriting Technigues and
Applications, Dijon, France, pp.180-224, 1085,

[Dershowitz §7] "Termination of rewriting”, J. Symb. Comp. 3, pp.69-116, 1087,

[Devienne and Lebegue 56] “Weighted graphs, a tool for logic programming”, 11th Colloguinm
on Trees in Algebra and Programming, Nice, pp.100-111, 1986.

[Devienne 87] "Les graphes orientés pondérés, un outil pour I'étude de la terminaison et de la
complexité dans les svstémes de rééeritures el en programmation logique”, Thests, Lille, France,
1987.

[Devienne 88a] "Strongly reduced syetems of equations”. F7th Annual Conference on Informa-
tion; Processing, Kyoto, Japan, 14958,

[Devienne 32b) "Weighted graphs, a tool for expressing the behaviour of recursive rules in logic
programming”, FGCS'8§ Proceedings, Tokyo, Japan, to appear, 1988.

‘Devienne and Lebegue 88], “All programning can be dope with at most one right recursive rule
and three facts”, in preparation.

en
5 4]

[Eder 85] “I'roperties of cubstitutions and unifications”, Journal of Symb. Comp., Vol. 1, pp.31-
46, 1985,

[I'ages] "Notes sur l'unification des termes du premier ordre finis ou infinis”, Internal Report,
INRIA-LITP, France.

|Gaiman and Mairson 87] "Undecidable optimisation problems for database logic programs”,
Symposium on Logic in Computer Science, New-York, pp-106-115, 1987.

[G. Huet 76] “Resolution d’equations dans les langages d'ordre 1, 2, -+ 17, These de doctorat
d'etat, Universite Paris VI, 1976.

[Huet and Lankford 78] "On the uniform halting problem for term rewriling systems”, Happort
Laboria 283, INRIA Le Chesnay, France, 1978.

[Huet &0] "Confluent reductions: Abstract properties and applications to term Tewriling sys-
tems”, JACM 27, pp.797-821, 1980.

[lonnadis 85], “A time bound on the materialisation of some recursively defined views”, Proc.
[ith International Conference on very large data bases, Stockholm, pp.219-226, 1985,

[Lassez, Maher and Marriot 87] “Unification Revisited”, Workshop on Logic and Data Bases, J.
Minker, 1957,

[Liptor and Snryder 77] "On the halting of tree replacement systems”, Conference on Thepretical
Computer Seience, Waterloo, Canada, pp.43-46, 1977.

[Lloyd 84, 87] "Foundations of logic programming”, Springer Verlag, 1984, 1957

[Naughton 86] “Data independent recursion in deductive databases”, Symp. on Principles of
Database Systems, Cambridge, pp.267-279, 1986.

[Vardi 88] "Decidability and undecidability results for boundedness of linear recursive queries”,
Symp. on Principles of Database Systems, Austin, pp.341-351, 1988

50

