ICOT Technical Report: TR-436

TR-430

Design and Performance ol a Coherent
Cache for Parallel Logic Programming
Archilectures

by
AL Goto, A, Matsumoto and E. Tich

November, 1988

WOIORE. ICOT

Mitag Kokusai Bldp, MTF i3 J56-3191~ 3

“ D ! 4=20 Alite 1-Chome Tedew 1OOFT 1324964

Minato-ku Tokvo 1M Japan

Institute for New Generation C-ompute_l:_"rech'nbiééi

Design and Performance of a Coherent Cache

for Parallel Logic Programming Architectures

AL Goto! A Marsuwoto - ICOT!
E. Tick University of Tokvo

Abstract

Tlhits paper describaes the desigy and performance of a lightly-coupled shared-memory
eolierent cache optimized for the execution of parallel logic programming architectures.
T]H- rar':m nTj]izFﬁ a r:rup:.'-h.‘-u'k wrih*-.wllr_'uralinn prc:in:n} ||a1.'5'ng five sl Aley :bml’[A |1:-|1'1'|'I-L”.-Lr<=
lock wechanism. Optimizations [or Jogic programming are introduced in four software-
vontrolied memory access commands: direct-write, exclusive-read. read-purge. and read-
invalidate, lu this paper we deseribee these operations and present shinalated measarements
show e their performaeee advantage for an architecture of the committed choice fangnags
KL The vache optimizations also fnprove e performarce of isi- ot ted e luoee
fangiape=, =uch as OR-parallel Prolog. A version of the cache design deseribod here 12

currently bemg inplemented for 1000 Parallel Iaferenee Machine (PIM

1 Introduction

Caprent inmterest i paraliel logic programming stems from its declarative semantics which lacil-
ate writing anid debngmng prograionms and remove most of Uhe need Tor explicn nneoverimg aned
contral of parallelisom, Parallel logie programming lanenages, wany hased on Prolog, are high-
lewed T e sesse thint destenetive assiooment is forhade amd prosrams often appear as many

stnall peenpsive E‘J'“l't'dllt'x"- srstoad ol fewer, Jarae erative ones Toaddition, sone if'“,‘-'-llil.'-'-"-"‘

SE-Mails got et el s e
Paba bookvsoe Bl 2EHE 1220 Mita, Minateakn, Tokvo 10, fapan

Femeszrre s ©enier hor Adbvsneed e pee anal |_l'-'hr--:||.'i-':_'-'. et | Inappimbea, Meguro-ki, Jokvio [3205, .l"|||:|||

retain Prolos s not-determinacy, resulting i backtracking aver assighiment . Another important
dilferene is the srannlariiy size of processes, o general, logic progranmming langnages all have
el spabler tasks than explicitly controlled procedural langnages. These attributes result in &
significantly ligher memory bandwidth requirement than for procedural langnages [19]. There
are various means of reducing the bandwidth requirement, and certainly hoth compiler opti-
mization and hardware support are necessary Lo altain high performance. This paper discusses
shared-menory nmnltiprocessor hardware support in the form a cache design 00] aptinmzed for
the memory accessing characteristics of parallel logic programuming languages.

Several cache protocols have heen proposed, c.g.. [1. 2,5, 7, 13, 18], each aiming to solve
the cache coherency problem and reduce common bus traflic. The cache protocol described
here. called the PIM {Parallel Inference Machine) cache, is similar to the Illinois protocol [13]:
however, the 1M protocol has an additional state. distinguishing between SM (shared modified)
and § (shared). The new features added for logic programming archilectures are the direct write
(DW . read purge {RP). read invalidate (RI). and exclusive read (ER} commands. deseribed
in detail in Section 3.1,

i sumumary. parallel logic programming languages display different (morce severe) memory
referencing and process control characteristics than procedural languages such as (' programs
in o multi-user UNIX enviromment. Considering shared memory multiprocessors. such as the
Sequent [13], these different characteristios translate 1o a general requiremcnt for higher memory
bandwidth. an elficient locking mechanism for short intervals, and an efficient commmmcation
mechanism necessary Jor balancing 1l load of many small tasks.

I'his paper is organized as follows. Mativation for the FIM cache design is given in Section 2,
with a deseription of the memeory relerencing characteristics of the parallel KIL1 architecture.
Section 3 describes the cache protocol. Section 4 presents the vesults of & performance evali-
ation of the cache with a software L1 emulator and cache sinmlator. Finally conclusions are

presenied,

2 Motivation for Cache Design

Tor mnotivate e volierent cachie desien preserted later inthis paper, it s henelicial 1o review
the WLT lngnaee desipned based on FOHC and its correspotding architecioee. kL [4] 1=

demianed for 10O s PIN (6] by adding systen progranming snppord foatnres 1o FGHO, Other

similar languages and architectures hased on the Warren Abstract Machine (WAM) [22] age sur
prisingly similar in their requireinents, and can therefore also advantageously ntifize the cache
optimizations, See Tick [20] jor a performance analysis of viwe sueh architecture, Aurora 95 on

the PIAD cache.

2.1 FGHC: Base of KL1

Flat Gnarded Horn Clanses (FGHCY [21] is a langnage based on Horn clauses of the form:
oo =0 a0 By By B, where H s the head of the clause. {0 are guards, “[7 1= the
commit. and B, are the body goals. Tn FGHC, as in Prolog. procedures are composed of sets of
clanses with the same name and arity. Unlike Prolog. there are no non-determinate provedures,
Fxecntion proceeds by attenipting unification hetween a goal (the caller} and a clause head (the
callee). W unification succeeds. execution of the guard goals are attempted, These goals can
only be svstem-defined builtin procedures, e.g.. arithmetic comparison. If the gnard succeeds.
1he procedure call “commit=" 10 that clause. i.e.. any other possibly good candidate clatses are
dismissed. 1 the head or guard fails. anot her candidate clause in the procedure is attempted (if
all vlauses {ail. the program fails). There is a third possibility however: that the call snspends,
This is deseribed in detail helow,

FOHC restricts vnification i the head and guard (the “passive part” of the clanse} o T
'|||]}1'|r unilieat o ””l."'" 1.8 LIE,]H‘“]]:E'H are ot P,‘{"Jurl.f'd. U‘Htput unification can he [‘H"I‘fl::l'ti!i‘l]
only in the bode part (ihe “active pan™). These restrictions allow AND-parallel execution
of Lodv goals and even OR-parallel execution of passive parts during a procedure call (the
inplementation discussed herein executes passive parts sequentially and execntes hody goals
i a depthefiest maner). Sviechironization hetween processes is inherent v performed v the
requirement that no outpnt bindings can be made i the passive part, 18 a linding is at templed.
e call podentinliy suspends, 1T none of the clanses suececdso and one or e petentially
suspetnl, then the procedure call suspends (possibly on madtiple variablesi.

Wohen any of the variables 1o which an export binding was atempted are i facr bonned (hy
another processic the suspended call 1s resumed. These semantios pernm streans ANIJ-]J.'I.r'nIlH
execiton ol e AR TR T 1. ﬁin'ujnph*l.i' [i<t= ol data can b streanesd] fron one |=i|l'-i-1'|4'i
process o anotler ina producer feonsmmer relationship. For examples when o steann rms di,

the eon=taner receves the nabeond tail of & D=t andd snspends. When the prodieer senerates

e data. the consnmer is resumed and continnes processig the transmitted data.

2.2 KL1 Architecture

The cnrrent K11 svstem [14] uses the five main {shared memory) storage arcas: heap. mstrue-
tion. goal. communication, and suspension. Unlike sitnttar Prolog arvchitectures. the goal and
heap areas cannel he managed inoa stack Tike fashion. The goal. suspension and comumpica-
tiom arcas are imanaged with free-lists, The heap 1= allocated from the 1op, like an ever-growing
stack. and can only be reclaimed with a general garhage collectionm 1G] meclinism,

The KL1 execution model is a reduction mechanizin wherein the initial user query {a sl
of goals) 15 reduced to the empty sel. A goal i represented by & goal record. similar 1o a
Prolog envirenment [22]. Reducible goal records are stored as a linked list {goal list]. one per
processing element (PLE). and reduction proceeds in a depth-first. manner, However, unhke a
Prolog environment, KL1 goal argnments consisting of unbound variables and struciures are
Loth indirectly stored in the hieap.

A single goal is reduced in the following manner [8L The goal is dequeued from the goal list
and its argnments are loaded into a register set. The compiled code sequence corresponding 1o
the soal is executed, attempting to conunit to one of the clanses of its procedure, I a clause
commits. the hodv instructions cause body goals 1o be created and pushed onto the front of
the goal list, Otherwise, if all clanses fail. the program fails. Otherwise, if no clanse conamts.
bt one or more can suspend, the goal s recreated from registers fo the goal area. and e
<vnehronizing variables are hooked to the poal. each via a suspension record, The goal is now
floating. i.e.. not linked 1o the goal hst. A single variable may be hooked to multiple waiting
goals, thus sngpension pecords can be linked, When a hooked variable is bound ar some painit,
& reswmption rontine is execnted which velinks the fiating goalis) to the goal list and reclams
the snspension recordis)

The cngrent WL svstern nses an on-denind scheduler, ne idle Phs request a goal fron
sy PEs [T The commmnication area i wsed prinarily for passing these coal vequest and
reply messages. Alessape |!'E'1'Il1'1|.:- ares only twe words and are nsnally written onee anel el
onve, Goals are similars goal records are always created 10 the register hiles However, when
erigquened fdequened onto/from the goal st memory 15 alwavs written onee and read onee,

f'm=|wr:-'iun]Hh AR I t‘fr!u'l PSR,

When binding a variable i LT, the varable minst he locked to prevent other PEs from
coneurrentlv atternpting an inconsistent hinding. When actively nnilving two variables, <ol-
strnetures must be Jocked 1o a carelul manner Lo prevent vaces, Sending messages Clo and o

ile and working PEs during load balancing) st e also locked,

2.3 Optimizing Cache Performance

As discassed above, each PE i a KL svstem exernies goal reductions of a relatively smiall
granularity (compared to procedural languages). Thus there are signiticant differences i kL1
mernory referencing characteristics from the characieristics of conventional mulliprocessor svs-
teans fike the Symmetry [15). Firsto the PEs communicate more often with each other, throngh
the logical variables. than the usual parallel processing on the Svimuetry svstenn, hecause pas-
allel goals share logical vanables. Thus 1t i< important for a locally parallel cache 10 have an
cfficient cache-to-cache data transfer mechanmsm as well as to work as a shared global memory
cache, Second. there are many exclusive accesses to communicate through shared logical var-
ables. The frequency of locking shared data in the kL1 execution s relatively high, However.
we can expect that exclusive memory accesses seldom conflict with each other [14]. Therelore,
we require a high-speed lack mechanism that uses hardware support and works efficientlv. ar
least when oue Jock does not conflict with other locks. Third. because of the single-assignment
feature of KL1. data write frequeney s higher than conventional linguages [16). Henee it s
necessary (o reduce the nimiber of copyback operations from cache 1o sharved global memory,

I o] write operations. a fetel-on-write stratesy is nsed. e a cache Dloek is allocated

i the cache for both read and write misses. As previonslv stated . in KLL new data stroctnres
are ereated dyveamically in the Lieap and goal arcas. Therefore, it is not pecessary to fetcli-on-
write when a new eache hlock ie allocated for a new data structure. A PE can weite data i
cache block withont fetehing the comtems from shaved wemmory, This s the motivation of e
doet werde conmand. Siilar oprinizations have hecn. for instance, suguested by Tick (19,
ane ipaplemented in the PSTmachine 1711

A stated 1o Section 2 WL soal veconls .'|:'t~u|:f'|;|'.t‘i] Wil o =teien wrilesones, peaed-omer

ot aned ber, |||l" _L{L.lq'll

rale. When KL ‘_L’II..IH]F are distribted during load halineing feom one |
records hotlin the sender’s cachie and o the receiver's cache are useless afier the weceiver PE

Fetaels IEI{' corilernt=, Fligs rean |||:_|‘]1'M'L =AW - fn -=u'.;u|r-:;||| can Jee pvonliad ey |||'-;||:|];|.‘|r|;_- I]"-

sender’s cache block alter canche-to-cache transfor and by purging the receiver’s cache block afier
thee receiver timishes reading, This is the motivation of the crefusiee read commiand., Fxelnsive
peadd i used conjunction with the diveet write, For example, the sender PE creates a goal
record in the goal area with the direet write command {Le.. without fetching the contents of
shared global memorv). Then the receiver PE reads the goal record with exclusive read. This
idea can be applied to general infer-PE communication via strict. write-once and read-once
communication ffer. Although exclusive read shonld he used carefilly so as not 10 confuse
cache coherenev, it ean reduce connnon bus traific by avaiding nseless swap-in and swap-ont
Gperaticons,

Lock operations are essential in shared global memory architectures. The KL1 language
processor nses lock operations for heap and conmmunication area accesses [LHL The frequeney
of locking shared data is high: however, actual lock conflicts seldony ocenr {11 Therefore, it
1 effective to introduece a havdware lock iechanism that has less overhead when there are no

fuck conflier=.

3 PIM Cache Protocol

Copvhack cache protocols hae been proved effective for reducing common bus trafiic in shared-
memory muliiprocessors for procedural languages. as show s by Goodman (3] and Arehibald [1].
ariong others. For logic programming langnages. Tick [19) <hows that AND-parallel Prolog
Lenelits Trom copyback even more than procedural languages hecanse of Prolog’s high wiite
bandwidth vequirement. Thus the basis Tor the PIX caclie 1= a copvhack protocol. Common
shared-memory coberen cache protocols, eop.. (1,02 130177 use both invadidation and broadeast
o crsnire all caches are consistent. Both tvpes of protocols have heen campared inthe literature
N0 Tvalidation reduces conmon bus trallic when the freguency of <hared bloek write aceesses
i= lowv. Broadeast is bhetter when mmany PEs Treguent Iy wete data to the sanme =hiared Blocks.
Considering the single-assignment feature of FOHCD the hase langiaee of WL most logiead
variables are shared b only twe LD eoalss By other wonls, mest PR connmmieainom has i
O TN TN I'!“-':J'.H|:|<'||1':‘ wil || I'l‘j_"illli Tus ll!‘-nrr r-lu] '.:UE]| R RINIR e T | L=]JI'UJ!-'|1'.'|-11!LI_'_ 1=
tot necessary for most programs, and ivaldation sallices,

I webte Teeopueney s bie her than that of procednral Gagoases, ool o adddition, vacle-to

eitchae oo trargsfor occnrs olen, Flhercfore, when trnostoriioe aolier s Ddoek o the shuape] Tos,

avaiding the update of shared global memory can reduce the busy ratio of memory modules,
more 5o Than for g procedural arehiiteetare,

The IV eache has five states: Es {Exelasive wodified - - The block s exclusive and modi-
fieed, 1t is necessary o swap out), Ec (Fxelusive elean - The block is exclusive and anmodified.
I s not necessary to swap out), SM {Shared modilied -~ The block is modified and perhaps
shaved. B3 necessary to swap out), S (Shared— The block is perhaps shared. 1i1s not neces-
sy to swap out b TNV (Tovalid—The block 15 wvalid). This pretocol is similar to the HHinois
protocol [L3 however, the PIM protocol Lias an additional state. distinguishing between 5w
anel S50 The 58 state s not pecessary 1o the Ninois protocol becanse nuadified blocks are always
copicd - back 1o shared memory when translerring between PEs, and thus the blocks become
vnmodified. This reduction in modified blocks likewise reduces swap-out bus traffic. On the
other hand. such a protocol will cause the busy ratio of shared-iemory wodules 10 inerease i
the cache-to-cache data transfer rate ts relatively high as in the KL1 svstem. Therefore, the
shared modified state (Ss) was included in the PIM cache,

I sddinion 1o the cache directory, there ts a separate lock directory, with three states [2]:
Lew (Lock The address is locked by an LR operation of the PE. and other PEs are not
waiting to Le unlocked b Lwart (Lock wanter-- The address 1= locked Ly this PE. In addition.
one or more PlEs are waiting to he unlocked). Exp (Not locked—empty). When a PP locks an
aildress the adidress s registered in the LOK state in the lock direciory at first. Subseguently if
the caches block i velerenced by another PE. the state of the lock directory changes from Lok
fo Lavare, Do this case, the reguester enters the busy waill state, and reteies the operation alter
receving the unlock (UL} bus command.

Tlivee standard lock operations. LR (lock and read), UW (write and unlockp and U
Londoek Lare offered. The PIM cache ases husvewant lacking becanzge 1t u=ually allows locking
and unlocking 1o occur in zero time [2]0 The hardware locks redice hus traffic in two kev wavs,
LR operations do not peguire bus connvands when they it e exelusive cache Dlocks {Eo or
Evi b addition, UW amd U operations use the bus anly when other PEs are waiting 1o be
unlocked, wamely o the Lwarr status. In the KWL architecture, actual Tock contlivrs seldon
weenr bewat=e e Jocking periods are <hort [1]

The Jock andd cache diveetories are separated becanse 1f the lock infomnation = held o the

cache directory (suely as i cachesstate lonking [270 there aee three major dhilfienlties, Firstoir s

-

ditlienht to distinenish every locked word an the sane cache hlock. Second. it s dithenlt to swap
ont the hlok 1hat comains the Jocked address. Thind, it is costly to add Jock states lar each
cache tag. These problems can all he solved by introducing a separate lock directory. The lock
directory contains the locked word address and state 1o enable word-by-word locking. The lock
directory controbler snoops the common bus to detect and inhibit access 1o the locked address
cvenn il the locked address is swapped out, Pherefore, multiple locks in the same cache block
can he distinguished. We think onlv one lock entry per directory is needed 1m mast parallel

logie progratmniming architectures.

3.1 Memory Operations

Viewory operations include read (R} and write (W} in addition to the lollowing optimizations.

(1) DW (address): Direct write- To avoid swap-in overhead. the DW command writes data
to an wnnsed memory area without fetehing a cache block. The DW command acts in

two different ways according 1o the relative position of a cache block, as follows:

(i1 When the memory address is just a cache Block buundary and a cache wiss occurs.
a new cache block is allocated and the data s written to the block without fetebimeg
thie original data from shared global memory, In this case. it must be elear thai

renmote caches do not have a corresponding cache block.

(i) When the memory address is not a cache block boundary, the cachie controller au-

tomatically replaces the DW with write W,

The DW command can be applied locally only when the target cache block entry does not
exist i o remote cache, This restriction 1s pecessary to guarantee cachie cohereney when
the corresponding cache block is swapped ont. Depending on the precise definition of
meache block houndare” DW will work either for npward-growing or downward-groaving

stacks, To optimize both, two conpnands are necessary.

{21 ER {address): Fxclusive vead s comnasted reads data and tnvalidates or puarges o
caclie Dloek 1o avoid swap-out overhead (the word ~purge” i nseel when purging s own
cache entrv . The ER commsand acte e three diferent wins accordine 1o the relative

puasition ol a cache Bilowele, o= desllows:

(i) Whe the target address misses but the block resides ou another PE. and the address
15 not the last word of a blu-rk._ a cache-to-cache transfer from a Euppﬁer PE cccurs.
In this caze. ihe supplier cache block 1= invalidated afrer the cache block transfer,

This operation is called read invalidate (RI).

(i1} When the target address hits and is the last word in a block, the block in the receiver
cache iz forcibly purged, after the last word of the black is read. This is the same as

read purge (RP), described below.

{111} Otherwise the cache controller avlomatically replaces ER with read R.

The ER command is used when the contents of a cache block are not required (in cache)

after the PE reads the contents (into registers).

(3) RP (address): Read purge—Thiz command, like EH, reads data by invalidating or purg-
ing a cache block to avoid swap-out overhead. The RP command acts in two different

ways according to a cache hit or miss, as follows:

{1} When the target address hits. the cache block is forcibly purged after the RP oper-
ation.

{11} When the target address misses and the cache block resides on another PE, the
supphier cache block is invalidated aflter the data block transfer, and the fetched

cache block is also forcibly purged after the RP operation.

The RP command is used when a cache block cannot be purged by ER, that is, when
the number of words of the reading area is not a multiple of the cache block word size.

In this case. the last word of the reading ares is read by RP.

(4) RI (address): Read invalidate -This command itself is effective for avoiding invalidate
bus commands when the data is rewritten just after it is read from other PE cache.
3.2 Specifications of Bus Commands and Responses

There are three bus commands and one response to implement tie locally paralle] cache mech-
anism for the PIM. Additional bus commands or responses are not necessary for the aptimized

memaory aperations,

4

(1) F (address): Fetch—The fetch command makes a request to fetch a cache block from

other PEs or shared global memory.

(2) FI (address): Fetch and invalidate —The feteh and invalidate command makes a request
to fetch a cache block from other PEs or shared global memory, and to invalidate the

cache blocks of all other PEs, including the supplier PE of a cache-to-cache transfer.

(3) T (address): lovalidate- The invalidate command makes a request to invalidate the cache

blocks of all other PEs.

(4) H: Hit—response for F and FI requests
Two additional bus commands and one response are necessary for lock operations.

(1) LK (address): Lock--This is a broadcast message to report that a specified address will
be locked. The LK bus command is always used together with the FLor I bus commands.
Note that the LK bus command is used only when the LR memory operation musses or

hits to shared hlocks,

(2) UL (address): Unlock—This is a broadcast message that a specified address has been
unlocked, in the LWAIT state. If the locked address is not in the LwaIT state. in other
words, another PE does not refer to the address, then the UL bus command i85 not

broadcast. This is an optimization to reduce the common bus traflic.

(3) LH: Lock hit—This is a response to the F, FIL or 1K bus commands. The LH response
shows that the referred address is locked. The requester PE which received the LH
response starts busy waiting. The requester PE retries a memory reference after it receives

the UL bus command. The common bus is not used during busy waiting cycles [2].

In summary. the PIM cache protocol is a copyback locally parallel cache with invalidation
(of other cachies when writing to shared hlocks) and no copyback to shared niemory (during a
cache-to-cache transfer). Optimizations include the direct write, exclusive read, read invalidate,
and read purge memory commands. A busy wait lock mechanism with a separate lock directory
is implemented. Refer to Matsumoto [10] for the complete stale transition tables of the PIM

cache protocol.

14

4 Cache Performance Evaluation

The cache design was evaluated with a parallel simulator written by A. Matsumoto. The
sinmlator executes in cooperation with an abstract machine emulator—in this paper, we ouly
discuss the paraliel KL1 emulator written by M. Sato. These tools currently run on the Sequent
Symmetry multiprocessor (refer to Tick [20] for a detailed description of these tools). Each PE
runs a reduction engine for the abstract machine, dynamically feeding memory requesis to a
tocal cache simulator. The cache simulators artificially synchronize among themselves at each
simulated bus request. This synchronization retains the accuracy of the model's parallelism
without overly impacting simulation speed. These tools represent an improvement in accuracy
over previous studies {10] which used a pseudo-parallel emulator, synchronizing only on each
reduction.

Modeling a real architecture on a target host, with an emulated architecture on a partially
mapped host, requires crealing a correspondence between emulator variables and target ma-
chine registers and memory. In the measurements presented here, we assume a very liberal
correspondence of architecture state to registers. Most emulator variables are considered ei-
ther not necessary for the target architecture, or able to be allocated to temporary registers.
In addition, the state and argument registers of the architectures, based on the WAM [22],
are also mapped onto registers. For KL1, this means that references to goal queue pointers,
processor stalus, communication buller poinlers, interrupl stalus, suspension stack pointers,
mela-counts, and GC poinlers are not counled as memory references. This is of course a best
case assumption. Memory references to the major storage areas of the architecture (for KLI1:
heap, goal, instruction, suspension, and communication) are insirumented as target architec-
ture memeory references. Note that the system measured uses stop-and-copy GC, and that
inclusion of incremental GC will significantly affect heap referencing characteristics [12].

In the [ollowing sections, the performance of the PIM cache design is evaluated with respect

to the KL1 architecture, the target architecture for which the cache was designed.

4.1 Characteristics of the Benchmark Programs

Measurements of four KL1 benchmarks (written in pure FGHC) are analyzed in this paper.
High-level characteristics of the benchmarks are given in Table 1 {for discussion and code

listings of these programs. see Tick[20]). Lines of static code, execution time and relative

11

. benchmark | lines | seconds | speedup | reduct | EUSP | instr | refl |

Triangle 152 193 | 28| 66623 1| 13021727 | 25953253 |
Semigroup | 104 &5 | 1| 26ss20 | 23487 | 4TTS418 | 23091386
Puzzle 151 55.3 6.5 | £19530 | 3060 | 15606324 | 20115221
Pascal | 310] 166 6.1 | 302432 | 17681 | 5018087 | 10465575

Table 1: Short Summary of Benclimarks on Eight Pls

Memory References | INSTR | DATA || HEAP | COAL [SUSP [COMM
Elall} 4287 [57.13 M3 2071 0.26 1.5
alall) 1317 | 1347 || 2386 | 1182 037 1.23
E(data) — T 6006 | 3625 | 046 3.26
Bus Cycles INSTR | DATA || HEAP | GOAL [SUSP | COMM
E{all) 152 | 9548 || 6370 | 1016] L14] 1749
olall} 305 | 345 | 1504 | Tdb | 1220 920
Fldata) - — I esmi | 1ise | 19| 1831
Triangle 7151 02851 43001 2262] 000] 2716
Semigroup 0.01 | 9907 | T79.66 180 [1.7 13.45
Puzzle §60 | 01310 81.10] 550 0.26 .36
Pascal 130 | 9570 || 59.03 | 1157 | 3.2 24.98

Table 2: Percentage Memory References and Bus Cycles by Area

speedup on eight PEs, reductions. suspensions, and KL1 instructions executed. and number
of emulated memory references (both instruction and data). are given. For some benchmarks.
these high-level statistics are sensitive to emulator timing. but the accuracy is sufficient for our
needs.

Table 2 shows the memory access and bus traffic characteristics, averaged over the hench-
marks. Means and standard deviations for instructions plus data and data only are calculated.
The simulation assumed an eight cycle memory access, a one word bus, and eight PEs, each
with a four-word block, four-wayv set-associative, four hword I+D cache (with no optimized
commands). These statistics are useful to gain insight into the relative bandwidth requirements
of the different storage areas.

Table 2 shows 43% of the memory references are used for fetching instructions. In subse-
quent sections, the various cache parameters are examined in more detail. Here we see that
95% of all bus cvcles are devated to data indicating that the cache is very successlul at re-
ducing the instruction handwidth requirement. Larger henchmarks are anticipated to offer less
instruction locality and therefore generate a larger percentage of instruction bus traflie. In

general however. it is most important to reduce the data bandwidth requirement further with

12

oper. R i LR W WU
Elall) 78,085 266 15.7 2.70
alall) 5.0 0.82 6.57 0.9
Eidata) 5891 5.14 30.73 5.22 |
oldata) 18.61 2.23 14.47 2,38
Flheap) | 57.64 10.39 21.38 10.60
oiheap) 21.22 0.26 . 1135 5.48
Triangle 54,62 12.06 21.27 12.06
Semigroup 93.17 1.70 3.42 1.71
Puzzle 41.88 190 | 34.26 11.96
Pascal 40.87 15.88 2657 B lﬁﬁ';i__

Table 3: Percentage of Memory References by Operation

cache optimizalions.

Heap access frequency is 34%, vet the heap accounts for 66% of all bus cycles, significantly
greater than the other areas. The dynamic heap area size is very laige (e.g., over 80% of all
shared memory for the BUP benchmark as reported in [10]) and access locality low. The
communication and goal area management, based on free-lists, helps to reclaim space and
retain localitv: however, still these areas account for 29% of all bus cvcles. Note that the
shared communication area is particularly troublesome: less than 2% of all memory requests
require more than 17% of all bus cycles.

Table 3 shows the memory references by operations. Data write frequency is 36% (W +
UWj}. somewhat lower than 47% for Prolog [19]. This statistic is highly variant however:
Semigroup with only 7% data writes lowers the average. Locking (LR} and unlocking (U,
UW) frequency is more than 5%. Examining heap accesses in more detail, we find that for these
benchmarks, heap write frequency varies from 5-46%. Heap lock/unlock reference frequency
varies from 3-33%. The high variance is again due to Semigroup. In any case, this statistics
show that logic programs generate significant heap write traffic because of dynamic structure
creation. In addition, dependent AND-parallel programs generate significant heap lock/unlock
traffic to protect bindings. The cache design introduced helps mollifv and alleviate much of

these overheads (see Section 4.7).

4.2 Cache Simulation Parameters

There are many complex tradeoffs made in cache design. We choose to concentrate, in this

paper, on the reduction of common bus traffic, which of critical importance in the design of

14

tightlv-conpled shared-memory multiprocessors. In the following sections. we discuss the orga-
nization of relatively small caches (16K words and less). alwavs with bus bandwidth reduction
as our primary figure of merit. Unless otherwise stated, the simulations were run for eight PEs,
where each PE's cache memory is four Kwards, four-way set-associative with 256 columns and
four-word blocks. Perturbations of this base model are examined in subsequent sections. The
simulator models 2 common bus used for swap-in from shared wemory, swap-out to shared

memory, cache-to-cache transfer between PEs, and invalidation. Additional assumptions are:

(1) The width of the common bus is one word, which consists of tag and data parts. Separate
address and data buses are not distinguished. Therefore, it is assumed that an address

cannot be sent with data during the same cycle.

(2) It takes eight cycles to access shared memory. However, a swap-out write operation Lo

shared memory is hidden by a subsequent memory operation.
(3) The common bus is not freed until one memory operation is completed.

Given the above assumptions, there are six common bus access patterns: swap-in from shared
memory with swap-out (13 cycles), swap-in from shared memory without swap-out (13 cveles),
cache-to-cache transfer with swap-out {10 cvcles). cache-to-cache transfer without swap-out
(seven cycles), swap-out only (five cveles—this access pattern appears only in DW), invalidation
of other PLs’ cache blocks (two cycles),

T'his model produces a raw bus cycle count. We refrain from introducing a ratio statistic {as
in [10, 20]) to avoid conlusion. When the above bus width and memory access time assumptions
are modified, the bus access cvcle times change as does the raw cycle count. Experiments [20]
indicate that bus traffic is insensitive to memory access time hecause most bus traffic is cache-
to-cache. Increasing bus width, however, more significantly decreases bus traffic, as shown in

Section 4.4.

4.3 Effects of Cache Block Size

Figure 1 shows the relationship between cache block size (i words}, miss ratio and bus trathie,
for four-way set-associative, four Kword 14D caches {with all optimized commands). Whereas
miss rario improves significantly with increasing block size, the diflerence in bus traffic for two

and four word blocks is relatively small. Above four words. bus traffic is restrictive. Since

[l

4 Kword 1+D cache

2lesT 9

0.08 7
= Semigroup Ve .
1.Ee+7 -+ Purzle / 0.05 "
& Trangle / ot \ P
o 12847 - Pascal K= 0. W %N
& — T AN\
(&) — 0.03
5 i 9 S
O B.Dest — o <~
_‘é’ E o.02 — =
40048 : — 0.01 1-"““-"'--—-_1
0.0e+0 1 T T 0.00 T T I
2 4 8 2 . 4 B
block size (words) block size (words)

Figure 1: Cache Block Size vs. Cache Miss Ratio and Bus Traffic

two-word blocks require about twice the cache address array size as four-word blocks, the latter
is most suitable for the PIM cache. Note that in sequential Prolog studies, Tick [19] also found
four-word blocks to be optimal. Essentially, logic programming languages, without arrays and
with more procedure calls (and suspensions, failures, etc.) than procedural languages, can make
less efficient use of large block sizes because there is less spatial locality. Matsumoto [10] found
that two-way set-associative PIM caches produce 18% more bus traffic than four-way (for the

BUP benchmark), whereas direct-mapped caches create significantly greater bus traffic.

4.4 Effect of the Cache Capacity

Figure 2 shows the relationship between cache size, miss ratio and bus traffic, for four-word
block I+D caches (with all optimized commands) of sizes 512-16K data words. The plots
assume a 3 byte data word and account for directory size, e.g., a “four-Kword cache” is 190000
In BUP, if the block size is increased above eight words, bus traffic increases in spite of the
increased capacity of the data array[10], thus we limit our measurements to four-word blocks.
The knee of both the miss ratio and bus traffic curves is at 4 x 10° bits (8 Kword data cache).
Semigroup is seen to have a small working-set that i1s captured in even the smallest cache.
Puzzle generates a constant 5 x 10® more bus cycles than Pascal, although they both achieve
the same miss ratio. Puzzle, with more touched code and larger data structures than Paseal,
generates a great deal of swap in/out and cache-to-cache traffic to achieve an equal miss ratio.

Triangle has the most touched code of the benchmarks, causing poor code locality on small

LS

bus width = 1 word

0251 6947 I
o= Swemigroup
.20 A -+ Pu=ie Sa+7 ’{\
i=] 015 b - Pascal @ dasd
&) b, =
w o g‘ aa7
g 0.10 @
. A B 2047 L
0.05 =
A .
= 1-'—-...__1" | 1647 hl_ \F
=1 [W e e T
0.60 o T Ll =1 L, 0640] T i H—n
104 10% 108 P c 1
10 10 108

cache size (bits) cache size (bits)

Figure 2: Cache Capacity vs. Bus Traffic
4 Kword 1+D cache

1e+7
se+a..: ~ ﬁfgﬁ'm”p 8 m g comm
4o ® Triangle \.. susp
.h’_:: Be+b - FIS':E[: — L‘ﬁd : &\& igmal
& — S @ v
E - A "2 § W instr

2046 = e
_P—ﬁ-iﬁi ! b
Oa+ T T T T +—+ I S F bt —t
1 2 4 8 010 20 30 40 50 60 70 &0 S0 100%
Number of PEs Percentage Bus Cycles

Figure 3: Number of PEs vs. Bus Traffic

caches and thus excessive bus traffic. In fact, much of the 14D cache benefit is due to instruction
bandwidth reduction. Analyzing data-only caches (not shown), bus traffic is about twice that of
[+D caches for the largest caches. Considering a two-word bus width, the benchmarks exhibit a
decrease in traffic, to 62-75% of the one-word bus traffic (both assuming an eight cycle memory
access and non-overlapped bus). This percentage decrease is insensitive to the benchmark and

increases slightly with decreasing cache size.

4.5 Effect of the Number of PEs

Figure 3 shows the relationship between the number of PEs and bus traffic. Triangle creates

a searcl: tree of height 12 with a branch factor of 36 at each node. The inalility of the simple

16

bus eycles relative to no-optimization
benchmark | 8o-Op | Heap-Op | Goal-Op | Comm-Op | All-Op
Triangle 1.0 0.62 0.50 | 0.53 0.52
Semigroup 1.00 | 0.65 1.00 0.99 0.62
Puzzle 1.00 | {1.55 .08 (.98 0.51
LE’_ascal 1.00 064 0.94 0.96 0.60

Table 4. Effect of Optimized Cache Commands in Reducing Bus Traffic

KLY scheduler to balance this load causes excessive bus traffic due to task distribution. Pasecal
shows similar, but less radical, characteristies. Analvzing the separate areas contnibuting to bus
traffic, we find that by percentage of total bus traffic, communication increases from 0-29% and
suspension increases from (.8-2.1% (average from all benchmarks) when increasing from one to
eight PEs. At the same time, heap bus traffic decreases from 71-45%, and other areas remain
approximately the same. Thus inter-PE communication becomes a dominant {actor in parallel
processing for more than four or eight PEs. It is likelv that about eight high-performance PEs

will be connected for one common bus of current specifications [10].

4.6 Effect of the Cache Optimizations

The effects of the cache optimizations at reducing the bus bandwidth requirement are summa-
rized in this section, Recall from Section 3.1 that direct write (DW) reduces swap-in overhead,
exclusive read (ER) and read purge (RP) (in conjunction with DW) reduce swap-out over-
head, and read invalidate (RI) reduces bus invalidations (I}. Table 4 shows the number of bus
cycles relative to a non-optimized cache (No-Op), for several different optimizations. Heap-Op
is DW used only in the heap area. Goal-Op i ER, RP and DW used only in goal area.
Comm-0p i1s RI used only in the communication area. All-Op uses all optimizations. As can
be seen, DW contributes almost all of the savings, with the other optimizations most effective
for Triangle.

More precisely. the DW commands for the heap area reduce the swap-in from global shared
memory to 10% in Triangle and 55% in Puzzle. The DW commands are very eﬁec.tive not
only for reducing bus traffic but also for aveiding the CPU waits for fetching from memory.
The ER, RP and DW commands for the goal area decrease meaningless swap-out by about
2-10%. The RI commands for the conumunication area can avoid about 60-70% of invalidate

(I} bus commands. As shown in Figure 3, Triangle bus traffic increases with the number of

17

[benchmark | Triangle | Semigroup | Puzzle | Pascal |
LR hlt-rflt'u:l (%) 13 a1.2 95.9 847

LR hit-to Exclusive (% | 5.8 91.0 | 5.4 R16
U, UW hit-to-No-waiter (%) 09.9 903 | 997 | 976

Table 5 Ratio of No Cost Lock Operations

PEs because load balancing of many small tasks is a dominant factor. The ER, RP and RI
commands are effective in reducing bus traffic for precisely this situation: when many goals are
distributed within PEs for load balancing and when the inter-PE communication is a dominant
factor of the bus traffic. The RI comumands avoid only unnecessary I bus commands. Thus RI
does not not reduce the bus traffic in Table 4. However, BRI becomes more effective in reducing

bus traffic as bus width increases or memory access time decreases.

4.7 Effect of Lock Protocol

As stated in Section 3. the lock mechanism reduces the bandwidth requirement because the
LR operation does not require bus commands when it hits in an exclusive cache block {Ec
or EM). and the UW and U operations use the bus only when other PEs are waiting to be
unlocked, which is rare. Table 5 shows the hit ratios of the LR operations in general. LR
directed to exclusive cache blocks, and UW and U operations directed to non waiting locks
(Lek directory state). As shown, the proposed lock protocol aveids most of the bus traffic for

these lock /funlock operations.

5 Conclusions

This paper describes the design and estimated performance of a coherent cache for paralle]
logic programming architectures. The cache is optimized around the KL1 execution model;
however, it is general enough to execute other architectures. Memory access characteristics of
KL benchmarks, gathered by emulation, indicate that data write frequency is 36%. This value
is slightly lower than Prolog (because KL1 does uot backtrack), but higher than in conventional
tanguages. Therefore the PIM cache is based on & copyback protocol. In normal write opera-
tions. a fetch-on-write strategy is used. However, in KL1. and other WAM-based architectures,
new data structures are created dyvnamically ou the top of the heap area. Therefore. it is not

necessary to fetch the contents of shared global memory when a new cache block is allocated

for a new data straeture. T addition, '|'~'I'i”|lj.'; gt.'-'rll records also peed not fevel thear content s,
To accomplish thi=. the diveeld weate command was imroduced,

e KL aned other parallel architectorves, PE commmnication (for poal distribution. ete.)
ases a0 shared message budfer, Tn this case, swap-in and swapeout of meaningless data can he
avoided by invalidating the sender’s cache block after a cache-to-cache transfer and by purging
the receiver’s cache hlock after the receiver finishes reading. To accomplish this. the erclusire
read and ivad puige commands were ntroduced.

These pew cotnmands can reduce common bus traffic by avoiding useless swap-in and swap-
out aperations. Cache simulations indicate that these optimizations reduce bus trafhic by 40
09 with respect Lo an unoptimized system. Direct write affords 35-45% reduction and other
optimizations only 3% reduction. [From our preliminary data on the Aurora svstem [20), we
believe these optimizations will prove effective on other parallel logic programming architectures
as well.

Tl PIM cache three-state lock protocol was shown to be effective at reducing the bus traffic
of lock funlock aperations: for KL1. no bus cyvcles are needed for the high percentage of lock
veads hitting i exclusive blocks and unlocks to non-waiting locks. Locking efficiency aside, we
fevt however that the most eritical bottleneck of parallel logic programming architectures 1s e
high communication cost of load balancing. We have illustrated this with the K11 Triangle

henchmark. bt the problens extends to non-commiitted choice architectures as well[20].

A cknowledgements

We wish 1o thank Meo A Sato for developing the parallel KL emulator. We also wish o thank
all vesearcl members of the PIM RED project for their fruitful diseussions, Finallv, we would
like to thank 1007 Divcaror, Deo L Fuchi, and the cliief of the fourth researclh section. Dr. S,
Vehidda. for their valuable snggestions aond guidance, FL Tiek was supported by NSEF Gram No,

I -STOASTH,
References

_|] I Avelibald awd 10 Baer, Cache Colierenee Protacol-: Pyvaluation Using a Mubviprocessor Sioe-

nlatiom Maodel, A0 W Frrvses lion .r.-j' f 'nrlr_,lrjr.l'r ™ _I'.!-Ill'.\.'.lr prs, WA AT M, s,

14

10

]

irjil'

rl-'

210 Bitar and AL ML Drespain. Multiprocessor Cachie Synchronsation, To L306 Dt =g, o

o, el pages 120 185 June 1.

1 Chikivama ot al, Overview of the Paallel Tnference Machine Operating System PIMOS. In

et Coanef, o SHh Genes Cornp, Sys.. Tokvo, November JHss,

S, Eegeers and R Katz. A Characterization of Sharing in Parallel Programs and its Appli
ration to Coberency Protocol Pvaluation, L 15tk dnt. Sipepe one Conge. ek pages 370 A8,

Jurpaee [

1 Goodman, Using Caclie Memory to Reduce Processor-Memaory Tratlic, L J8h fod. Sgigs,

ot 4 origee Areli, pages 1M 1310 10H3.

A, Goto et al, Overview of the Parallel Inference Machine Arvelitecture PIMNL do fude Coufe on

i Clen Clamp Sy Tokyo, November [U8S.

k. H. Katz e1.al. Implementing a Cachie Consistency Protocol. Io £200 Tt Sganp. one Coig,

Arwfe | pagges 200283, Jape 1955,

Y, Whnnes and T. Chikavama, An Abetyact KL Machine and s Instruction Set. In fud. Sy

ot Logic Frog. pages 4658 4770 August 1957,

I Lask e, al. The Aurora Or-Parallel Prolog System. [n fod. Conf. e 3l Gon, Comep. Sys.,

'I'ﬂi;}'n. Maowceanher [OER,

v Matsumoto et al. Loeally Paralle] Cache Design Based on KL Memory Access Character)s-

s, Techpical Rr;mr‘. AT NCONT, usT,

W, Nabashioa awd W, Nakadima, Hardware Architecture of the Sequential Tference Machine:
. |

PST-TL do foed Syprnp e Lowpie Prowg . pages L0=1T1E August TUSY,

Iy, Nishida et al, Fyaluation of the Efect of Ineremental Garbage Collection by MRH on FGHE

Poraliel wverntion Performance, Technieal Report 5000 [OOT, s,

ALos. |'HLPF’|'IIIHI";'t.ir- and b Patell A Low- Overhiead Codiorrnee Sobiation lor Maltiprocissors

with Private Cache Memarios. In £ 0h Dot Sy on Comp Aeele, pages 348 3500 1951,
B ! 1

AL Sate and ot all KLE Frecntion Maodel for PO Cluster witl Shaeed Mewary, Te il fof,

gl o aree Prosg pages s 35050 AT Pross, May 1087,

VoSepuent Cotapinter Svstemns, Ine, Sogieend Caede tee Pavadle D Progreossg, S0

Yool st b Chaelee Mesmoriess V0T 0 da et oy Sovwe e DTS 50100 Saputephasy [Us

L.C. Stewart e al Pieefive A Mualtipranesor Weorkstation, DR Transaetons onr Campale vs.

S R T TR TR B Bt

20

[lﬁ] 1%, Sweazey and AL [Smith. A Class of Compatible Cache Copsisteney Protoceds and Ther

Support by the IEEE Futurebus, In Lt It Symp. on Comp. Avelie, pages 11T 2240 June 1986,

[19] L. Tick. Data Baoffer Performance for Sequential Prolog Architectures. bu Tl Toto Syngp. on

Clomep. Arcdi, May 198K

M F. Tick. Performance of Parallel Logic Programming Architectares. Techuical Heport TH-821,
L = =

0O, 14224 Mita. Minato-ku Tokvo H0R, Japan, Seprember [98%,

[21] K. Ueda. Guarded Horn Clanses. In E.Y. Shapivo, editor, Coneurrent Prolog: Collcted Papees,
pages 1400156, MTT Press, Cambridge MAL TO8T.

[22] DU AL D Warren, An Abstract Prolog lustruction Set. Techinical Report 304, SE1 lnternational.
19%3.

