ICOT Technical Report: TR-432

TR-432
Enhanced Qualitative Physical
Reasoning System

by
M. Ohki. K. Sakune.
1. Sawamoto(Mitsubishi) and Y. Fuji

Ovtober, 19588

Cl9ss 1COT

Witan Bodvosar Blde i 9 s A50=10 - 5

IGDT =28 Aita B4 o Toeles WOOFT Joi2wng

Mmate .IIII-C:.II HER _].'=.!1.'t1'

Institute for New Generation Computer Technology

Enhanced Qualitative Physical Reasoning
System

Masaru Ohki*, Kiyokazu Sakane, Jun Sawamoto**, Yuichi Fuji

ICOT Research Cenler,

Institute for New Generation Computer Technology,
Mita Kokusai Bldg. 21F,

1-4-28, Mita, Minato-ku, Tokyo, 108, Japan

Absiract

Many expert systems have been used for diagnostic analysis and design using
experiential knowledge. However, there are two problems when using only
experiential knowledge: (1) when an expert system encounters unexpected
problems, it cannot solve the problems by using only the knowledge which it bas;
(2) it is difficult to acquire experiential knowiedge from human experts. The
necessity of introducing general principles or basic knowledge to expert systems
besides experiential knowledge to solve the above problems is proposed. We
proposed Qupras (Qualitative physical reasoning system), which grasps relations
among physical objects and predicts the next state of a physical phenomenon, as a
framework [or basic knowledge. Qupras has two knowledge representations
related to physical laws and abjects.

However, there are some incomplete points in Qupras. We have enhanced
Quypras; this paper describes the enhanced Qupras. The main enhanced features
are (1) inheritance for representation of objects, (2) new primitive representations
to deseribe discontinuous change, (3) meta predicates to evaluate conditions of
physical rules, (4) Meta control feature for cffective reasoning.

1. Introduction

Many exper! systems have been used [or diagnostic analysis and design using
experiential knowledge. However, there are two problems when using only
experiential knowledge.

* Current Address : Central Research Laboratory, Hitachi, Ltd.
Higashikoigakubo, Kokubunji, Tokyo, 185, Japan

** Current Address : Computer Works, Mitsubishi Electric Corporation, 325,
Kamiyamachiya, Kamakura, Kanagawa, 247, Japan

{1) When an expert system encounters unexpected problems, it cannot solve
the problems by using only the knowledge which it has.

(21Tt is difficult tv acquire experiential knowledge from human experts.

The necessity to introduce general principles or basic knowledge to expert
systems besides experiential knowledge to solve the above problems is proposed.
General principles and basic knowledge are called deep knowledge in the basic
cense. Experiential knowledge is called shallow knowledge, as opposed to deep
knowledge Reasoning using deep knowledge is called deep reasoning. The
problem in deep reasoning is how deep knowledge is described and how it is used
for reasoning.

Onc target area of many expert systems is engineering. Physical laws in
physics textbooks are considered as one type of deep knowledge in engineering.
Qualitative reasoning has been proposed as one way to realize deep reasoning,
and much research has been done eon it.1,2.3,45,67) However, in many qualitative
reasoning systems other than QPT (Qualitative Process Theory), simultaneous
qualitative equations for the system are given, and simultaneous qualitative
equations cannot be built using deep knowledge. QPT uses two types of primitive
knewledge which are processes to represent changing phenomena and individual
views to represent static phenomena. However they do not correspond to physical
laws. While determining active processes and active individual views, QPT
builds simultaneous gualitative equations and reasons the state and transition of
systems. However, the framework of QPT may not be suitable for the deep
reasoning system based on physical laws for the following reasons.

(1) Physical laws must be represented by either processes or individual views
in QPT.

When an attempt is made to describe physical laws in physics textbooks in
QPT, physical laws related to change must be represented as processes, and
physical laws related to static phenomena must be represented as individual
views, because there are two possibilities of using processes or individual laws
to represent phvsical laws in QPT. That is, there are two primitives to
represent physical laws. Therefore, when we try to describe a physical law in
QPT, we must decide whether processes or individual laws are used to
representit.

(2) Physica! laws must be transformed to qualitative expressions.

Physical laws in physics textbooks are generally represented
quantitatively, but not qualitatively. When we try to describe a physical law
in QPT, we must transform it to a qualitative formula.

(3) Quantity spaces, which are semi-ordering relations of values which
physical quantities change to, must be given in advance.

The necessity to represent, in advance, semi-ordering relations of values to
which physical quantities change may not be suitable for a system which

ta

reacons the state transition of the systemn. Moreover, if more than one
physical quantity is the same value after changing, and the value cannot be
specified in advance, then the relation of the value cannot be described in
quantity spaces.

(4) The relation that holds when a physical quantity is changing cannot be
described in QPT.

The reason is that the change in a physical quantily is calculaled, in QPT,
after finding all active processes and all activeindividual views.

We proposed, in previous papers3.9), Qupras (Qualitative physical reasoning
system) which resolved the above points as follows:

(1) Physical laws are described in one framework [or representalion.

(2) Quantitative expressions are allowed, and physical quantities are dealt
with both qualitatively and quantitatively.

(3) Quantity spaces are not necessary.

(4) Physical laws that holds when physical quantilies are changing can be
described.

Qupras has twe primitive represéntations. One represents physical laws,
called physical rules in Qupras. The other represents physical objects, called
objects. Using these representations, Qupras reasons on: (1) relations among
objects which are components of physical systems, and (2) the next states of the
system following transition.

However, there were some incomplete points in the previous Qupras, which we
have tried to resolve. This paper describes the enhanced Qupras. The main
enhanced features are:

(1) Inheritance for representation of objects.

(2) New primitive representations to describe discontinuous change.
(3) Meta predicates to evaluate conditions of physical rules.

{4) Meta control feature for effective reasoning.

Although Qupras iz a qualitative reasoning system, it may be possible to regard it
as a knowledge representation system to represent the physical world with a
reasoning mechanism of qualitative reasoning. Some of the above features are
enhanced from this viewpoint. Qupras has a representation framework to
represent physical laws and objects, and QPT has a representation framework to
represent processes and individual views.

L8]

Section 2 describes the structure of Qupras, the representation of Qupras, and
reasoning in Qupras. Seclion 3 describes an example analyzed by Qupras.

2. Qupras
2.1 Structure of Qupras

Qupras consists of a translation part and a reasoning part. The translation
part translates representations in Qupras, which are mainly knowledge of
physical laws and objects dependent on applications, to its internal
representation. The reasoning part delermines the physical relations that hold
among the ohjects and predicts their next subsequent states. The structure of
Qupras isgiven in Figure 1.

Fepresentation section
P e e e mmmmmimmme—— i mmmm—————memmam——————
1. Doject: representation of objects
11) Applied conditions

{2} Relations

l [
| |
| |
[|
| 2. Paysics: representation of physical Taws |
i [1) Objoets I
| (2) Applied conditions |
| (3} Relations |

e R

Feasonipg sectien
e i EESSLAAEEEETEsEESSS S S—scARAE T Er eSS S S S g
| 1. Qualitative reasoning
[(1) Propagation

Determine status of physical system
| &t a given tima,
i (2) Prediction
| Determing the physical variables,
| and vaives which should change.
| &. Quatitastive/guantitative evaluation of inequalities
i Evatuate inegualities, i1.e., epplied conditions,

using relations,

o e e S e o mw —

Figurel Structure of Qupras

The following is a brief syntax for the representation of Qupras translated to
internal representations by the translation part. Its details will be given later,
The representation of ohjects mainly consists of applied conditions and relations.
The applied conditions correspond to conditions for the existence of the objects.

Objects satisflying these conditions are called aclive objects. The relations are
expressed as relative equations which include physical quantities when the
objects are active. The representation of physical rules mainly consists of ubjects,
applied conditions, and relations. The objects are those necessary to apply the
physical rule. The representations of applied conditions and relations are similar
to Lhose of objects. Applied conditions are those required to activate a physical
rule. Physical rules whose necessary objects are activated and which are satisflied
with their conditions are called active physical rules. When a given physical rule
is active, 1ts relations are relative equations holding among physical quantities of
objects specified in the physical rule, and they correspond to equations of physical
laws in physics textbooks, The reasoning part consists of qualitative reasoning
and qualitative/quantitative evaluatien for inequalities. There are two kinds of
qualitative reasoning, propagation and prediction, similar to those given in other
research.2.4) However, in Qupras, both quantitative information and qualitative
information are used in both types of reasoning. Propagsation reasoning
determines the state of the physical world at a given time (or during a given time
interval). Prediction reasoning determines physical quantities that change with
time and infers their values at the next given point in time. Nexi, propagation
reasoning obtains the next states of the physical world using the results of
prediction reasoning.

Physical rules are specified in qualitative/quantitative expressions, and
qualitative/quantitative evaluation of inequalities (i.e., quantitatively as well as
qualitatively) determines the conditions for objects and physical rules. These
conditions are expressed as binomial relations or atoms. Conditions are
evaluated using relations in active physical rules and active objects. The unit
performing this qualitative/guantitative evaluation i= called the expression
evaluator. It determines conditions using guantitative values as much as
possible.

Qupras differs from the earlier qualitative reasoning systems?®.3.4) in that it
guantitatively handles physical guantities. One of the advantages in to handling
physical quantities quantitatively is that it is not always appropriate to handle
all physical quantities gualitatively. Treating all variables qualitatively {even
when the values of variables are quantitatively known) may lead to ambiguity,
because quantitative informmation is abandoned to handle all variables
gualitatively, although the quantitative data is more precise. Another advantage
of quantitative treatment is that it is not necessary to transfer quantitative
expressions to gualitative expressions.2 Qupras uses quantitative physical laws
direcily, so it does not need Lo itranslate the physical laws to gualitative
representations. Ifonly qualitative information is known, Qupras can use it, too.

2.2 Representations of Qupras

2.2.1 Representations of Qupras

In Qupras, physical objects are described by the predicate "object” and
physical rules are described by the predicate "physics". Rules for discontinuous
changes are described by the predicate "event” or "initial__event”. The initial
states, which specify ohjects involved and initial facts, are described by the
predicate "initial__state". "initial__state" is regarded as a problem which Qupras
has to solve.

First, we explain the syntax for the representation of Qupras. The syntax for
the representation of objects is shown in Figure 2. The delinition of "object"

{abject definitiank -

"object™ {object class name?”:"{object variable>

["supurs”

fobject class nomed (", " <{object class name?} ";7]
[“parts_of"

{<part name? "-" {object class named ";7}]]

[Fattributes”

{tattribute namg> ["-" <property definition>] ";"}]
["initial_relations”

{trelationd ":"}]
["conditions™

{<simple relation? =;"}]
{"relations”

{tretation> ";™ 3]
{"state" <state namer

"conditions”

{¢simple relation® ;")
“relotions™

[¢relationy =;"})

end”
<objrct vartable? ::+¢ {logical variable?

Figure2 Syntax for the definition of "object”

consists of definitions for super classes, parts, attributes, initial relations,
relations and states. We call an instance of an object class an object. The super
classes specify object classes of the super object. The parts specify object classes of
components of the object with the part names. Attributes are physical quantities
which the object has. I{ there are any properties of an attribute, the properties
can be defined. The syntax for properties is shown in Figure 3. The conditions are
applied conditions. When Lthe condilions are salisfled, the object becomes active.
The initial relations mainly specify the relations related to the amount of the
attributes known from the first time, even if an object is not active. The relations
describe relative equations among the physical quantities of the object, and
describe atoms which mainly describe states of the object. When an object is
active, its relations are available and they become known relations. The relations

{property definition? ::=

Cegpecifier>{ "{™ C(option> [*." «optionk} ")" }
f<specifier? :i= "gonstant” | “varisble”

Loptian} :i=
“initial_value” =(~ <constant> "}° |
*inftial_sign® "{" <sign specifier} "}" |

{numberd

Figure3 Syntax for properties

are constraints on the attribules of the object class, and cannot be changed. On
the other hand, the initial relations do not change and hold unless they are
changed by the prediction reasoning or events. The initial relations correspond to
initial facts or conditions holding the first time. The representation for states
also represents the phenomena of the phase transition. If the conditions of the
definition for an object class are satisfied and the conditions in a state definition
arec satisfied, the nhject is active in the state and the relations in the state become
known relations.

Next, we describe the syntax in relations and conditions, The syntax for
relations and conditions is shown in Figure 4. A relation consists of an atom, an
expression or an inequality. An atom is equal to an atom in logic. An expression
15 a gquantitative or gualitalive algebra expression. A qualitative expressicn is
specified by qualitative equal :=:". The meaning of "=""is that the sign of the
value and derivative of the left hand of a gualitative expression is equal to that of
the right hand. A variable is a number, an attribute variable, a global constant, a
local variable, a term constant or a derivative variable. A derivative variableisa
time derivative of an attribute variable or a local variable. An attribute variable
is a physical gquantity of an object. An atltribute variable is specified as
"<Zattribute name > (@ < ohject definition>". <Zohject definition> specifies an
object. If an object iz part of an other object which is a whole, it is specified as
< partname > !<lobject definition >, where <partname > is the part name of the
object in the whole object and < object definition™> is the whole object. Global
constants describe usual constants, for example, "room_ Lemperature” specifies
room temperature. Local variables specify variables which are not attribute
variables. Term constants specify symbols. For example, "&olf” specifies symbol
“off", Counditions consist of an atom, an inequality, or two special predicates, "not”
or "all__defined". "not" is satisfied when it is found that the atoms in "not" are
not satisfied. The "all__defined"” iz used to implement the summation with
"sum”, The physical rule including the "all__delined” in its conditions is tested at
the end to check whether the rest of its conditions are satisfied. 1f the conditions
are salisfied, the physical rule becomes active, and the atoms specified by

{ralationy ::+
¢atom} | Cespressiond | <inequality?

fconditions® :1:= <atom} | Cinequalityl |
ot (" <atom} ") |

"all_dafinred” "(7 <object varfabler ", {atom?> "," {variables> ")~

Cinpquelity> :r:= ¢variabled <inequality symbol} {variabler
{inequality symbolx gi= "% | "ksv | (7 | "=L7

{espressiond ::=
¢varighbler *=" {right expressiond |
<yariahley ":v:" Cright eapressien? | Cinequality?

{right eapression> [:»
{arithmetic expressiony |
"sum™ "(" <attribute namer " " {variables> *)°

{wariable® ::=
Creal number? | fattribute variable} | <{global constant} |
4lecal variabled | {term constantd | <derivative warisbled

{derivative variable> ::=
Tdat” “(* <(attribute variabler ~)° |
*ddt® "(" {local variable> "}° |

Catiribute variable» ::= <atiribute name> *@" {object definition’
{object definition) ::=
{<pert namer "1" {{part namer “1" }} <varisole for objesty

{global constant} :i= <{constant namel

¢lpzel variabler :i= <lpcal vartable named "#" "(" Carguments> ")
fargumentsy :i= {argumentd{", " {argumentsl}
cprgement? 1= {object variabled

{1Erm} 1= CETCterm namer
Figure4 Syntax for the relation and conditions
"all__defined” are gathered and the summation of an attribute specified by "sum"
related to the gathered objects is caleulated.

Examples of "chject” for electric power and batteries are given in Figure 5.
The super ohjects of electric power are things, and the super objects of batieries is
electric power. The Prolog variable "Battery” in the first line of the definition for
batteries is used to describe itsell in the "object” definition. The definitions for

object thing:Thing
attributes
temperature - variable{initial_value(reom_temperature)}
heat :
end,

phject electric_power:Electric_powar

supers
thing ;

attributes
capacity - wvariable{initial_walue(10000));
voltage_valua - constant |
voliege
current - variablef{initial_value{0}) :
resistance - comstant(D} :

initial_relations
conduct(Electric_power) ;

end.

object bactery:Batkery

SUpErsS
glectric_power ;

attributes
total resistance - constant{positive_zera} |
voltage_value - constant{5)
currgnt_max - coanstant ;

gnd.

Figure 5 Description for battery

attributes of lower classes have higher priority than those of higher classes. The
attribute of "voltage_ wvalue” is defined in the super class of "battery”,
"electric_ power", but the definition of "voltage_ value" in the class "batlery” is
used. The initial relations defined in the class "electric _power” are inherited in

the class "battery".

The syntax for physical rules is shown in Figure 6. The syntax for physical
rules is simpler than the syntax for objects other than the definition of object
fields. The definition of physical rules contains the definition for domains. The
definition of domain is used to specify domains of physical rules. The object field
definition specifies object classes with some information. The first definition of
the object field is the standard definition. The specified object class and its lower
classes are applicable object classes. The second definition explicitly specifies the
applicable object class. The third definition specifies the object classes which
should be removed from the applicable object class. The fourth definition specifies
the object class which is part of an other object. The fifth definition specifies the

tphysics definition? ::-
*physics™ {physics name}
[*domain™
<domain namelr 3]
Tobjects”
{¢object field delinitiony “:%}
["conditions”
{¢simple relation? ":;"}]
"relations”
{frelatiens *:"}
mand" "

fobject fleld deflinitionr (o=
<object variabler "-" <ebject class namel |
tobject variable» "-" *{" {object class LEETR
{*.* <ebject class name?} "}° |

‘object wvariabler "-7 {object class namg

"exeept" "~ C(object class named {"." {object class name?} "1" |
¢object wariabler "-* {object class named "pait_of” <object variablier |
fobject variabler "-" {<ebfert class named)

“partname” <name¥ "part_of" <{object variablel |
¢ebject varimbley "-" {object class nawel “is_composite object”

Figure 8 Syntax for the definition of "physies”

object class which is part of an other object with a specified part name. The last
deflinition specifies that the object is a composite object.

Figure 7 shows three "physics” illustrating the specification in Qupras for the
physieal laws of the connection of resistors in a series circuit. The physical rules
in Figure 7 can often be seen in physics textbooks as one physical law. The
physical law is often represented as follows:

R =% Ri
i=1ln

In Qupras, however, it is difficult to represent the physical law as one physical
rule, because the way to apply the physical law must be known in order to use the
law. In the physical law, the connection of resistors is not explicitly represented.
However, the physical rules for the connection of resistors in a series circuit must
specify how resistors connect. The first physical rule "connection__start”
represents the rule for the sum of resistors of an object belonging to
"electric__power" and an object belonging to "electric__conductor”. The
conditions of the physical rule specify the conditions that the two objects connect
and the two objects are conductible. The relations of the physical rule show that
the two objects connect electrically, the accumulated value of resistances is equal

wa 10—

physics coanection_start
ohjects
D = electric_conductor ;
B = eleclric_powdr:
conditions
conngct{B,0)
conduct{D]
conduct{B) :
retations
electric_connect(B.D)
accumulate_resistance#(B,0) » resistance@d + resistancedD |
current@l = currentdd

end.

physics connectien_intermediate

ebjecis
D1 - electric_conductor
D2 - electric_cenductor

cond?tions
electric_connect(_,D1) ;
connect{Dl.02) ;
conduct{DZ} :

relatigng
elestric_cennect{D1,02)
accunulate_resistance#(D1.02) = accumulate_resistancef(_.OL) +

resistance@l? ;

current@li = current@D] ;

end,

physics connestion_end

objects
01 - electric_conductor ;
B - electric_power:

canditions
glectric_conngct{_.D01) ;
connect(D1.B) ;
conduct(B)

relations
electric_connect{D1,B) ;
whole_connect
total_resistanced® = accumuiate_resistanced(_.D1} :
outpul_currenst®8 - voltage valueBE F total_resistanceli :

end.

Figure 7 Description for the physical rule of the connection of resistorsin a
series circuitin Qupras

to the sum of their resistances, and the electrie current of an object belonging to
"electric_ battery” is equal to the electric current of an object belonging to
"electric__power”. The second physical rule specifies the rule for the sum of
resistors of two objects belonging to "electric__conductor”. The last physical rule
represents the rule for the sum of resistors of an object belonging to
"electric__conductor” and an object belonging to "electric _power". When the last
physical rule is activated, it is found that all objects belonging to
“electric__conductor” and “electric_ power" electrically connect, and the total
resistance of the object belonging to "electric__power” and the output of the
electric current from the object belonging to "electric__power" can be obtained.

The syntax for "event” and "initial__event" represents discontinuous changes.
"event” specifies a general rule for discontinuous change. The syntax for "event”
is represented in Figure 8. Its syntax is similar to the syntax of "physics”. The

{event definitiond ::i#
"gvent® {event namgl
["demain”
¢domain name> ":"]
“ohjects
{¢object field definitiand “:"}
"conditignsg”
{<simple relatioa® “;"}
“actions”
{faction? "i7}
“end™ "."
{action> ::=
“rpmavat "(* <relatienr 3" | fadd® "(" <relation: ")°

Figure 8 Syntax for the definition of "event”

actions in "event" correspond to the relations in "physics”. The actions specify
that meta operations perform destructive updating to known initial relations as
follows:

(1) Removal of a relation from the initial relations.
(2) addition of a relation to the initial relations.

The syntax for "initial__event" is equal o the syntax for "event” except when the
predicate name "event” is "initial__event". "initial _event" is used in specific,
not general, discontinuous changes. When the name of "initial__event” is
specified in "initial__state", described later, the definition of "initial__event"
becomes useful and the event can become active only once. Even if the conditions
of "initial event" are satisfied more than once, only the first satisfaction is
available. However "event' is activated whenever its conditions are satisfied.

12 =

Next, the syntax for "initial__state" is explained. It is shown in Figure 9.

cinitiel_state definition? 1=
“initial_state® {initial_state nomed
["supers®
Cinmitial_state mamed {~," Cinditial_state named} “;"]
"ohjects®
{{variable for objectd "-" Jdobject class named ";°}
[“initial_relations”
{¢simple reiation? *;"1]
[“events®
{fevent name?"("dvariable for object> {77 dvariable for object?}™)" *:*]
["eontrols”
toontrol definitions?]

“epd® * "

fconlrol definitions) ::=
["ne_intergsting™ "(" "[" {attribute wariable?
{".” tattribute variable> } "] "1" ";"]
["chanpe_with_priority™ “{* *[" "[" Cattrizute variable>
" Loriority» ")"
{*." (" tattribute variabled "% {prierity® ")" } "}J" =}° ;"]
["physical domain® *{® *[* <domain name}
{"." <demain names} "I" ") "7

Figure9 BSyntax for the definition of "initial__state”
"initial__state" specifies an initial state which specifies objects involved, initial
relations, initial events and control information. Initial relations define simple

relations and set initial values of some attributes of objects. Control information
1s used to improve the execution efficiency of reasoning.

(1) no__interesting: The changes of the specified attribute variables arc
ignored even if they are changing.

(Z) change__with__priority: The priorities of attribute variables for changes
are represented by pairs of an attribute variable and its prierity. The
altribute variables with the highesi priority are preferentially used as
changing variables whenever the attribute variables are changing.

(3} physical__domain: Physical rules to be used are restricted to phvsical rules
with the specified domain names.

Definitions of "initial__state" are regarded as problems which Qupras must solve.

2.2.2 Translation to Internal Representation

__13.

The translation part translates the representation of Qupras to internal
representations in order to improve the efficiency of reasoning. The main
features of the translation part are as follows:

(1) To make instance representations for object definitions and template rules
for physical rules.

(2} To differentiate numerical expressions.
(3)To make a variable dictionary.

(4) To translate attributes to internal variable representations to access a
variable dictionary.

Each instance definition for all objects specified in the "initial__state” in
which they are used is translated to an internal representation. Even if there are
definitions of objects which are not specified in the "initial__state” in which they
are used, the iniernal representation for these definitions is not made.

An internal template rule for a physical rule is made when the objects
belonging to the definad class or its lower classes for all objects specialized in its
object field delinitions are specified in "internal__state”. Even if only one object
belonging to the defined class or its lower classes is not specified in
"internal _state”, no internal template rule is made, because the physical rule
must not be activated. All instance definitions for all objects specified in the
"internal__state” are made, but no internal physical rules corresponding to
objects are made. Internal physical rules are made corresponding to physical
rules. Even if there are several combinations of objects which satisfy object class
definitions of a physical rule, only one internal physical rule is made, because if
internal representations for all combinations of objects are made, the memory
required for internal physical rules becomes huge.

Numerical expressions in the relations and the initial relations of the object
definitions are differentiated. When differentiating, the declaration of an
attribute is referenced to show whether it is constant or variable, If the attribute
is constant, its time derivative is not made. However, numerical expressions in
physical rules are not differentiated when internal physical rules are made,
because objects for object classes defined in a physical rule have not been precisely
determined vet. They are determined in reasoning, and the numerical
expressions are differentiated at the time.

ttributes of all the objects declared in "initial_state" are translated to
internal variable representations and entered in a dictionary for variables.
Values of all attributes are stored in the variable dictionary. To find the value of
an attribute, the value is obtained by looking up the variable dictionary.

2.3 Reasoning in Qupras

- 14_-

There are two reasoning mechanisms in Qupras as described in Section 2.1
above. One is qualitative reasoning and the olher is gualitative/gquantitative
evaluation for inequalities performed by the expression evaluator. We deseribe
the latter first.

The expression evaluator tests whelher the conditions in the definitions of the
objects, physical rules and events are proven by the known relations obtained
from active objects and active physical rules, and from initial relations. Relations
are given as expressions and terms. We ignore the solution of terms in this
discussion, because their evaluation is very simple.

We wish to solve nonlinear simultanecus inequality expressions to test the
conditions in the objeets, physical rules and events. We have used more than one
algorithm to build the expression evaluatlor, because we do not know any efflicient
algorithms for nonlinear simultaneous inequality expressions. The expression
evaluator consists ol three parts:

(1) Nonlinear inequality solver based on the interval method 11 This solver
can deal with nonlinear inequality expressions, but not completely. For
example, from these inequality expressions:

XY, 2=X-Y
the following result cannot be obtained by this solver:
Z=0.

(2) Linear inequality solver based on the Suplnfmethod 19 This solver solves
linear inequality exnressinns caompletely, for example, the above example can
be solved by this solver. However, il cannot deal with nonlinear inequality
expressions. For example, from these inequality expressions:

X>0,Y>0,Z=X*Y

the following result cannot be obtained by this solver:
Z>0,

However, this example can be soived by the solverof (1).

(3) Nonlinear simultaneous equation solver based an the Grobner hase This
solver can process nonlinear simullaneosus expressions and reduce the
expression as far as possible, but cannot deal with inequalities,

We have connected the three solvers as shown in Figure 10. Linear and nonlinear
expressions and inequalities are entered in the solver based on the interval
method. The resulls on inegualities are enlered in the solver based on the Suplnf
method. Linear and nonlinenr equations are entered in the solver based on the

15

|

e

]
Linear uoﬂ mel‘ L secr Mew [ewenr
ppreTsion inel‘u.ﬁli"!‘ ey e quelimie?

ERprESTIERT

)

| ——
LS
W

Y Trame laTev
L5
In‘rer‘ﬁc«l
raethecl Gribrer boge
? S-F Tod
J : Praﬁmm
. Expressionr
" ar
.‘heﬂlunlf‘ﬂs

Figure 10 Expression evaluator

Grobner basel2i*, The linear expressions which are output from the solver are
entered in the solver based on the SupInf methed. Linear inequality expressions
are entered in the solver based on the interval method and the solver based on the
SupInf method. Nonlinear inequalities are entered in the solver based on the
interval method, and translated to nonlinear equations and linear inequalities.

*We would Iike to thank Dr. Sakai and Dr. Aiba for their willing agreement to
use their Grobner base program and for their cooperation.

- 16 -

Some of the nonlinear equations ure entered in the solver based on the Grobner
base, and some of the linear inequalities are entered in the solver based on the
SupInfmethod. If a new result is obtained, the result from the solver based on the
Suplnf method is entered in the solver based on the inlerval method. An
expression evaluator connected like this can solve more broad expressions than
ones which each solver alone can solve.

Now let us turn to qualilative reasoning in Qupras. We have already stated
that there are two types of qualitative reasoning in this system, propagation and
prediction. Before performing the two reasonings, all initial relations of the
objects defined in the initial state are set to the known relations. Initial relations
are mainly used Lo sel initial values of attribute variables, If there is not an
explicit change to an initial relation, the initial relation hold. The explicit
changes are the prediction of the next value in the prediction reasoning or the
update for variables in processing events.

Propagation reasoning is used to find active objects whose conditions are
satisfied by the known relations, and the physical rules that hold among the
active objects at one time or during a time interval. Qupras performs this
reasoning as follows:

(1) Try to find inactive objects whose conditions are satisfied by the known
relations using the exoression evaluator.

(2) If such inactive objects are found, change them to active objects and add
their relations to the known relations.

(3) Next, try to find the inactive physical rules whose necessary objects are
active and whose conditions arc setisfied by the current known relations.

(4) If such inactive physical rules are found, change them to active physical
rules and add their relations to the known relations.

(5) If any remaining inactive obiect or physical rule was activated in the Tast
sequence through steps (1) Lo (4), repeat steps (1) to (4); otherwise, go to (6).

() If there are some phvsical rules using "not” in their conditions and the
atoms in "not" are not provable, the conditions including "not” are satislied.
Again, repeat steps (1) to (5} until any physical rule or objectis not activated,

(7) Finally, test whether physical rules using "all_ defined” are active. If the
physical rules are active, the aloms specified by "all_ defined” are gathered
and the summation of un atiribute specified in "sum" related to the gathered
objects is valculated, (The current implementation for "not” and "all__defined"”
is sound, because an undetected contradiclion is caused.}

If a contradiction is detecied while propagaling, the propagation reasoning
returns the null next state; otherwise, the propagated resultis returned.

Prediction reasoning is used to determine the attribute variables changing
with time from the known relations which are the result of propagation
reasoning. Then the new values or the new intervals of the changing variables at
the next specified time or during the next time interval are sought. Qupras
updates the values of changing variables according to the sought values or
intervals. The updated values are used as the initial relations at the beginning of
the next propagation reasoning. We describe the procedure of this reasoning
briefly below.

(1) Find the attribute variables changing with time. They are the variables,
which are non zero values, enclosing the ddt operator in the known relations.

(2) Next, try to find the values or the range of values to which the variables
change. They are as follows:
(a) The values required for currently inactive objects and inactive physical
rules to become active,
(b) The values required for currently active objects and active physical
rules to become inactive.

(3) Select the values ncarest to the current values from the values found in (2)
using the expression evaluator with the current known relations.

(4) If there are any changes which zre transitions from concrete values, it is
assumed that these changes are instantly performed, and all the changes are
instantly performed (instant change). If there is no instant change and there
are anv changes which are transitions from intervals, it is assumed that time
is necessary for the transition (non-instant change).

Instant change:

(5) Change the value of the changing attribute variable to the nearest value,
and remove the initial relations contradicting the nearest value.

Non-instant change:

(6) Obtain a combination of all changing variables. Steps (7) and (8) are
performed with every combination.

(7) Change the value of the changing variable to the nearest value, and
remove the initial relations contradicting the nearest value.

(8) 1If a contradiction is found while propagating, the combination is
abandoned.

Steps (6) to (7) are similar to QSIM 13), and we reduce the inconsistent prediction
in the propagation reasoning.

]H.

Qupras does not use quantity spaces as in QPT.3 It finds the information
corresponding to quantity spaces in step (3). If there are several changing
variablzs in step (4), there may be an ambiguity in reasoning which generates
ceveral next states. However there is the possibility that Qupras can decrease the
ambiguity by using quantitative information of attribute variables.

The reasoning for events is similar to the prediction reasoning. The conditions
of events and initial events are checked after propagation reasoning. If the
conditions of the definitions for events are satisfied, the actions in the definitions
are performed, and when the process for the event is finished, propagation
reasoning states with the result of the event, Itis assumed that actions of events
take precedence over changing variables. If there are any activated events, the
process for the prediction reasoning is not performed. The procedures for events
are as follows:

(1) Remove initial relations which are specified to be removed in the actions
from the old known relations.

(2) Add initial relations which are specified to be added in the actions Lo the
new known relations.

(3) Select one initial relation from the old known relations, and enter it in the
new kncwn relations.

(4) If a contradiction by entering the relation is detected, the relation is
abandoned, Goback to(3), where the previous new relations hold.

{5)If all initial relations are entered in the new known relations, the process
for events is terminated,

3. Example
We discuss the example of an flashlight.

Consider the fiashlight shown Figure 11. Qupras infers the existing objects in
the flashlight and the physical rules holding among the objects, and predicts the
next states of the flashlight. There are three object descriptions for the flashlight;
an electric light bulb, a battery and a switch. The switeh description in Figure 12
is given us another example of an object description. Some physical rules for the
flashlight were shown in Figure 3. There are fourieen physical rules and event
definitions for the flashlight, as follows:

(1) switch on
This event definition describes the event when a switeh is turned on, Its
description is shown in Figure 13,

19 —

o fos-%

! t--3§ |

%o oswiteh ==% | small light bulb
° | %e#

I+ -l

| I

e A1 L iy *

+ hattery =

Figure 11 Structure of a flashlight

obhject control_equipment:Control_squipment
SUpErS
thing :
attributes
voltage
current ;

resistance - constant{D} ;
end.

obJect switch:Switch
SUpETS
control_equipment ;
sttributes
huttan - ponpumerics) _variable
state_ofl_butten - nonmumerical_varieble ;

end .

Figure 12 Description of switch

(2) switch off
This event definition describes the event when a switch is turned ofI.

(3) electrical connection
Shown in Figure 7.

(4) increase current

This physical rule describes the increase of electric current when it is less
than the maximum electric current. Here, the change of the electric current is
not regarded as an instantaneous phenomenon. If the change is regarded as
an instantaneous phenomenon, an event definition should be used.

event Swilch_on

obiects
Switeh = switch

cgnditions
buttonBSwiich = &on_button
stete_of _button®Switch = &eff_state |

actions
remove{state_of buticoBSwiteh = Eoff_state] :
add(stete_of_butten@Switch = Ron_state]
add{conduct{Switch)] 1

end.

Figure 13 Description of the evenl "switch__on”

(5) steady current
This physical rule describes that an electric current does not change when

it is equal to the maximum electric current.

(6) decrease current
This physical rule describes the decrease of an electric current when a
circuit is not closed.

(7)using battery
This physical rule describes a phenomenon in which a battery consumes
power and its capacity decreases.

(8) emptiness of battery
This physical rule describes the decrease of an electric current when the
battery is empty.

(2) heat generation by electricity
This physical rule specifies the relation belweeri heat generation and the
electric current.

(10) heat
This physical rule specifies the relation between heat and heat generation.

(11) temperature and heat
This physical rule specifies the relation between heat and temperature.

{12) light generation
This physical rule describes that generation of light in an electric lamp
increases when ils temperature is greater than the temperature required to

generate light.

Qupras must be supplied with a description of an initial state to begin
reasoning. An example of an initial state is shown in Figure 14. It specifies that

initial_state mormal_environment
inittal _relations
reem_temperature = 20 ;

end.

imitial state light bulb_eq_26
SUPErS
nermal_environment ;
objects
Light_bulb - light_bulb_ typel ;:
Switch - switch
Baltery = batiery @
initial_relations
connect{Battery.Switeh) :
connect(Switch, Light_bulb)
gonnpct{light_bulb,Battery}) ;
state_of button@S«itch = Boff_state ;
button@iwitch = &on_Butten |
Bvents
initial_eventl{Light_bulb. 3witch) :
end.

inftial_event dnitial_eventl
ob jects
Light_bulb - Tight_bulb_typel ;
Switch - switch
conditions
temgeraturcAlight bulbh »= Tight_gemerating_temperatura@light_bulb |
actions
remove|button®Switeh = Ron_butten) |
add{buttonBSwitch = Boff_button) ;
end.,

Figure 14 Description of an initial state

a battery, a switch and a light bulb are connected to each other, the state of the
switch button is off, and the button is pushed. It also specifies an initial event
named "initial__eventl". The initial event describes that if the temperature of
the light bulb is greater than the temperature required to generate light, then the
switch button is pulled.

Using the description of the objects, physical rules, and the initial state,
Qupras performs propagation reasoning and finds the active objects and their
relations in the flashlight at the initial time. In the initial state, the event
"switch__on"is activated because its conditions are satisfied. Qupras changes the
switch to conductible, and performs the propagation reasoning. The initial state
and its second state are shown in Figure 15. There are three active objects

I'ﬂ-f‘r ia ! STaTe

heat_ qenercTion-
by -e 1-::'1-1-\.‘:.'1;

-mu.npgrnmm-&'.ﬂdi-
heat —l lgabulb)€1

biea

AU ——

(;:h, { botrery)

/

Everi © Switch-on

Secovel sToTe ./

heat. Generttion .

by _emlectrie VT

connection -endl

1 e _tind,
-t (light bulb) €7
C‘ﬂ“h&*‘-'ﬂﬁ"""—

inErsel iata \’ J
o /

| Lonreztion-otord I

(Swiver. @m—;il—‘)

Wveste Currend [

/

£

Chonge = currantof botrery >0

-
.

Figure 15 [Initial state and second

(eireled) and seven physical rules (in broken line squares) in the second state.
Qupras tries to find attributes of objects that vary over time, because no event is
activated in the second state. There are four changing attributes of objects: the
battery current, a switch and a light bulb, and the heat generation of the light
bulb. Qupras predicts that their next values are greater than 0, because all their
in Figure 16. There are several
forks becausc the prediction is ambiguous. For example, the first fork results
from either the change when the temperature of the light bulb becomes the
temperature to generate light or the change when the electric current becomes

the maximum electric current, whichever happens first. The correct sequence is
ximum current first, the battery

values are 0. The following states are shown

that the current of the cireuit becomes its ma

f— 23 —

state of the flashlight

T: Te,wfngmﬂ.-.\'f. ot |.'l1j,1"d bulp

2
O? Te: Ta'mFtrnTr..rr_ Lor leghd SJeneratio

G'F I.!jll'u bull
I: Current oF logst bulb

Tware ©° moadimuw Currewt of
I'—'Ima-ﬂ; [l'ﬂu bui,'p
C : &Pnc.‘-:)- of bﬂ-'r'fﬂy

Ca B

Figure 16 Flashlight transitions

capacity becomes zero, the temperature of the light bulb becomes the temperature
to generate light, and the initial event is activated and the circuit becomes the
state to be opened.

4. Discussion

We have enhanced the previous Qupras related to the following points to
describe physical laws as deep knowledge and to reason about the physical world
using deep knowledge:

(1) Inheritance for representation of objects.

(2) New primitive representations to describe discontinuous change.
(3) Meta predicales to evaluate conditions of physical rules.

(4) Meta control featurc for effective reasoning.

Most of these features are necessary to write the example in Section 3. If we would
like to decrease the ambiguities of the reasoning as shown in Figure 16, we can do
so by using the meta control feature. When we specify the priority of change for
attributes according to common sense as follows:

electric current = temperature > battery capacity
all ambiguities can be removed in Figure 16,

Enhanced Qupras is implemented in Quintas-Prolog.14) The total number of
program lines is about 14 k lines with comments. The rough number of lines in
each partis as follows:

(1) Translation part -=---=ee=-------— T k lines
(2) Qualitative reasoning part ---- 3 k lines
(3) Evaluation part ---------—---—---4 t lines

The value for the evaluation part includes the number of the line of the Grobner
base program, which is about 0.7 k lines.

We tried to write several systems in Qupras to find new primitives and new
features to represent the physical world. When we used Qupras to reason about
the phvsical world, heuristic knowledge was often necessary. For example, the
heat loss should be negligible. We think that new primitive representations are
necessary to reduce the necessity for writing heuristic knowledge, and new
features are necessary to write heuristic knowledge and to reason about the
physical world using both deep knowledge and heuristie knrwledge. We will try
to use Qupras in several applications. For example, we plan the following:

(1) Enowledge compilation from knowledge of Qupras to diagnostic rules.
(2) Design support to check whether users’ designs are safe by simulation,

(3) Automated designs from features using knowledge of Qupras.

T2
in

Acknowledgment

This research is based on discussions in the 1COT FAI (Foundations of
Artificial Intelligence) working group. We wish to express our thanks to its head,
Professor Mizoguchi (Science University of Tokyo), and its members. We also
wish to thank researchers in the fifth research laboratory in ICOT. Finally, we
must express our thanks to Dr. Kazuhiro Fuchi, Director of the ICOT Research
Center, who provided us with the opportunity of doing this research in the Fifth
Generation Computer Systems Project.

References

1) Bobrow, D.G. : Special Volume on Qualitative Reasoning about Physical
Systems, Artificial Intelligence, 24, 1984,

2) de Kleer,J. and Brown,J.S. : Qualitative Physics Based on Confluence,
Artificial Intelligence 24, pp.7-83, 1984,

3) Forbus, K.D. : Qualitative Process Theory , Artificial Intelligence 24, pp.85-
168, 1984.

4) Kuipers, B. : Commonsense Reasoning about Causality:Deriving Behavior
from Structure, Artificial Intelligence 24, pp.169-203, 1984.

5) Nishida, T. and Deshita, S. : Reasoning about Discontinuous Change, AAAI-
87, pp.643-648,1987.

6) Yamaguchi, T., Mizoguchi R., Tacka N., Kodaka H., Nomura Y. and Kakusho
0. : Basic Design of Knowledge Compiler Based on Deep Knowledge, J. of
Japanese Soc. for Artif. Intel., 2, pp.333-340, 1987. (in Japanese)

7) Ohwada H., Mizoguchi F. and Kitazawa Y. : A Method for Developing
Diagnostic Systems based on Qualitative Simulation, J. of Japanese Soc. for
Artif Intel, 3, pp.617-626, 1988. (in Japanese)

8) Ohki, M. and Furukawa, K. : Toward Qualitative Reasoning, ICOT-TR 221,
1986.

9) Ohki, M., Fuji, Y. and Furukawa, K. : Qualitative Reasoning based on Physical
Laws, Trans. Inf. Proc. Soc. Japan, 29, pp.694-702, 1988. (in Japanese)

10) Ohki, M., Sawamoto, J., Sakane, K. and Fuji, Y. : A Constraint Logic
Programming Language based on the Sup-Inf Method, Proc. of 5th Conf. JSSST,
pp.49-52, 1988. (In Japanese)

11) Simmons, S. : Commonsense Arithmetic Reasoning, AAAI-86, pp.118-128,
1986.

- 26 —_—

12) Sakai K. and Aiba A, : CAL: A Theoretical Background of Constraint Logic
Programming and Its Application, TCOT TR-364, 1988.

13) Kuipers, B.: Qualitative gimulation of Mechanisms, MIT LCS TM-274, 1985.
14) Quintas Computer System Inc. : Quintas Prolog Reference Manual, 1985.

