ICOT Techrical Heport TR-426

TR-426

Potentials of General-Purpose Reasoning
Assistunt System ELUODHITLOS

by
H. Sawamura. T. Minami.
K. Sato and K. Tsuchiva
{lFujitsu)

October, 1988

W ass, 1COT

S el e, F1 e NS Lafi=tais] -

“ :D I Poots Al 1= ke Tolos [T 1Mk

WMimnto-ku Tekyo H8 Japon

Institute for New Generation Computer Technulugi_

Porentials of General-Purpose Reasoning Assisiant Sysiem
EUODHILOS

C

Every aniveri€ of @iICourse AEY G5 LR Alrusire.
5. K Laomger (]925)

HAJIME SAWAMURA, TOSHIRO MINAMI

International Institute for Advanced Study of Social Information Science (IIAS-SIS),
FUNTSU LIMITED , 140 Mivameio, Numazu, Shizuoka 410-03, JAPAN

hajime@iias.fujitsujonet os@iias. fujitsu.junel
KAORU SATO AND KYOKO TSUCHIY A
FUNITSD LABORATORIES LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211, JAPAN

(draft)

Summary

Much work has been done on special-purpose reasoning assistant systems whose
underlving logics are fixed. In contrast with such a trend, this paper is devoted fo a new
dimension of computer-assisted reasoning research, that is. a general-purpose reasoning
assistant svstem that allows a user to define his own logical system relevant for the objects in the
problem domain and to reason about them.

In the first half of the paper, the need. significance und design principle of EUQDHILOS :
a general-purpose system for computer-assisied reasening, are discussed. then the system
overview is described. placing emphuses on the following three peints : (1) formal system
description language, (2) proving methodology based on several sheets for logical thought, (3}
visual human-computer interface for reasoning. In the latter haif, the potentials and usefulness
of EUODHILOS are demonsrated through experiments and experiences of its use by a number
of logics and proof examples therein, which have been used or devised in computer seience,

artificial intelligence and so on.

INTRODUCTION

A new dimension of computer-assisted reasoning research is being explored in this paper.
It aims at a general-purpose reasoning assistant system that allows a user o interactively define
the syntax and inference rules of a formal system and to construct proofs in the defined sysem.

“Wa have named such a svstem EUODHILOS. an acronym rerlecdng our philosophy or
apeemyaton ihat sver guiverse I Ziscourse pas irs [poical grructure, which wras out o spell
and sound lixe a Greex philosopher ¢ name.

In these davs. various logics play important and even essential roles in computer science
and artficial intellizence (e.g.. [Genesereth 87], [Smers 881y, and surprisingly in aesthetics
which is thought of as being in a directly opposite position to logic (e.g., [Langer 25], [Kunst
76], [Rahn 79]). Specifically, it can be said that thev provide expressive devices for objects and
their properties, and inference capabilities for reasoning about them. It is also the case that
svmbols manipelatng methods provided in logics are basically commeon to all scientific
activities. So far, thev have made use of a wide vanety of logics. including first-order, higher-
order, equational, temporal, modal, intuitionistic. relevant, type theorerc logics and so on.
However, implementing an interactive sysiem for developing proofs is a daunting and laborious
task for any style of presentation of these logics. For example, one must implement a parscr,
erm and formula manipulation operations (such as substitution, replacement, juxiaposition,
e1c.), definitions. inference rules, rewriting rules, proofs. proof straiegies and so on, depending
on the logic to be needed. Thus, itis desirable to find a general theory of logics and a general-
purpose reasoning assistant sysiem that captures the uniformities of a large class of logics so
that much of this effort can be expended once and for all. We airn at building an easy to use and
general reasoning system which handles as many of these logics as possible.

There are three major subjects o be pursued for such an interactive and general reasoning
supporting system. One is. of cource, a language expressive enough 1o describe a large class of
logics. The second is the kind of reasoning styles suitable for human reasoners which should be
taken inte account. More generally, reasoning (proving) methodology, which reminds us of
programming methodology, needs 10 be investigated. The third subject 1s reasoning-oriented
human-compurer interface that may be well established as an aspect of reasoning supporting
facilities. An easy 10 use system with good interface would be helpful for one to conceive ideas
in reasoning.

We believe that a general-purpose reasoning assistant system incorporating these points
<hould cater to the mathematician or programmer who wants to do proofs, and also to the
logician or computer theorist who wants 1o experiment with different logical systems.

Ther remainder of this paper is organized as follows. In the first half of the paper,
following the discussion of the need, significance and design philosophy of EUODHILOS, a
systemn sumumary of EUODHILOS under development is described, where we place emphases
on the following three points : (1) formal system description language, (2) proving methodology
hased on several sheets for logical thought, (3) visual human-computer interface for reasoning.
In the latter half, the potentials and usefulness of EUODHILOS are shown through experiments
and experiences of its use by a number of logics and proof examples therein, which have been
used or devised in computer science, artificial intelligence and so on. They includes a logical
puzzle and the halting problem with the first-order logic, propositional modal logic, intuitonistic

vTe th2omy, Trogram venmiicohign with heare legic and 2 rellzcive proof with inensional
FhET g ¥

2l ew sliwwa |

i
II'- L]

NEED, SIGNIFICANCE AND DESIGN PHILOSOPHY

Much work has been devoted to special-purpose reasoning assistant svstems whose
underlying logics are fixed. At this stage, why are we about to pursue or explore a new
dimension such as a general-purpose reasoning assistant system 7

We first rake up some issues concerned with the generality in reasoning assistant sysiem
and several aspects to view such 2 generalitv. We have already seen that it can be easily found
and recognized that in these days a logic or logical methodology is forming a kind of paradigm
for promoting computer science, artificial intelligence and so on. (e.g., [Genesereth 87],
[Smets 88], [Langer 25], [Kunst 76], [Rahn 79]). And we stated that it is desirable to find a
generzl theorv of logics and a general-purpose reasoning assistant system that captures the
uniformities of 4 large class of logics so thar much effort for providing reasoning facilities can
be expended once and for all. and hence we aim ar building an easy to use and general reasoning
system which handles as manyv of these logics as possibie. This was our first motivation for
pursuing the generality in reasoning assistant system. The second issue comes from the rigorous
appreach to program construction. Abrial [Abrial 84] claims that a general-purpose proof
checker be perhaps one of a set of wools for computer aided programming when we consider
program consiruction from various theories. We are certainly in a situation that before
embarking on the conswruction of a program we need 1o study its underlving theory, that is o
give a number of definitions, axioms and theorems which are relevant to the problem at hand.
The third issue 1§ concerned with construction of a logical model, or more generally
methodology of science. We observe that the whole phases of human reasoning process consist
of the following three phases : (1) making mental images about the objects or concepts, (2)
making logical models which describe the mental images, (3) examining the models to make
sure that they coincide with mental images. It is not conceivable that the phase (1) could be aided
mechanically since some part of the phase (1) is very creative, On the other hand, it is very
likely that the phases (2} and (3) are largely supported mechanically by allowing to modify or
revise the definiton of the language used for the modeling and by introducing certain reasoning
devices. These are just the points that a general-purpose reasoning assistant system is inrended
[0 SUppOr.

A philosophical aspect of the generality from a logical point of view can be found in
[Langer 25] and Wittgenstein's philosophy. Langer stated that "every universe of discource has
11s logical structure”. It eventually supports our discussions about the need and significance of
the generality in reasoning assistant system.

Taking these nesds, DDSETVETONS und FMIOSOPRY N0 considerafon. fundamental d2sign
orinciples of EVCDHILOS are setup as follows :

_ Realizanion of & general reasoning syviem. reflecting the shilosoghy that every universe of
discourse has irs logical suructure.

- Support of logical thought. symbolic or legical manipuladons done by human reasoners

_ Provision of an eusy 10 use environment for supporting proof constructions

- Environment for experimenting logical model construcnon and methodology of science

These requirements lead to the research und development of general-purpose reasoning
assistant svstem EUODHILOS with the foilowing outstanding feawres

- Formal svstem description language based on DCG

- Proving methodology using sheets of thought

- Reasoning-oriented human-compurer interface

In what follows. we brieflv sketch a current version of EUODHILOS.

OVERVIEW OF EUODHILOS

Functional features

We list the main features of EUODHILOS and explain them briefly (see [Saro 88a] and
(Sato 88b] for the details). We start by describing the language of a logic to EUODHILOS.
Fundamentally, EUODHILOS has almost no defaults, so it must be told evervthing,

Formai svsiem description language

What on earth is a logic 7 Or what language should be expressive enough to describe or
deal with logics 7 The answers to these questions, in general, could tum out to settle the formal
svstem description language for capuring the uniformites of a large class of logics so that it can
he used as the basis for implementing proof systems. There have been some attempis 1o pursue
i, sharing a common goal with our EUODHILOS (e.g., Prolog is employved as a logic
descriprion language in [Sawamura 86], AProlog in [Felty 88) and [Miller 87], Martin-Lof's
intuitionistic type theory in [Harper 87] and [Griffin 87]. a specification language for a wide
variety of logics in [Abrial 84], auribute grammar in [Reps §4] and ML in [Gordon 32]).

Contemporary logics, in general. may be considered as having a logical framework
consisting of proof theory and model theory. Proof theory is 10 specify a syntactical part of
logic and model theory a semantical part of logic. In this paper we are mainly concerned with
specifying the syntactical aspect of logic. From a syntactic point of view, a formal system
(logical svstem}, in general, is supposed to be specified by the two constituents : Language
svstem and derivation system.

{1) Language system

A camguage 15 a ool Tor mmiking apout oplects and is consgucied Tom underiving chmitve
s3Tnoois. It is usually specinied by unlizing some of the Toilowing items: vanable. constants ang
functon as ingivideal svmbois, predicare qinciuding aouzliny), logical conneciive. auxijiary
svmbol. The artributes such as 1vpe, SO, anty, Operator precedence are someumes associated
with some of these symbols. Once these primirive svmbois are specified, complexies such as
terms. formulas, etc.. are constructed from them by fomanon rule. Besides, mechanisms for
defining or abbreviating symbols, are usually required, One of the main questions that may be
raised ar this point 15 the following : what mewlanguage is nawral and sufficient enough to
describe such an object language 7

(2) Derivadon svstern (or deductive theory)

Derivation svstem gives us a means o manipulate logical languages, which are specified
bv axioms. inference rules, derived rules, rewriting rules, and concepts of proofs. ew. Insofar
as we are confined ourself to the existng types of formal system, we can enumerate primiiive
operations included in them. for instance, substitution, replacement, juxtaposition. detachment,
renaming, unification, Instaniation, eic. Are CONUNON operations among various logics except
for the difference of languages. Since we consider a general-purpose r=asoning system for
fogics, we have to provide a general method for such symbol manipulations. So. one of the
main questions that may be raised at this point is the following : what sort of primitive
operations should be sufficient to manipulare logics and how they can be provided in a generic
manner 7

In addinon to them, we have 1o pay atuention to the following concepts proper in logics.
such as "free” and "bound”, "something is free for a vanable in an expression”, erc., although

these can be often dealr with in a recursive fashion.

Expressiveness of definite clause grammar and implicanion 1o defining logics

In EUODHILOS, a language system to be used is designed and defined by a user, a
current solution for formal system description language is to emplov so called definite clause
grammar (DCG) [Pereira 80), where the problem of recognizing, or parsing a sming of a
language is then ransformed intw the problem of proving that a certain theorem follows from the
definite clause axioms which describe the language. The DCG formalism for grammars is a
natural extension of context-free grammar (CEG). As such, DCG inherits the propertes which
makes CFG so important for language theory such as the modurality of a grammar description
and the recursive embedding of phrases which is characteristic of almost all interesting
languages, including languages of logics. It is, however, well known that CFG is not fully
adequate for deseribing natural language, nor even many arnficial languages. DCG overcomes
this inadequacy by extending CFG in the following three points [Pereira 80].

(1) context-dependency

(ii) parameterized nonterminal

(iii) procedure antachment

menuones rnove. DCE provides for contexi-dependendy 1n a grammar. s0 ihat the permissibl
forms for 4 prrase may depend on the context in which that phrase occurs in the swing, DCG is
comewhat simmiar (o airibute grammar in the sense that context free grammar is made context
sensitive by associating with grammar rules a semnantical facility [Reps 84]. The necessity of
contexi-dependency is often encountered in defimng logical syntax. The following examples
show how naturally and economically DCG allows us 1o express context-dependency occurring
in the ordinary logical practice and allows arbirray mee structure 10 be build in the course of the
parsing, with the help of (i) and (ii1).

The defining clause of first-order terms such as "If f is a functon symbol of arity 2 and t
and s are terms. then f(1, s} is a term” is represented as

termif(T.S)) --> functor (f), "(", term(T), ".", erm(Sy, M, lanov(f) = 2.

The defining clause of terms in intensional logic such as “If A is a term of type (a, b) and
B a term of type a. then A.B is a term of type b" is represented as

termiAsB. b) --> term(A, a), term(B, b).

Once a definite clause definition for a logical syntax have been given, then the bottom-up
parser [Matsumoro 83] and unparser for the defined language are automatically generated, which
are 1o be internally used in all the phases of symbol manipulations. The reason why we do not
generate a top-down parser for the defined language is as usual to avoid the ancmaly of left-
recursiveness which often appears in the ordinary definition of a logical svntax. The internal
structures of the expressions of the language are automatically consrructed just at the same time
as the automatic generation of the parser and unparser. These funcnons greatly lighten a user’s

burden in serong up his own language.

A derivation system consists of an inference system and a rewriting system. They are
given in a natwral deduction style presentation by a user. Especially, an inference rule is stated as
a triple consisting of three elements, where the first is the derivarions of the premises of a rule,
the second the conclusion of a rule, and finally the third the restrictions that are imposed on the
derivations of the premises, such as variable occurrence condition (eigenvariable) and
substitutability such as "a is free for x". Well-known typical styles of logic presentadons such as
Hilbert's stvle, Gentzen's style. Equational style could be reated within this framework.

Inference rules are presented in terms of the schemaric rule description language in a
namral deduction style as follows :

[Assumprion;] [Assumption,] [Assumption,]
Premise, Premise, Premise,,
Conclusion

whers oraxels are used 0 encompass 4n assempnon o be discharged. 77 denoies o
segquence or a subirez of formuias which s 4 pan of a proof from the assumtion und each
assumption is optionai. If a premise nas the 2ssumpiion. its submee of a proof indiczres o
conditional derivation. An inference rule may be permited o apply if all the premises are
obiained in this manner and the application condition is satisfied. Similary, rewritng rules are

presented in the following schemance format :

exp)

expa

where exp, and exps denote the subexpresions occurring in the expressions before and

after the rewninng of on expression respectively.

Proaf constructing facilities

The major drawback of reasoning in formal logic is that derivations tend to be lengthy and
tedious because of the derailed level of derivations to be required in reasoning. Furthermore,
performing formal derivations is time-consuming and error-prone. The readers may notice that
such a situation is quite similar to the one in the formal development of programs in which
programs can be derived or transformed and properties of programs can be established.

Using computers for formal reasoning is expected to overcome the problems with errors
and the time-consuming task. The current version of EUODHILOS has the following unigue
facilities which support constructions of proofs in the defined formal system.

{1} Sheets of thought {or proof sheer)

This originated from a metaphor of work or calculation sheet and is apparently analogous
to the concept of sheet of assertion which is due to C. S. Peirce [Peirce 74]. A sheet of thought,
in our case, 1s supposed to be a field of thought where we are allowed to draft a proof, to
compose proof fragments or detach a proof, or to reason using lemmas, etc., while a sheet of
assertion is a field of thought where existential graph as an icon of thought is supposed to be
drawn. Obviousiy, proving by the use of a shee: of thought vields proof modularization
considered to be useful for proving in large, which is analogous to the concept of program
modularization, to borrow the term of software enginnenng.

Technicallv, a sheet of thought is a window with multi-functions for reasoning in the
muld-window environment of a Personal Sequental Inferential machine (PSI).

(2) Tree-form proof

As mentioned above, inference and rewriting rules are presented in a natural deduction
stvle. This naturally induces a construction of a proof into a wee-form proof. Consequentlly it
leads to representing a proof structure explicitly, in other words, proof visualization.

(3} Proving mathodology

I 15 desirupis hat r2asosing or Sroof consguction can be done along the natural wey of
-ninking of human reasoners. Thersfore EUODHILOS supports the wvpical method for
-esoming, that is top-down reascning. doitom-up reasoning and reasoning in a mixwre of
them. Thev ore accomplished interactively on several sheets of thought.

It is planed to incorporate not only such a proving methodology but also methodology of
science {e.g.. Lakaros’ mathematical philosophy of science [Lakatos 76}, Kitagawa's relativisnc
logic of mutual specification [Kitagawa 63, etc.).

As an example of deduction process on sheets of thought. let us illustrate how one can
proceed a deduction by using connection and separarion functions of sheets of thought In order
to deduce forward by applying an inference rule, one has to start by selecring the formulas used
as premises of the rule. Then one may select an appropriate inference rule from the rule menu
which has been auwtomadcally generated at the rime of logic definition, or he may input a formula
as the conclusion. If one selects a rule, then the system applies to the rule to the premises and
derive the conclusion. If he gives the conclusion, then the system searches the rules and ties to
find one which coincides with this deduction. In the case of backward reasonig, the reasoning
process is converse to the forward reasoning, so that the intermediate proof may turn out 1o be
separated into partially justfied proof fragments and the complete justficiation of those partlly
justified proof fragments is delayed to the completion of a final proof mee.

(i) Connection

(a) Connection by complete matching : Two proof fragments can be connected through a
commom formula occurring in them when one of them is a hypothesis and the other a
conclusion. The process begins by selecting the two formulas and invoking the proper
operations. As a result, the proof fragments are connected into the one proof fragment.
Schematically, This amounts 1o anaining the following inference figure which can be viewed as
valid :

r-c {on a sheet of thought)
A C,IZI-A {on a sheet of thought}
LAZ-A {om a sheet of thought)

where I", A and I represent sequences of formulas (possibly empty), and A and C; denote
formulas in some defined logical system.

(b) Connection by the use of a rule of inference : This is essentially a forward reasoning
and mav be called a distributed forward reasoning. The process is similar to the above except
that the connection is done from the distributed proof fragments through an appropriate rule of
inference. Let us take an example schema of modus ponens :

L
I
Wl

$0Mf & S0oot of thounhin
- A icn a sheet of houghll
oAl A {on a sheer of thought}
with same proviso. adding that B represents a formula. Besides, connection methods such
as analogical matching, instanciation. etc.. would beome extremely beneficial to inteiligent
reasoning system. which are left as future subjecis.
{ii} Separation
The separation is the converse to the connection by complete matching. The separation
process begins by selecting a formula oceurring in a sheer of thoughr and invoking the proper
operations. As a result, the proof fragment are detached into the two fragments. Schemagcaily.,
This amounts to the converse o the connecton by complete matching above. So we omit it.

Huwman-computer interface for reasoning

In order to make the svstem user-friendly and easy 10 use, we have paid much attention o
the visualization of interface. In EUODHILOS the following facilities are available as human-
computer interface for ease in communicating and reasoning with 2 compurer, in particular
facilities for inputing formulas and formula visualizadon.

(11 Formula editor

This is a sructure editer for logical formulas and makes it easy 10 input, modifv and
display complicated formulas. In addition to ordinary cdidng functons, it provides some proper
functions for formulus such as rewriting funcoons.

(2} Sofrware kevboard and Font editor

These are used to make and inpur special symbols often appearing in various formul
svstems. It is a mater of course that provision of special svmbol which reasoners are
accustomed to use makes it possible to reason as usudl on 2 computer.

(3) Swtionery for reasoning

Independently of 4 loric under consideration, various reasoning tools such as decision
procedures become helprul and useful in rcasoning processes. In a sense it may also play a role
of 4 model which makes up for a semantical aspect of reasoning. Currently, a calculater for
Boolean logic is realized as 2 desk accessary.

The screen lavout in Fig. | shows a proof in which formula editor and software keyboard

are being used.

T '] TET_LF ok BE
_— E T mr termy i B
o = Sii pll =1° 40 5 e .o
| EOFT_SEYBAEET s ermi s=e taTmiaoariaeie Jw. A M Shemar afsRas 120 LT
ST Carimh —ms tmE - T -
FIFERE L _AL! m caEmp ama (aana (ee, ope, SRpm] TTRSTEETLSS N
i e S Lt P LI A
W 1:.-'* ;.u i sasad -=k darml irre mrecoNrig
LN R i — S L 5
Pl derml == T, ERFW, YT FHE] L
SHEET_OF _THEUGHT || rermy =ev net) cees: I B DY G
formd ——F 1%, uemi, t10t Waral Jibet 1131 By
rpami ==x Furgd pond —_ — - -
pmpml ==r e inb ey e, N .
gapm) ==® ApmgtEand] Pt LS
A et
nEs e T L T MTT_aostar

CEMEET .o _THOUGAT ¢ antuotupe

RI=Fl

b 1
- F

ﬂ a i

< -)

&:.‘ L} ||I|r El -

N
]

=
[t).
mmeema ERi B ARRD ¥ E! I
Il fabER L fieELY DREARWEBZLEYSL] ; : .
A bt < P ') 1J_IiI |
r@ivit 1= 18] K g

P T

—_—— - inl EPh Y
. TEIME ERhEOTL i oanl
T R LR 2 [
R Et ol I REFREL LRSS [4g e Pzl SL] —
. — - (ZE {21} 1o d w10 (=] 0 HEL
fEine (e, (Bim] (wlibE]
LEVRE

56, d@uerd fpe, IBEnI da s 1 TR IV IFRLF2LITL

]

Fig. 1 Reasoning-onentied human-compuier inter{ace

Implementation

Exploiting the bit-map display with multi-window environment, mouse, icon, pop-up-
menu, etc., EUQODHILOS is implemented in ESP language on PSI-I/SIMPOS, and its current
size is about SMB. The system configuration of EUODHILOS is illustrated in Fig. 2. The
svstem consists of two major parts ; one for defining a user’s logical system and the other for
constructing proofs on sheets of thought.

— EUBDHILOS — 4
—— Logical System ————— ~ Thought —,

- Symbal System L Yy ‘\’}"L\x
(| | r— Derivation System EX ol | | User
P20 | Iwff
pros HxiDm TeEmsssEmrEmr e

— i - Rewriting Rule -

=+ Inference Rule ==rrk=-s — [r(a}l_tl Parser
; | s{f] !
]

resmea ! AL f‘l——n
|'

Fig. 2 Anillusiraon of EUODHILOS

EXPERIMENTS AND EXPERIENCES WITH EUODHILOS

We have tried 10 apply EUODHILOS to various types of reasoning. Logics and proof
examples therein that we have dealt with so far on EUODHILOS inciude various pure logical
formulas, unsolvability of the haliing problem and an inductive proof with first-order logic
{NK), modal rezsoning of proegram with propesitional modal logie (T), reflective proof of a
metarheorem with intensional Logic (IL), Mamin-L6f's intuitionistic type theory, program
venficarion with Hoare logic,

In this secton. first taking up two representatve formal systems from the circle of
program sematics and program verification, we show how EUODHILOS can be used to
specify a logic and consmuet a proof under the specified logic, together with their typical screen
lavouts. In the last part, we list some other proof experiments with different logics. The
imporant point here is not the complexiry of the examples, but rather the holistic understanding
of a whole siory plaved with EUODHILOS.These proof experiments with different logical
systems could help 1o coavice the readers of the potential and usefulness of EUCDHILOS in a

much wider range of applications.

Martin-Laf's intuitionistic tvpe theory

The first reasoning system we have chosen as an example is a tiny subset of constructive type
theery descnbed in [Martin-L&f] and {Backhouse 88). We try to prove the following theorem :
-~{Pv-=PF) (= (Pv({P2 1) = 1) = 1}, which means that the law of excluded middle
cannot be refuted. and is an instance of Glivenko's theorem that if P is any tautology of the

classical propositional caleulus then the proposition ~~P is always consmructively valid. We set

11

¢ limguuge Uor oroving the theorem firsi in terms of BNF for reference and then its DCG

Tiny language for npe theory (BNF)
<judgements = <iarm> £ <Iype>
<lenme o= <varabler | <constants | ~<term> kefunction>e<teom> | L<variables <tcrms linl{<term>) |
inr <icrma) | emew-lemms
<variables =2
cconsiants t=alb
<function> o= {
<iypes o= <hasic-types | <lypes v <type> | <type> o <lype> | <mew-lype>
<basic-type> u= P! L
<mcia-terms o= F

<meta-type> = A B

Tinv language for nype theory (DCG)

The following DCG definition may be somewhat tedious and roundabout for the reasons
of the abilities of the current bottom-up parser and unparser generators. However, it will be
improved so as to be more natural, by adding operator precedence 10 DCG.

Svarax of object langauge

judgement ---> 12rm. in, type

orm ==> lambda, varizbie, "7, term1 ;

term === terml

termi --= terml, apply, term2 ;

lerml - term2 |

term2 = "{", term, 3" ;

term2 - or-inwo, (", erm, 7Y ;

lerm2 --> variable ;

el - constant ;

in-->& ;

apply --> 7"

lambidz —> "3" ;

or-intrg --= Tine"; "ind™

variahle --> x;f:a;b:

wpe --= lypel, imply, type

wpe > 1ypel §

typel --= typel, or, typel ;

wpel - typel

typed -> (", wype,)

el - oo tvpel
- ~ § oy 0 .
IWTo S -k PARIZAAVPRE D
noL === =
e -

impiv --» "2 ;

basic-iype == P UL

Svatax of mera language :

wertn] --= meta-ierm, "7, mew-var, "3

lcrml --= meLa-1erm

mew-ierm --> "F

Wped -=> MEL-1vpe &

mela-type > "A" ; "B,

Note that the syniax definiton for meta laneuage is needed for defining inference rules
schemuaicallv,

Inrerence Rules

Intidonistic type theory is defined by a number of namral deduction style inference rules
[Martin-Lof §4]. For our purpose of illustration we consider just four rules and one rewrite
rule. These are the rules for function introduction and elimination, the two rules for v
inwoducrion, and the rewrite rule in lieu of the definition ~A=A> i

lxs A

Fixie B
........ (h-intraduction (A-I))

Ax (%) e ASB

ae A fc Az-B

- - {z-eliminauon (=-E)
feu = B

ae A

{inl-inwroduction {inl-I))
inlfaile AvB

hes B

e aemeeennenees (inr-introduction {inr-T))
ine(bye AvB

13

———eadelinddon as rewnie ruied

Froar
The manual proof of a tree form is described below and the overall screen layout is shown
in Fig. 3
[z e P
inl-I
fe (PviFollol) inlix) e Pv (P oL
>k
feinlix) € 1
A-1
Ax, feini{xje P2 L
inr-I
inrii. feinl(x)) € Pv (P= L) (fe (Pv (@ L)) o4l
=E
ft,'l_nr(}._x, feinlix}) e L
— Al
Af, feinr(ix. foinl(x)) € Pv (P> L) o1) 24
def

af. feinr(ix. fainl(x)) & ~~(P v ~F)

1= T _iL:u.l"t TV ER - IRty

SyMTAY ®% (p_windim BE | Gyngamany <=3 dmrel, canieLa, Tubel
- " a w8
IFESENCELAULE e w [IR T e eiene. S e
REWR I TIHG_ALE — :
AT O o e Jerm@g ==3% fymcdlon, apa, (armir .
- - L iermE —=r mera e i, "7 maie_ ver 1"
SHEET _OF _THOUGHT S] g oap tasmdt TRFERENEE E T e
DOG . o (ermd == TET, acml, 37 _—
Ciacpiessen | wermd == et ferml; - 1 -
SYNTAX S] termd == Am T 00, barm, t1 R <
INFERENCE _AULE ST] iarmd e varpamin: pemay >
BrEr_OF_THouGART @ intu !
F iy 88

B, R W A

3 &

JEmQG¢¢

U EWRTYTRGEROCE ¢ intw

L rhas 5 def

[=8FF it
fenb T eI b 2 e IC:
LRI Lm) O CBILY (A fre Pl b) = 2

VS 11, E1)] ——
feimt il @] -
oalra - N
Be. ferml (u} 8PS —_—
2 —————— e (2}
frEePw P=01%=1) EnFd [he d8dn] Enl) EEY {P=L]
o {1 1

Foamrddkm, FOERECED) PEE
N A i

A, iwinridhe, Peqnl ixdh i@ P iPza T ioe "

I T} ;

Fiz. 3 Screen lavout of a constrective proof

Hoare logic for program verification

Houre logic inooduced by Hoare |Hoare 69] is the most well known logic for the
axiomatic definition of programming languages and reasoning about programs. Here we
exemplify how such a notalonally complicated formal logic can be easily dealt with on
EUVODHILOS. The principal formula in Hoare logic is a form of P[S)Q, where P and Q are
tirst-order formulas and 3 is a program in an ALGOL-like programming language.

Languaye in terms of DCG
Svruux for ohject langauge
formula --> formula, "=", formulal ¢
formula - formulal ;
formulal --> formulal, "v", formula2:

formulal --> formulal :

-

formula? --= formulal, "A", formulad :
formula? --= formula3 ;

formula3 --> "(", formula, ")";
formulald --> "=", formulal ;

1h -

. - ' .
e eI T et
dicie = by - [T

Tormulal > m. " =", wrm:

h-formula --> formula. "7, oregram,)7, formuaia |
term --= variable ;

lerm --> COnsmant

term --> term, "+, 180

P, 208

term —= e, =, ICIT .

wpn
- *

term --> 1erm.
variable --= "x" ; "v"; "z" ; mew-var ;
constant -->"1"; "0 ;
program --> ssignment-statement ;

program, ",", program ;

while, formula, "do", program, "od" ;

if, formula, "then", program, "else”, program, "fi" ;
assignment-statement --> variable, “:=", term ;

Svneax for mera lanpuage :

program --> Mea-program ;

formula? —» meta-formula, "{", mew-term,)" ;
formula? --> meta-formula ;

meta-program --> "A"; "B";

mem-var --> A"

16T --> Med-ienm ;

meta-term —-> T ;

meta-formula --> "P"; "E"; "F"; "G".

Axioms and Theorems
{1) EAF2E (Conjuction-elimination)
(VPXYAX=TDP(T) (Substituion)
(IPT) (X:=T) P(X) (Assignment axiom)
(Amue = 1 =00 (Arithmeric)

Rewriing rule

(Arthmetc rule)

(v +1={y+1}

16

. .
Inrerence Rues

E=F FIAIG
_________________________ {Conscquence rule 1)
E(A)G
E[A]F F2G
______ {Consequence rule 2}
E{A1G
E{AJF F{B]G
----- {Composition rule)
E{A:B1G

E ~F[A]G EA=F[BIG
——- - {Conditional rte)
E{if F then A else B f1}G

FAG{AJF
emmsmmeeee——= (Repetiion rule)
Fl{while Gdo A od}F A ~G

In Fig. 4 we show the screen layout of the cormreciness proof of a factorial program with

the precondition "true” and posicondition z = x!.

cars] R A T =2ars H
S N— — 3 |
Tl =) T T iy | __.‘? i
pa = T LR T T L L L N c e :.F_T_-_I‘l
g, e i ; : L= |
{{ Se~RliiG_SwlE @ roars 1
= P ER N, T AR R 0, DFrRF REl "
PEASE S —=t prnar sl F A a1 F nnms ¢ arilih ::\
e ARWL TR G AT g <::|
e T | P, AR, preas am, et
pr e i nrealin Fitala G o8 & sE)EAD u -
jid Aarnmi e i, iR, TtEAnT pi ol AR, TR we g
L wdi osm, CPEMD L RIPCAREITT) 'lﬂ"'
fr repe rmlE sma [, g mm, 1Y W W EE
Par sl —=3 Jgd moia, fes iy, |8 meled; .
e P T . | [Ax 1O noar=
Frassi=a7
Lrmmp | mE s=a dnemilod, or, i nreml g S rwmt A Gy pEr ¥
Farima| gy ==» dorsmind! N FETIE =
ICCINF EEITE £ - B
L ACTA R L T IR RN "L R L LT E] T A e f

TR ol - HOUG T+ hoare pir i Lt

wmapap (Fs svagE rawl
L]

RN RT G OO0

FEETHRLTETL R 3 =t £ 2T
m—— e LSRR E

pzyt Amqansre iyl bEiyetl] pwiged pmiye 3 g Ege il pesyd
iganaeal (b

e Aeapme g ws L) et Tmumy

YrogmomtEgE RmOl EFEa) pESe CEDRERT LR SRR R S LAl el]

s e e GRS LD B

tensdns Ll pmdl Fuit fy:wdl reai FEy b b ey E g el regod] reigldeleyan)
——— e kb —
trus lez wi7eE el gE gzt buin || =S s diigl Tip+ 13 29 eTdgad] seyl sysy
prumi Eal BEDaT B3] Jak | B vumadoyd mye i B SERGaa b TEy | sume
LR 11:u:-¢|: A fwmeaps wiien; Zrie] | risraued]l FExd

Fartinl grresinasag
S

Fig. 4 Correcmess proof of a program in Hoare logic

For other logical experiments, we will only list the theorems which were actually proved
bv using EUODHILOS.

First-order logic with NK

(1) Smullvan's logical puzzles (originally examples in combinatory logic) [Smullyan 85]
Axipms :

1.v%x mex = xex {Mockingbird condition)

2.9¥xVy3zVw zew = xe(yew) (Composition)
Theorems :

1. |- Wx3v(xey = v) (Every bird of the fores: is fond of at least one bird)

2. 1-3x% (xex =x) (At lcast one bird is egocentric or narcissisiic)

(2) Unsolvability of the halting problem [Burkholder 87]
Premises :
1. Zx(A(x) & Fv(Cly) D VzDix,y,2))) 2 Sw(Clw) & Yy(Cly) = VzD(w,y,z}})
{Church’s thesis)
2. ¥w(C(w) & Vy(Cly) = VzD(w,v,z)) 2 Vy¥z((Cly) & H(y.z) D H(w,y,z) &0(w,g))
& (Cy) & -Hiy,z) = H{w,y,z) & O(w.,b))}}

L
e
T
.
P

TvaCovt & Hiveyy = Howoyao & Otweg)) &Gy & ~Hivyy =
Hiwow & Ouow.)y = SnCivy & 7vi(Cly) & Hiy.vi = Hivy) & Ovg)l &
(Covy do =Eiva = Hivav) & Ofv,b)h)

CSviCivy & Tvi(Criy) & Hiv,y) = Hiv,y) & Ofv,g)) & (Cly) & ~Hly,y) = H(v,y) &
O(v.b)1) = SulClu) & Y¥{(Cly) & Hiy,y) D ~H{uy)) & (Cly) & ~H(y.y) = Hiuy)
& Ofu.b)))

Conclusion :

|- ~Sx(A(x) & Tv(Cly) = ¥zDix,y.2)h)

fa

{ne algorithm to solve the haling problem exisis)

(3) Proof by induction [Eriksson 82]
|- ¥x. append(append(x,v),z) = append(x.append(y.z))

(associauvity of append (uncuon)

Propositional modal logic (T)
l-<spallpza2<>paq)
{A stromg correctness assertion iS impiied from a werminaiion assertion and a weak correciness asseriion

[Bursall 74])

Intensional logic and reflective proof
e P =>-¥x:a. Pt (Generalization rule) [Gallin 75]

In the future we plan to atack logic of knowledge angbelief, various other logics of
programs such as dvnamic logic, non-monotonic logic, relevant logic and so on.

RELATED WORKS

Much work has been devoted to building systems for checking and building formal proofs
in various logical systems. A number of ways which may be used for assisting human
reasoning, including automatic theorem proving, proof checker {de Bruijn 80][Weyhrauch
§0)[Ketonen 84][Sawamura 86], proof constructor [Gorden 79][Constable 82}[Constable 86}
and general syvstem for compurer-aided reasoning [Cequand §5][Sawamura 87][Griffin
87][Harper §7][Minami 88][Sato 88a], are comparatively examined in [Minami 88]. Here we
are confined ourselves to various approaches to general system for computer-assisted reasoning
to which much atiention have been recendy paid. Let us first briefly see the distincton of formal
svstem descripton language in each approach.

In |Sawamura 86], Prolog is emploved as logic description language as well as an
implementation language of proof consuuctor. In [Felry &%) and [Miller 87], AProlog, which is

1o —

4 =i ~he=warder version of Proiog and hence mere axcressive than Proiog. is proposed 1o specily

I -

:hesrem provers. In (Harper §87] and ‘GAfin §71, Marun-L&fs intuinonistc type theorv is

appiied for buiiding 2 logical framewOrk (LF} which allows for a genemi reatment of Syntax.
inference rules, and proofs in terms of a typed A—calcuius with dependent types. It also has the
advanmage of a smooth meatment of discharge and variable occurrence condidons in rules. In
[Reps %41, the axioms and inference rules of a formal logical system can be expressed as
productions and semantic equations of an atibute grammar. Then, dependencies among
artributes, as defined in the semantic equations of such & grammar, €Xpress dependencies among
pans of a proof. In [Gordon 82, the metalanguage (ML) for interactive proof in LCF [Gordon
791, a polymorphicaily typed, functional pro cramming language, are used to show how lo gical
caleuli can be represented and manipulated within it. In [Abrial 84), constructing a general-
purpose proof checker is undertaken through devising a theory of proofs. It is "general
purpose” in that it may take as input the axiomatization of a formal theory together with a proof
written within this thoery. A theory of proofs is a kind of a specification language for formal
system from the viewpoint of software engineering, and also a formal sysiem description
language. His approach 1s based on the rigorious approach 1o program Consmuciion ; 1o define a
thenry and then 1o apply it.

In addition to such a purely theoretical interest as what a general theory of logics is, an
important benefit of these treaiments of formal systems is, although their approaches are
different. that logic-independent tools for proof editors, proof chekers, and proof constructors
can be constucted. For logic-dependent tools, we think that it would be betier to provie them by
designing an appropriate metalanguage such as ML [Gordon 791,

Among these general-purpose reasoning assistant sytems, it can be safely said at this stage
that it is only our systern EUODHILOS that incorporates such a distnctive feature as providing
methedology plus logic defining capability.

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

We have presented the unique features of a general-purpose reasoning assistant systcm
EUODHILOS which is under development. And also we have shown its advantages of our
approach and potentials through a number of formal systems and their proof examples. As a
matter of fact, we have been confirmed in the following intended points by those experiments.

(i) Advantages of generality

The generality of EUODHILOS have been tested by using it to define various logics and
to verify proofs expressed within them. Almost every logic together with its proof example was
created in several hours. If we had have to develope a reasoning system with same funcdons as
EUODHILOS for each logic from scratch, how much time would it have taken 10 do it 7 And

we would have to do another job in the almost same manner if we had needed other logic.

Therefore we mav conciude thar TUODHILOS have demonstrated the userulness of o1s
renersiite in o much widar range of applivauons.
rii; Derinite ciause orammar approuch w the definition of logical syniax

-

Derinite cizuse grammar is more natural and easier for users to define a logical syntax.
compared with other approaches to logical system description languages. And also it requires
less knowiedge 1o describe.A wif editor and a facility to test the defined language serve to check
the intended svntax. These greatly lighten a user’s burden in settng up his own language.

(iii} Proving methodology based on sheets of thought

(iv} Wisual interface

An attempt of construcring a general-purpose reasoning assistant system is, however, only
at the initial stge of research and development, and is lacking a number of significant 1ssues
which shouid be taken into consideration. We shall touch upon seme of future research themes
which may be helpful to augment and deepen the current level of EUODHILOS.

(1) Augmentadon of formal sysiem description language

The current state of the formal system description language is defficient in some respects.
Much efforts have to be paved on making the logic description language more expressive. For
example, in the current framework, rule descriptions of Gentzen's sequent calculus, tablaux
method, some formulation of relevant logic, etc., seem not to be expressible. Furthermore,
automatic mechanism checking rule application conditons are not incerporated in
EUODHILOS. To overcome these defficiencies. we would need some more flexible rule
descripton language and method.

(2} Investigaton of higher-level supporting functions for reasoning

Developing a language for proof strategies, incorporating metatheory, etc., are important
subjects since these could arain increasing the namralness and efficiency of proofs.

(3) Maintaining a relational dependency among various theories

Various theories or logics are used to be involved in a proof. Let us consider the following
simartion : There exists a number of theories or logics together with various kinds of databases,
thev may be mutuaily dependent in the sense of the referentdal relations and we want o modify
or revise a theory or underlying logic. Then what happens? Obviously, relational inconsistencies
among theories may anse with such a modification and revision of theories or logics. The reader
will notice that this is 2 kind of non-monotonic phenomenor.

(4) Opening up a new application field of reasoning by EUODHILOS

The unigue featres and potentals of EUODHILOS could suggest a new direction to CAl
svstem for logics, We are now particularly interested in clarifving the feasibility of using
EUODHILOS as a tool of logical model construction and specialized use of EUODHILOS such
as a basis of computer-aided programming.

(5) Improvement and refinement of human-computer interface for the reasoning system

21

"We =ave mag 1o analvze inminsically now reasoning-orenied human-compuler interiace

pio me. However. U seems 1o lack a uniform and systematic point of view jor such an

ACKNOWLEDGEMENTS

The authors are grateful to Mr. T. Hai of FUIITSU LABORATORIES LTD. for his
heipful discussion and cooperation in developing EUODHILOS. This work 1s part of 2 major
research and development of the Fifth generation computer project conducted under a program
set up bv the MITL

REFERENCES

[Abrial 84] Abrial J. A, : The mathematical construction of a program, Science of Computer Programming, Vol.
4. pp. 45-86, 1984,

[Backhouse 8] Backhouse, R. and Chisholm, P. : Do-it-yourself type theory (Part 1), Bull. of EATCS. No. 34.
pp. 68-110, (Part 2, ibid.. No. 35, pp. 205-245, 1988,

{Burkhoider 87] Burkholder, L. : The halting problem, SIGACT NEWS, Vol. 18, No. 3, pp. 48-60, 1987.

[Burstall 74] Burstall, R. : Pragram proving as hand simulation with a lite induction. Proc. of IFIP Congress
74, Nomh-Holland Pub. Co., pp. 308-312, 1974,

{de Bruijn 80] de Brusin. N, G, : A survey of the project automath, in: Seldin and Hindley (eds.}, TO H. B. Curry
* Essavs on Combinatoty logic, Lambda calculus and Formalism, Academic Press. pp. 379-606, 1980.

[Coquand 53] Coouand. T and Hues, G. : Conswructions : A higher order proof system for mechanizing
mathamatics. LNC3 203, pp. 151-184, 1985,

[Constable 2] Consiable, R. L., Johnson, 5. D. and Eichenlaub, C. D. : An inwoduction to the PL/CV2
programming lugics, LNCS, Vel 135, Springer, 1982,

[Conswablz 86) Constable. R.L., et al. : Implementing mathematics with the Nuprl proof development system,
Prenuce-Hall, 1988,

[Eriksson 821 Erikeson, A., Johansson, A. -L. and Timlund, §. -A. : Towards a derivation ediwr, Proc. of the
1st Inw. Logic Programming Confl, 1982,

[Felty 88] Felty, A. and Miller. D. : Specifying theorem provers in 4 higher-order logic programming language.
L™NCS, Vol 310, pp. 61-80, 1988,

[Gallin 75] Gullin, D. : Intensional and higher-order modal logic, with applications to Montague semantics,
North-Holland, 1873

{Genesercth 87) Genesereth, M. R. and Nilssen, N, J. : Logical foundation of amificial intelligence, Morgan
Kagfmann, 1987,

[{Gordon 791 Gordon, M. 1., Milner, A. J. and Wadswerth, C. P. : Edinburgh LCF, LNCS, Vol 78, Springer,
1979,

[Gordon §2] Gordon. M. 1. C. : Representing a logic in the LCF metalanguage, in: D, Neel (ed.), Tools and
notons for program construction, Cambridge U. P, pp. 163-185, 1982,

{Goaguen 83] Goguen, J. A. and Burstall, R. M. © Tnrruducing instituions, LNCS, Vol. 164, Springer, pp. 221-
270, 1983,

4.1 An emvironment Sor farmal svstem. ECS-LFCS.87.32, Unwv. of Edinburgh. 1987,

“Harper 37 Harter, R Honsell FLoand Plodan, G A framework for defining logics. Proc. of Svmposium on

Uaric in Compuier Science, pp. 194-2(4, 1987.

[Hoare 891 Hearz, C. A. R. : An axiomatic baisis for computer programming, CACM. Vaol. 12, No. 10, pp.
370-580. 283, 1969,

|Ketonen 84] Ketonen,], and Weening, J. 5. EKL - An interactive proof checker, User's reference manual,
Dept. of Compuier Science. Swanford Univ., 1984,

[Kitagawa 63] Kiagawa, T.: The relativistic logic of mutoal specification in satsucs. Mem, Fac, Sci. Kyushu
Univ. Ser. A. Vol 17, No. 1, 1963,

[Kunsy 76] Kunst, J. : Making sense in music I - The use of mathematicai logic, Interface 3, pp. 3-68, 1976,

ILukatos 76] Lakawos, L. : Proof and refutations - The logic of mathematcal discovery, Cambridge Univ. Press,
19.76,

[Langer 25] Langer, 5. K. : A set of postulates for the logical struciure of music, Manist 39, pp. 361-370,
1023,

[Martin-Lal 84] Martin-Laf, P. : Intuitionistc type theory, Bibliopoplis, 1934.

IMutsumoto 837 Matsumoto, Y., Tanaka. H., Hirakawa, Mivoshi. H. and Yasukawa, H. | BUP: A hotom-up
parser embeddedin Prolog, New Generauon Compuung. Vo. 1, pp. 145-158, 1983,

[Miller 87) Miller, D and Nadathur, G : A logic programming approach (@ manipulating formulas and programs,
Proc. of IEEE Symposium on Logic Programmung, pp. 380-388, 1987,

[Miller §7] Milier, D., Nagathur, G. and Scedrov, A. : Hereditry Harrop formulas and uniform prool systems,
Proc. of Symposium on Logic in Computer Science, pp. 98-103, 1987,

Minzmi 28] Minami. T., Sawamurz, H., Smto, K. apd Tsuchiva. K¢ EUQDHEILOS © A general purpos:
reasoning assistant system - concept and implemelation - , 1w appear in LNCS. 1988,

(Paulson $6] Paulson, L. C. : Natural deducuon as higher-order resoluuon, J. Logic Programming, Vo. 3, pp.
237.258, 1986

iPeirce 74] Peirce, C. 5. Collected Papers of C. 5. Peirce, Ch. Hartshome and P. Weiss {eds.}, Harvard Univ.
Press, 1974,

[Pereira 80] Pereira. F. C. M. and Warren, D. H. D. : Definue clause grammars for language analysis - A survey
of the formalism and a comparison with augumented transition networks, Artificial Intefligence, Vol. 13. pp.
231-278, 1980,

[Rahn 79] Rahn, J. : Logic, set heory, music theory, College Music Symposium, 19(1), pp. 114-127. 1979,

{Reps 34] Reps, T and Alpern, B @ Imizructive proof checking, ACM Symp. on Principles of Programming
Lanpuages, pp. 36-43, 1984,

[$ato §5a] Sato, K., Teuchiva, K., Sawamura, H. 2nd Minami, T. : General-purpose reasoning assistant syswem
/ODHILOS - its unigue funcions and impiemenwuon -, 1988, {in preparadon)

[Suto 88b] Sato, K. and Tsuchiva, K : EUODHILOS reference manual, Fujitsu Lid., 1983. (in Japanese)

(S awamura 86] Sawamura, H. © A proof constructor for inensional logic, with 55 decision procedure, 1IAS B
R.. No. 63, 1986,

[Sawamura 87] Sawamura, H. and Minami. T. : Conception of general-purpese reasoning assistant system and
its realization mothod, 87-5F-22, WGFS, 1PS, 1987, (In Japanese).

23

{Smets 28] Smews, P, Mameors, A, Dopmis, D) ana Proqe. H @ Non-siandard iorics {or zutomated reasoning,
Acaasruc Prass, 1683,
er lopical puzeies inzluding an amazing adventure

‘Srmailvan 551 Smuilian, 2.0 To mock 2 mockingbire. 2ns o
cio. Alfrad AL Rnopf, Inc. 1%EE.

in comBinaury iosi. -
[Wevhrauch 80] Wevhrauch, R. W, : Prolagemena 10 2 Ltheory of mechamzed formal reasoning, Arnificial

Intelligence, Vol. 13, pp. 133-179, 1980.

24 =

