ICOT Technical Report: TR-422

TR-422

Overview of Knowleage Base Mechanism
by
S. Shibavama. H. Sakul
T. Taukewaki(Toshiba). H. Monol.
Y. Maorita and H. ltoh

Octoher, [958

COI9%s 10T

Mg Kohoead By U3F RIRTINECTTE T

|l O ' = N iU e el TOCPE [e
ST Tvilow

matv=kn i I Lsen

Institute for New Generation Computer Technology

Overview of Knowledge Base Mechanism

Shigeki Shibayama, Hiroshi Sakai, Toshiaki Takewaki
Toshiba Research and Development Center
1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 210, Japan
Hidetoshi Monoi, Yukihiro Morita, Hidenori Itoh
Institute for New Generation Computer Technology
4-28, Mita 1-Cheme, Minato-ku, Tokyo, 103, Japan

ABSTRACT

This paper describes an experimental knowledgs base
svstem, which is one of the knowledge base mechanism
research efforts carried out in the intermediate stage of
the Japan's Fifth Generation Computer Project. The
svstem employs the relational knowledge model, an ex-
tension of the relational data model, which allows a
Yrerm™ data type.

The hardware adopted & hybrid shared memary
multiprocessor architecture. The processing elements
shares 2 conventional shared memory and a multiport
page-memory, & page-based conflict-free memory. Ded-
icated knowledge base management software was built
on the hardware, The efiiclency of the software and
the effectiveness of the architecture are shown in the
preliminary evaluation,

1 INTRODUCTION

In thiz paper, we will describe a parallel knowledge
base machine research effort carried out in the interme:
diate stage of the Jupan's Fifth Generation Computer
Froject. In another article [Ttoh 85] interrelation among
the four research efforts, including this one, within the
knowledge base mechenism research is given.

[n the initial stage of the FGCS project, & relational
database machine Delta was built as a first step toward
a knowledge base machine [Kakuta 35, [Skibayamea 84].
Though Delta was operational, it was recognized that
the strict relational medel adopted im Delta was nat
sufficient for the basis of the further knowledge base
machine research [Shibayvama 85). The modification of
Delta’s software was considered to be difficult because
of the large amount of software. The quantity came
from the fact that there was software for processors
which were specialized to different purposes. Also, the
amount of parallelism in Deitz was limited (four en-
gines) for carrying out research into parallel knowledye
base processing

With the introduction of the relational knowledge
model [Yokota B86], we thought that this medel was
appropriate for a Dasis of the interface hetwesn logic

programming languages and knowledge base svstems.
This is because the model enhanced the relational data
model to aliow terms as & data primitive and enabled 2
kind of deduction without the aid of inference machines.
The parallel processing method on special hardware was
investigated [Morita 87].

However, 2 simulstion study [Sakei 87] disclosed that
the deduction was not so attractive in terms of process-
ing speed. This is mainly because there are many re-
peated relation transfers in the deduction process. Even
dedicated hardware (unification engines and a multi-
port page-memery [Tanaks 84]) did not remedy the sit-
uation.

With these intermediate results, we shifted the re-
search direction to implement & backend knowledge
base machine. In the course of the simulation study, an
expesimental parallel machine was being built. Orig-
inally it wos aimed to be used for the hardware ver
sion of the simulation. The architecture proposed in
Yokota 86] incorporated hardware unification engines
as the processing element core. The experimental hard-
ware, however, did not incorporate unification engives.
1t was berause at the outset of its development the uni-
fcation engine design was considered to be premature
and the hardware amount was predicted to be too much,
This experimental machine was not used for the further
simulation but was used for the implementation of the
knowledge base management software.

The knowledge model we adopted was still the rela-
tional knowledge model. We were more concerned with
the incorperation of the relational-algebra-like primi-
tive operations and unification-based query language as
an interface to host PS] machines than the deduction
capability with the model though it is possible to do
that if we do not eare much for the processing time.

The hardware was completed by the end of 1986 fiscal
vear. The knowledge base management software’s work
has been carried out since 1987,

In the context described above, we have besn engaged
in the design and implementation of an experimental
knowledge base system, named Mua-X. The knowledge
base is definad as a eollection of term relations, that is,

[FEP |

{ ?hared MTmurv |
lPELI IHi:lle:t---lT%T

{ Multiport Page Memory |

Figure 1. Hardware Configuration

relations extended with attributes that have structured
items and variables. Conventionz] attributes such as
integer and character data types are also supported.

Iz section 2, the hardware of the system is briefly
deseribed. In section 3, the saftware of the system is
degeribed semewhat in detail. Tn section 4, preliminary
performance evaluation results are given and discussed.
In seciion 5, discussions are presented on the system
architecture and possible improvements. Section & in-
troduces a sample information retrieval system devel-
oped using the interface set up for the PSI connection.
Section T is the conclusion.

2 HARDWARE

Mu-X pdopred a shared memory muliiprocessor ar-
chitecture, Mu-X mainly consists of eight processing

elements (PEs), a conventional shared memery and a

multiport page-memory (Figure 1). Each PE consists of
& general-purpose microprocessor, & moving-head disk,
a loca! memery and a multipert page-memeory interface.
There is no special-purpose hardware for funetional dis-
tribution of database tasks [Shibayama 87].

The multiport page-memory [Tanaka 84] is a conflict-
free memory system shared through the ports it pro-
vides, The multiport page-memory consisis of 2 set of
memory banks, a switching network for interchanging
the multiple ports and memory banks, port controllers
attached to each port and a main controller. By cycli-
cally interchanging the network and appropriately read-
ing/writing the proper part of memory banks, simulta-
necus access from each port to arbitrary memory pages
is renlized. This 1= Hustrated in Figure 2. In our im-
plementation, the port count is equal to the FE count,
i.e. eight. Each PE is connected to a port of the multi-
port page-memory. For the switching network, we used
multiplexcr between the memory banks and the ports
to make the hardware simple. More highly parallel im-
plementation would require, for example, a multistage
aetwork,

Hence Mu-X has two types of memory systems. The
multiport page-memory and the shared memory both

I

Figure 2. Multiport Page-Memory Principle

provide capability for exchange of information among
the PEs. The conventional shared memory and the
multiport page-memory have the following character-
istics.

(1) For conventional shared memory, the unit of ac-
cess is typically a word, while for multiport page-
memory data is accessed on page basis.

(2) Cenventional shared memery has potential access
conflict among multiple PEs, while for multiport
page-memory no access conflict occurs.

(3) For shared memory, access (whea there is no mem-
ory access confiict) is quick, typically one or a few
microsecond, while there is at least 2 page trans-
far time overhead for the multipert page-memary
pREE ACCEEE.

These characteristice are taken into account in the
software implementation.

To complete the machine quickly, we used off- the-
shelf components for the processor, local memory,
shared memory, disk controller and disk unit. The mul-
tipert page-memory, its interface within each PE, and
the shared memory arbiter are newly designed and fab-
ficated. The hardware consists of two eabinets. In one
cabinet eight processing elements and the conventional
shared memory are installed and in another cabinet the
multiport page-memery is installed. The front end pro-
cessor is an off-the shelf personal computer (VME-10),

e ———— L] PO e e - L]
i 1 1 1
i | 1 1
i PSIE 1 1 Fazallel KBM :
] I |

1 1
I } 1 : i 1
I I I I
] LIA I | LLa !
1 1 ¥ Il
| 1coT-LAF P ICOTLAN 1

1]
: P :
I I 1
: Gateway -TZ.]L—-" Gateway :

1
l b |
D e L b e e e o
[COT site Digital data Te=zhiba site
exchangs
Figure 3. Network Connection
Table 1. Hardware Specifications
"PE count g

P E processor MBS0 at 12.5MH?
Local memary ZMB/PE
Shared memory IMB
Multipost page-memory | 8 porcts

G40 B with 512-byvte pages
SMEB/ sec/port transier speed
Multiport page-memery | 1R85

Buffer

Tigk Uit Capacity

4TMB, formatted [

plared adjacent to dMu-X and connected to the conven-
tional shared memory., The hardware's specification is
summarized in table 1.

For the coanection to PSI-1] machines, Me-X is con-
necied to the PSLNet, Mu-X is located at the Toshibe
Research and Development Center in Kawasali City
adjacent to Tokyo. Mu-X is connected to ICDT s local
PSI-Net via gateways {Figure 3).

3 SOFTWARE

3.1 Deesign Goals
FUNCTIONALITY

{1} Term data support

As the system is based on the relationz] knowledge
model, capability of maripulation of terms is essential,
Additicnal sperations to normal comparison operations
ace required. The unification cperation 18 the most ba-
sic pperation associated with terms; the operations such
as list membership check must also be supported if we
try to use terms in a dasabase context, Figure 4 shows
an example of the internal representation of 2 term.

We also adopted the term representation in various
svstem data structure. For example, in the data die-

saladitomatol2} lettacel1))

0111 | 00000001000
Qoo0oolo ‘g
“a” 1
o o
0111] 000000001018
Q0000010 "
.o "
2" "
“¢" 00000000
0000 | G00000G000010
OL11§OUo0o0EnL0Ld
pooonoat| <1

- ey
= o
o o

oeoe | 000000000001

Figure 4. An Example of & Term

tionaries the information about a relation is stored in a
tuple and the information about its attributes iz stored
in &o attribute using the term structure. The messages
exchanged with a host machine are also represented us-
ing the term structure.

{2) Variable-length record support

This is also a derivation from the term data support,
The attribute length of & term attribute cannot be de
fined at the schema definition time. This is because the
length of & term mav drastically change when a unifi
cation is performed. The data structure is determined
50 that the variable-length records can be manipulated
with the least loss of efficiency.

3) Multitransaction support
{ pp

Considering the environment that this machine is
used, an efficient realization of multitransaction facil-
ities is pursued.

EFFICIENCY
{1} Pacallel processing

Parallel processing algorithms on multiprocessor
database machine have been extensively studied and
implemented [Boral 82), [Hanson 87|, [Nakamura 87),
[Wilkinson 87), [Bitton 83a), [Kitsuregawa 84], [Shapiro
86). The algorithms are for the most part aimed at
improving the response time of & query. In our paral-
lel processing scheme, we are not only interested in the
response time but also the throughput of the system.

{2y Alinimizing software overhead

The motivation behind this goal is that the con-
ventional operating systems are not suited for the
sonstrustion of special-purpose software, in particular
datnbase or knowledge base machine implementation.
The management software is designed and coded with

this strongly in mind.
{3) Effective use of the hardware architecture

As is described in the previous section, a feature of
the hardware is that it has the hybrid shared memory
systems of different nature. The manegement software
zimed to make mest of the memory systems. Care is
alse taken to preserve the scalability as much as possi-
bie. Hardware having the same architecture with more
PEs could run the software with increased performance.

3.2 Basic Design

DECENTRALIZATION OF FUNCTIONS

Mest of the multiprocessor databese systems have a
control processor and 2 number of data processors or
PEs [Su 88]. The control processor is usually respon-
sible for geaeral and miscellanesus management tasks
such ms transaction mansgement, data dictionary man-
agement, query compilation, parallel execution control
and response generation. The PEe are responsible, on
ihie other hand, for database operation execution.

The configuration, in 2 multi-transaction environ-
ment, has the disadvantage that the processing power
of the control processor is ot encugh for managing the
many PEs and becomes a performance boitleneck,

Some systems such a5 DBC /1012 adapt multiple con-
trol processors approach to eliminate this bottleneck.
Convessely, the processing power of the control proces-
sors gre not used for the processing of quertes. To solve
thiz problem, we assigned both the control processor
funictions and the data processor functions to each PE.
Each PE is in charge of at most one transaction for the
control processor tesks. When s host computer issues
& trangaction, the front end processor seeks an idle PE
to be responsible for it, The PE becomes the “transac-
tion mastes” of that transaction and takes care of the
transaction until the end of the transaction. The front
end processor is only responsible for the manipulation
of network protocols.

CONFIGURATION OF THE PE SOFTWARE

Since each PE has to work on the control proces-
sor and data processor tasks concurrently, the execu-
tion of each task should be imterchanged with little
software overhend, We decided not to use the iask

Doy --na. .
Valtlng for a Query

Traasforalsg tha guary fale
& ires sineturs

Aszeesies the data dictieeasy
Ineludleg thw Lok operations

| Gererating intersd] coesands
Talaranl Cosnandedd~ ~

lwtrrsal Devopases ., |
Valtleg for the resposses

Epdogicg 1ha guery Lfew

)

Hallag 128 e pord

Figure 5. Program Main Flow

switch mechanism provided by the reaidir:g operating
svstem. Our solution was that the software consist of
two modules, the transaction manegement module and
command processing module, and let the transaction
management module call the command processing mod-
ule at certain program states. Thus the two modules
actually eomprise a single control flow program where
the traneastion manegement program is the main pro-
gram with the command processing module subroutine.
The flowchart of the main program is shown in Figure
5. The following is a brief explanation of the chart,

State 51: idle (waiting for the arrival of 2 query)
State 52: query transformation to a query tree

State 53: dete dictionary consultation and relation
locking, if necessary

State 54: internal command(s) generation

State S55: idle {waiting for the responses of the inter-
nal command(s))

State S6: reduces the query tree and go to 54 if there
remains query tree to be processed

State ST: return response to hest, go to 51

The transaction management module calls the com-
mand processing module at states S1, 53 (only if the
lock operaticn is suspended), and 55. The command
processing module, when called, seeks the internal com-
mand: which the PE can, or is supposed, to process.
(See the internal command description for detals.}

When there is no such internal commands, the control
is returned to the management module,

The transaction management moduie generates and
dispatches the internal commands step by step as it re-
duces the query tres. {Iptimizations in query process-
ing can be better applied in the process than in the case
where internal commands are generated in batch before
the query processing, because the temporary relations’
sizes are exactly known after a tree ceduction, The size
information can be used to determine the algorithm for
ELCCES 5]‘."-'& oDED a'.j.UIlS.

We adopted a single control flow program approach
mainly to eliminete task switching overhead between
transaciion management tash and command processing
task. The other advantage is that the multipert page-
memory mterface memory, which 2 the 1/0 buffer of
the multiport page-memory, can he fully utilized by the
current task since the execution 13 exclusive

3.3 Internal commands for parallel processing

Internal comemands are specifications of relaticnal al-
g=bra level operations that PEs should process in paral-
lel. According te the nature of the commands, they are
clessified into two types, PE specific and PE nonspecific
commands.

{1} PE Specific and Noagpecific Commands

4 PE specific command i2 concerned with accessing
a portien of a relation stored in the disk. [t must be
processed by the PE(s) which owns the data in the disk.
Therefore & PE specific command has an assignment
mask, & bit array which specifies which PE{s) should
process ik,

A PE nenspecific command is concerned with only
those relations stored in the multiport page-memory. In
this cose it can be processed by any PE. Idle PEs are
responsible for processing such commands, which helps
balance the processing load ameng the PEs. Nete that
both PE specific and nonspecific commands are shared
by PEs. This requires a synchronization mechanism as

described below,
(2) Assignment, Participation and Cempletion Masks

These mask fields are provided within the internal
command used for synchronization. As the nature of
parallel processing, it is not obvious to know when an
internal comenand is finished. For example, as for a PE
specific commeand. there may be & case where some of
the PEs have already finished the proeessing while the
others have not even started 1t veo,

A PE specific command is associated with an assign-
ment mask and a completion mask. The setting of the
a.ﬁsignmtnt mask bit indicates that the t'f:-rrFH]:h’lr'.diﬂﬂ

1

PE must process the PE specific command. The com-
pletion mask bit is set by a PE that finished the com-
mand, If those coincide, it indicates the completion of
the command. Similacly, the PE nonspecific command
is associated with a participation mask and a comple
tion mask. The participation mask bit is set when a PE
participates in the PE nonspecific command proeessing,
The meacing of the completion mask is the same as in
the PE specific command. [f those coincide, the PE
nonspecific commaned is known to be completed. s
ing these masks, PEs can suspend the execution of an
internal command, which helps to prevent the average
respanse time from getting leng in bad situations, In
other words, this is part of 2 mechenism that substitutes
the multi-tasking mechonism in a conventional operat-
ing system, There is a limit time for a PE to continue
the processing of one internal command. If the time ex-
ceeds the limit, the PE looks for & queued PE specific
command related to itself. If such a command is found,
the PE begins the processing of the new command by
]a,_-u'l.'in_g the EIJLL]:J:.I::iIJJl mask of the current command
'Ili'lt:‘ll':l.]lge{:‘.

EE] Ohject Counter

Thers is & counter Hald called the object counter
within @ PE nanspecific internal commmand. This s
used to specify the current object (page) number ready
for processing. For example, in a selection operation
which requires the scan of a relation within the multi-
port page-memory, each page of the relation must be
processed only once by an arbitrary PE. In this case,
the object counter is initialized to the first page num-
ber. Each PE tries to get the content of the object
countes (e, the page number to be processed next)
and to increment it by one in a critical section of its
program,

3.4 Data Objects

It e coucial te high performance to effectively wse the
hvheid memory svstems, namely, conventional shared
memaory and the multiport page-memory.

The multiport page-memory behaves very much like a
disk-cache for data stored in the disks; however, strictly
speaking, it is not a disk cache, Rather, it is used as 2
large-capacity buffer. This means that the replacement
is under contrel of the control software at any time. In
the following, the mejor data objects in the system ase
described with o foous on whers they are stored.

(1} Temporary Relation

A temporary relation is created typically by a re-
trieval operation. It is stored in a “multiport page-
memory fila”, MPPM file for short, which is & sequence
of pages allocated within the multipart page-memaory.

Control tables are used 1o get the required page loca-
tion within the multiport page-memory from the logical
page number of the MPFM file. They are stored ia the
shared memory so that an MPPM fle can be accessed
by any FE. 4n MPPM file could be used Lo store a per-
manent relation. Thus, the locking protocols and the
version management on each page of the MPPM £le are
also realized in the control tables. There are 236 MPPM
files available in the curreat implementation.

i(2) Permanent Relation

A permanent relation s herizentally divided and
stored across the disks. Hesh-based or reund-rebin par-
titioning can be specified at the relation schema defini.
tion tirme. Within a PE, the partitioned portion of a
pesmanent refation 15 stored in a “disk fle”. A disk fle
is basically a sequence of Sxed-size pages within a disk
device.

In an update operation, the new version of a page
data is created and stored in a new page of the multiport
page-memory. When the transaction 1s committed, the
new version of the page data i actually stored in the
disk device

{2) Temporary Cluster

A set of temporary clusters are generated in a dy-
namic clustering operation. Each cluster is stored n a
“bucket file”, A bucket file iz stored in the multiport
page-memory like the MPPM file. The control tables,
however, are simpler than that of the MPPM file, be-
cazse their use is limited.

{4) Datz Dictionaries

There are two types of data dictionaries, the local
data dictionary and the global data dictionary.

{a) Local Data Dictionary

A loecal data dictionary ts associated with & transac-
tion anrd mainly keeps the infarmation about tempo-
rary relations such as the data type, the name of each
attribute, and the number of tuples. It is stored in the
local memory of the PE responsible for the transaction,

(b} Global Data Dictionary

The global data dictionary mainly keeps the infor-
mation about the permanent relations. It is a spe-
cial permanent relation, partitioned across the disks as
other parmanent relations, and loaded into the multi-
por: page-memory at the system startup time. To pro-
cess a query which requires access to the global data
dictionary, the related portion of the global data dic-
tionary is further copied to the shared memory and is

used. The shared memory works as a cache for the
global data dictionary. So, once a portion is copied
to the shared memory, successive access to the portion
goes to the shared memory. This can be determined
by examining a hash table, The updates to the global
data dictionary are reflected to the cached poction in
the shared memory, if it exists, and to the copy in the
multipart page-memory.

[n summary, we have designed and been implement-
ing the software that we belisve 13 appropriate for
knowledge base or database purposes. For the recov-
ery facilities, the transaction recovery mechanism is in-
ciuded. We took into consideration the logging facilities
for system recovery, however, it is not included in the
implementation.

4 PERFORMANCE EVALUATION

We have done a preliminary performance evaluation
using the Wizconsin Benchmark database [Bitton 83b].
According to our data storage scheme, the fixed-length
database is stored using variable-length record format
though the variable-length field is never used. A record
header is attached to each record, while some attributes
are storsd using a two-byte short integer format against
the original four-byte field.

The size of the relation we used 15 one thousand to-
ples (Thoustup relation). This is hecause we used the
database that is also used for debugging. The Thoustup
relation is stored in 112 2K-byte pages. Each page con-
tains 9 tuples except for the last one.

The evaluation is done without any indexing scheme.
That is, the values are all “nonindexed”. A full scan
of a relation is performed in the selection case and a
paged nested-loep algorithm is used in the join case.
In all the cases the processing times are measured as-
suming “cache kit", in other words, assuming that the
relation already resides in the multiport page-memory.
The evaluation was done in a single-user environment.

We measured the execution times of three gueries as
shown below. Two & them are zelections and one is
2 join. The join is performed between the copies of
the same Thoustup relation. The temporary relation is
formed in the multiport page-memory. The values in-
clude processing times of all tasks required to execute a
query within Mu-X, such as query compilation, commu-
nication and syochronization, The query transfer time
from PSI-IT and result teansfer time are not included.

Query 1 (1% selection}
insert inte te=p select = Irom Thoustup

vhers unigquel betuvesn 101 and 110

Query 2 (10% selection)

Tahie 2. Evaluation Results

query | PE eount | | 2 4 3

1 total [197ms | Ll0ms | 58ms | 49ms
mapage. | 2dms | 2ims | 2dms | 2ims
proc. 17dms | 86ms | 44ms | 24ms

2 total 255ms | 139ms | 83ms | §Tms
manage, | 24ms | 2dms | Zdms | 25ms
proc. 23lms | Ll3ms | 59ms | 32ms

] total 55.25 | 4d.1s5 21,25 | 10.9s
Manaes, 4ims 44ms ddms | 46ms
proc. 8315 | 431.0s .35 { 10.9s

inseri inmto temp select * from Theoustup
where wnigeal betwaan 101 and 207

Queary 3 {join)

insert into temp

select Theustupl.+, Thoustup2.=*

from Thoustupl, Theoustup?

vhers Theustupl.uniguel = Thouetup2.uniquel

Table 2 shows the evaluation results. The total exe-
cution time, management task time and net processing
time for each case are given. As the used relation size
13 emall, the management task times are comparable to
ihe processmag ftimes in the selection cases. According
to our nonindexed selection processing scheme, much of
the transaction management task doae by the transac-
tion master PE remains the same regerdless of the size
of the targe: relation. So we can extrapolate the selec-
tion processing time to the larger terget relation sizes
as long 25 the disk buffer {multiport page-memory) size
is reasonably lazger than the size of the target rela-
tion, We can predict, then, the processing times of 0.27
second for 1% selectivity selection and (.33 second for
10% selectivity selection against the ten-thousand-tuple
{(Tenk:iup) benchmark relation.

OBSERVATIONS

To give the reader the idea of the basic processor
speed, the Dhrystone benchmark result of the PE is
shown in table 3 in cornparison with other processors.!
The PE is by no means the fastest hardware to the to-
day's standard. I the PEs were replaced with [aster
hardware of the day, substantial speedup could be ob-
tained for the processor-intensive portion of the pro-
cessing times.

Still, we think these values are satisfactory for the
nonindexed selections. For the join query, because a

¥The vaiues are shawn for the relative compariscn io our environ-
ment and not for comparson with the reported values elsewhere.

Table 3. PE Performance

| Processors Dhrvstone
| {All CPUs are §3020s.} loops, sec
PE CRE]
12.58Hz, ne cache, ofi-board memory
Sand, 50 TadT
15MHz, no cache, on-board memory
Sund/ 160 3083
16.7¥Hz, no cache, on-board memory

nested-loop algorithm is used, the processing time is
not as small as other latest evaluation values. How-
ever, we think that the values are guite reasonable with
respect to the algorithm used and we are expecting a
considerable speedup when the bucket-wise hash-join
algorithm [Kitsuregawa 33] is completed.

In this evaluation we omitted the disk access times.
In the nonindexed cases, we estimate that the disk ac-
cess time for the Tealitup relation if about 0.6 to 0.7
second in the eight processors case. In the current im-
plementation, as the processing time and disk access
time are serialized the 10% selection time against the
Tanktup relation will be about one second. In the join
query there will be littie effect on the evaluation result
because we can store the whole relation in the buffer
{multiport page-memory) after the first accesses to the
relation.

In summarv of thiz section, thoucgh there are oaly
a few evaluation results available now, thev show en-
couraging performance potential of the machine. This
will be made further evident afier more detailed and
exhaustive evaluations.

5 DISCUSSIONS
SYSTEM ARCHITECTURE

Mu-X can be thought to have an architecture that
has dynamic processar-memory essignment capability.
This is because the portions of the shared memories
(bothk the conventional shared memory and the multi-
port page-memory | can be used by any PE without ex-
plicitly transferring data. In this class of architectures,
if the PEs cannot access the data at e rate that matches
the FE's processing speed, the performance will become
poor. If only the conventional shared memory is shared
ameng PEs, the shared memory and the memory bus
should heve the bandwidth that pace the processing
speed of multiple PEs,

This is considered to be a challenge to the memory
svstemn since the clock cycle of processors are becom-
ing faster at a greater rate than the memory chips and
memory bus speedup. Even si.l:l,gl: pProcessor 5}"5":&]:1!‘

mermory bus often does not have enough bandwideh for
the processor’s speed. The situation is worse in the
multiprocessar case. Generally, cache memories are the
solution to the problem; howewver it is still question-
able if the database processing manifests good memory
access locality.

The multiport page-memory is a cost-effective so-
iution to the memory-bandwidth enhancement. The
cost.effactiveness results from the separation of ports
while a common bus has to sharten the eyele time of
bus transfers for kigh bandwidth. For example, assume
that there is a shared bus N-processor multiprocessor
with B memory banks sach having T bytes/sec trans-
for eapability. For sach processor to read a page of I
bures in & buffer it requires (K x V)/(T » B} time,
provided that the shared bus has enough bandwidth.
If ¥ is equal to B, obviously the time is K/T. If the
multiport page-memory is used, the time will be also
K /T.? However, the bandwidth of the shared bus must
be more than T x B bytes/sec to fulfill this. In other
worde, the shared bus must have the technology that
enables T x B bytes/sec transfer. While the multiport
page-memory's port and the switching network must
saly have T bytes/sec technology.

In the current implementation, the multiport page-
memory has eight 16-bit ports each having SMB/sec
transfer capability. Thus in total the bandwidth is
4005 feec. This is & figure tha! tannot be achieved
using the same class of technology as was adopted to
impiement the experimental machine.

{Overall, the architecture of Mu-X is similar to that
of DIRECT [DeWitt 79}, [Boral 82] with respect to the
processer memory interconnection. The similarity is
eves sironger when compared to the DIRECT imple-
menzation; DIRECT used multiport memory instesd of
original crossbar connection of the CCD modules and
the gquery processors (or PEs).

The difference with the hardware is the PE config-
uration. The PEs of Mu-X are provided with separate
diske that the PEs can access in parallel. We did not
include disk access times in the evaluation, so it s too
early to claim the advantage that the parallel disks will
bring. However, we are certain that the parallel disks
will reduce the I/ bottleneck [Agrawal 34] and can be
used effectively in {1} nonindexed query processing and

IFer the processor connected to a multiport page-memory, KT
16 the time that the procssssr must wait for & page to be filled in
s buffer. While the processor conoected to a shared bus does pot
kave to wait far & buffer to be filled if the pracesssr’s program
dirsstly accesses the page in shaced memory, In this case, if P is
the time far & procsasr to process a page, then K/T + P is the
time for the processor connected to the multiport page-memery
to fmish the processing of a page. For a processor connected to
shared memary, F i3 the time to finish the processing of & page.
For multipie-page processing, double buffering can be used to
maxe the overhead (KT effectively negligible.

{2} multiuser query processing.

The difference in software is that {1 Mu-X does not
have a centralized contrel processor and (2) neither
conventional operating system nor modules of existing
database systemn are used. The effectiveness of the for-
mer is not yet proven in the single-user evaluations. The
effectivensss of the latter, on the other hand, is shown
in the evaluation values.

POSSIBLE IMFROVEMENTS

Though we are not through with the full implemen-
tation of the software and evaluations, we can poink out
some improvements to the machine architecture and
software design. For hardware, it is matter of course
that the processing speed would be faster if we used
a processor board with a processor cache. To do this,
care must be taken for the shared memory caching to
keep the coherency of the data as in the case of usual
shared memory multiprocessors. One simple way to do
this is to avoid caching the shared memory. For the
local memory within a PE, information is never shared
among PEs; #0 no coherency problem oceurs. We will
not discuss this further hecause the discussion may be
too general to be done here.

Another possible improvement is the multiport page-
memory buffer allocation in the PE memery space. In
the current implementation, in sach PE there is a sep-
arate memory {multiport page-memory intecface mem-
ory) for the input/output buffer use. The memory is
implemented with dual-port RAMs for enabling the si-
mltanesus access from beth PE processor and multi-
port page-memory port. As a multiport page-memory
is an electronically rotating device, the interference of
its rotation causes data loss. The usage of dual-port
FAM: was a simple solution to the problem. However,
the software has come to be responsible for the data
page transfer from the dual-port RAM buffer to the lo-
eal memory for further processing. This transfer is a
source of performance degradation.

To remedy this, it is possible to provide hardware
which takes care of the buffering of multipert page-
memory port data. In that case, a destination buffer in
the local memory can be assigned as the destination of
multiport page-memory page transfer. When the page
transfer begins, the hardware temporarily buffers the
data sent from the multiport page-memory port and
forwards it to the destination buffer on the fiy. The
data loss probability can be made reasonably low by
appropriately designing the hardware's buffering capa-
biity.

The software leaves room for optimization for query
processing algorithms. There is a plan of incorporating
some of the sophisticated algorithms found in the litera-
ture. For example, the bucket-wise hash-join algorithm

[Kitsuregewa S3] is being implemented. The scheme
will also be used for operations such 2s projection and
cet difference. Other algorithms will be incorporated
that help increasing the processing efficiency.

Eor indexes, & hesn-based primary index is being im-
plemented. User-specifiable secondary indexes will also
be implemented.

Fer the basic control mechanism described in section
3.9 there are some points where there is room for fur-
ther optimizations. For exemple, currently, disk access
specified by PE specific commnand and iatsrmal com-
mand processing specified by FE nonzpecific command
are serinlized. This is done because we did not want
to run the residing operating system's interrupt rou-
tine which is very slow, and we suspected that it would
make the saftware too complex,

6 A SAMPLE INFORMATION RETRIEVAL
SYSTEM

To evaluate performance in a real eavironment and
te werify the effactiveness of the unification-based query
language [Manoi 88], we used a sample information re-
irieval system. The knowledge base we built is 2 techni-
cal report datzbase. A QBE-like user-interface is used
on the PSI-1T using the multi-window facility.

The technical report datebase contains technical re-
ports from overseas research institutes, which were
sent to ICOT en an exchange basis. The database
consists of repert| auther, title, institute name,
geywords, reportono, date i lasue, racaived date,
reofarencelauthor,
+izle, institgte.nams, Taport_ng, date_of_iasue),
and institute! institute name, address, research.
topie, members). Some of the attributes that have
multiple instances, for example, suthor, keywords, ref-
grenee, are represented using list structure,

First the user selects the relation(s) concerned with
the query. The schema(s) of the relation{s) appenr
with atiribute names. A simple qualification condi-
tion such as selection to a value can be specified in
the scheins windew. The inter-relation relationship
is specified by means of common variables {specifying
unification-jein) or by assigning separate variables and
relating them in the condition window. For example,
to cheel if a keyword i contained in the keyword list
attribute the vasiable for the kevword (Keywerd) and
the keyword list (Keywerd_list) are related by writing
a rrembership predicate “nember (Heyword, Keyward.
1ist)". The output attributes are specified in the re-
sult window. The query is generally constructed using
the mouse.

In the gquery example shown in Figure §, a query
is specified that retrieves the author list, title and re-

refareance),

port number of reports that contain “database’ in
the keywords and that are issued by institutes that
research artificial intelligence. The vasiable numbers
such as Zi01_1 are computer-generated because these
attributes are specified (mouse-clicked) to be the result
relation attributes without explicitly given names by
the user. In Figure §, the query language form of the
query is shown in the execution windew. This trans.
lated query is seat to Mu-X via the knowledge base ma-
chine interiace classes. The result relation is obtained
in the Mu-X and successive “get” commands retrieve
ihe result relation into the PSI-II machine and display
1k,

Throughout the experience, though this is only 2 pro-
totyped system, we could see that the query language is
powerful enough for the implementation of an applica-
tion system. Actually, the transformation of the QBE-
like query to the query language was quite straightfor-
ward: it took only & week to complete that part of the
system.

7 CONCLUSION

We have described the hardware, software and evalu-
ation of an experimental perallel knowledge base ma-
chine. This can be thought of a parallel relational
database machine with an extended data type. The
hardware employed a hvbrid shared memory multipro-
ceseor architecture. With the sofiware dedicated to
the parallel knowledge base operations, the system ex-
hibits a good potential for knowledge/database opera-
tions. The effectiveness of the multiport page-memory
has been shown by the almast Lnear speedup in the net
processing times of queries.

However, as i mentioned in the foregoing sections,
the machine is, at the time of this writing, still under
development. The more detailed and therough evalua-
tions are nesded to examine the pros and cons of the
system.

References

[Agrawal £4] Agrawal, R., DeWitt, D. J., “Whither
hundreds of processors in a Database Machine?”,
FProc. Int] Workashop on High-Level Archutectures,
Los Angeles, 1534,

{Bitton 83a] Bitton, D, Boral, H., DeWitt, D. 1.,
Willinson, W. K., “Parallel Algorithms for the Ex-
ecution of Relational Database Operations”, ACM
Transaetions on Datebase Systema, Vol §, No. 3,
pp. 324-454.

[Bitton 83b] Bitton, D., DeWitt, D. 1., Turbyfll, C.,
uBenchmarking Database Systems: A Systematic

Author Titla

71_101 | 21.162 | Name | Keyword | 21.105

Keyword Reportho DateQflssReceivedDReference

Paralblel
Reset
Exit
Windaow

institute
Namo Address

Tapic

Membar

Yoz
Ne

Status

xpcution

Ceonditien Windaw

Window

retriseve (raselet (21001 2i_102, 21_105).
I_101. £1_102. Mame, Keyword, 21105 A B, C), In3tizul
te (Mame, O, Tosle. E). meambar {dazabase, Heyward), mem!
ber ¢ AL, Tepicll}

(rapott (2!

manber {(databass. Keyword}
membar (ALY Tepied

Cirmaul kiR |
Author Titla

Reportho
7i_ler | z1.102 | 21105

Figure 6. A query example

Approach”, Proc. VLOE, 1853

|Boral 82] Boral, H., DeWuit, DL 1, Friedland, D, Jar-
rel, M., Wilkinson, W. K., “Implementation of the
database machine DIRECT”, JEEE Trans. on Soft-
were Engineering, vol. SE-3, no. 6. Nov., 1952,

[DeWitt 78] DeWitt, D. J., “DIRECT - A Multi-
processor Orgamization for Supporting Relational
Database Management Systems”, [EEE Tran:. on
Computers, vol. C-28, June, 1573

iDeWitt 861 DeWitt, D. I, Gerber, B H., Graefe, G.,
Hevtens, M. L., Kumar, K. B., Muralikrishne,
M., “CAMMA: A High Performance Dataflow
Database Machine”, Proe. [8th VLDE, Kyoto,
1584,

[Hanson 87] Bansen, 1. C.., Orocli, A., “Expenments
with Deata Access and Data Placement Strate-
gies far Multi-computer Database Systems™, Froc.
Fifth Interngtione! Workshop on Database Ma-
chines, pp.997-610, 1957,

[[zoh 83] ltoh, H., Monei, H., Shibayama, 5., Miyazaki,
N. Yoketa, H., Konagaya, A., "Knowledge Base

Subsystem Based on Logic Programming”, Froc.
FGC5'88, Tokyo, 1088,

[Hakuts 85] Kakuta, T, Mivazald, N., Shibayama,
5., Yokota, H., Murakami, E., “The Design and
Implementation of Relationsl Database Machine
Delta™, Froc. Fourth International Workshep om
Detobaze Machines, 1985.

[Khoshafan §7] Kheshafian, 5., Valdurez, P., “Farallel
Execution Strategies for Declustered Databases”,
Frac. Fifth Iniernational Workshop on Database
Machines, pp.626-639, 1987,

[Kitsuregawa 53] Kitsuregawa, M., Tanaks, H., Moto-
oka. T., “Application of Hash to Data Base Ma-
chine and Its Architecture”, New Generation Com-
puting, vol. 1, no. 1, 1883,

[Kitsuregawa 4] Kitsuregawa, M., Tanaka, H., Mete-
oka, T., “Architecture and Performance of the Re-
lational Algebra Machine GRACE", Froc. Inter-
national Conference on Farallel Processing, 1884,

[Monei 88] Momei, H., Morita, Y., Iioh, H., Take-
waki, T., Sakai, H., Shibeyama, 3., *Ugification-
Based Query Language for Relational Koowledge

Hases and Iis Parallel Execution”, Prac. FGUS '8,
Takve, 1935,

MMorita 86] Morita, Y., Yokota, H., Nishida, K., lioh,
H., “Retrieval-by-Ugification Operationon 2 Rela-
tional Knowledge Base”, Proc. 12th VLDE, Kyoto,
1936.

[Morita 87) Morite. Y. Ogure, M., Sakai, H,
Shibayama, 5., [toh, H., "Performance Evaluation
of & Unification Engine for a Knowledge Base Ma-
chine”, JTCOT Technical Report, TR-240, 1957.

[Nekamura 87) Nakernura, S.. Minemura, H., Mioo-
hara. T., Itakura, K., “A High Speed Database
\lachine - HOM™, Proc. Fifth International Work-
shop on Database Machines, Faruizawa, 1957,

[Sakai 87] Sakai, H., Shibayame, 5., Monai, E., Morite,
Y., lish, H., “A Simulation Study of a Knowl-
edge Base Machine Architecture”, Froc. Fifth
Interngtional Workshop on Detabase Mechines,
aruizawa, 1937,

[Shibayama 84] Shibayama, 5., Kakuta, T, Miyazaki,
N., Yokota, H., Murakami, K., “A Relational
Database Maching with Large Semiconductor Disk
and Hardware Relationa! Algebra Processor™, New
Generetion Compuling, Vel 2, Mo, 2, 1984

|Shibayams 55] Shibayama, 5., Sekai, H., Iwata, E.,
“34 Knowledge Dase Architecture and iws Exper-
imental Hardware”, Proc. IFIP TC-10 Working
Conference on Fifth Cenerction Computer Archi-
tectures, Manchester, 1985

[Shibavama §7] Shibayama, $., Sakai, H., Monoi, H.,
Morita, Y., [teh, H., “MuX: An Experimental
Kaowledge Base Machine with Unification-Based
Retrieval Capability”, Proe. 2nd France-Jopan
Computer Seience and Artificial Intelligence Sym-
posium, Cannes, 1887

Shagiro 86) Shapire, D. L., “Jein Processing in
Database Swetems with Large Main Memories”,
ACM Transections on Datebase Systems, Val. 11,
No. 3, pp. 238-264.

Su B3] Su, 5. Y. W., Database Computers Principles,
Architectures and Techniques, MoGraw-Hill, 1035,

[Tanaka 24] Tanake, Y., “A multiport Page-Memory
Architecture and a Multiport Disk-Cache System™,
New Generatian Computing, Vol.2, Ne.3, pp.241-
260, 1984.

[Wilkinsen 87 Wilkinson, W, K., Beral, H, “KEV -
4 Kernel for Bubba", Proc. Fifth International
Workshop on Datzbase Muckines, pp.28-42, 1087

IYokota 86| Yoketa, H., Iteh, H., “A Model and an Ar-
chitecture for a Relational Knowledge Base”, Proc.
[§th International j'ympa.!ium on Computer Archi.
tecture, Tokye, 1936

11 ——

