ICOT Technical Report: TR-418

TH-41%
A Parallel Problem Solving Language for
Concurrent Systems

by
A. Takeuchi. K. Takahashi and
H. Shimizu(Mitsubishi)

September. 983

CIoRs. 1COT

Mo Wokuo=ai Bldg 21F (31 450-31up -~ 5

Il O I 3228 Anta 1-Chonrme Teles IWOT J.0044810

Mimato- ko Tekye 18 Japan

Institute for New Generation Computer Technology

A Parallel Problem Solving Language for Concurrent Systems
Akikazn TAKEUCHI Kazuko TAKAHASHI Hiroyuki SHIMIZU

Central Research Laboratory, Mitsubishi Electric Corporation
£-1-1 Teukapuchi-Honmachi, Amagasaki, 661, JAPAN

Abstract A parallel problem solving language ANDOR-IT which combines and- and or-
parallelism is presented. ANDOR-IIis designed to have the ability of solving such problems
as eombinatorial problems and cooperative planning on concurrent systems. ANDOR-
II has language constructs which enable declarative description of concurrent systems
consisting of many determinate, indeterminate and nondeterminate components acting
interactively. Execution of ANDOR-II comprises multiple simulations of all possibilities
which are dynamically derived from nondeterminate components. A new and/or parallel
computation model based on a concept of a color is presented and a compilation from an
ANDOR-IT program into that of a committed choice language is also shown. Finally, an
application to a distributed plan generation is shown.

1. INTRODUCTION

Recent advances in computer systems are accelerating the extensions of methodology and ap-
plication domains of problem sclving techniques. One of the main streams of such extensions iz
the exploitation of parallelism. Exploiting parallelism in methodology includes design and imple-
mentation of parallel programming languages for problem solving and discovery of parallel and/or
distributed problem solving algorithms. Exploiting parallelism in application domains onents to
solving problems on concurrent systems. Growing interest in these directions is forming a new
paradigm called distributed artificial intelligence [Huhn 87).

Distributed artificial intelligence can be defined to be cooperative problem solving by decen-
tralized set of agents which can see only parts of the whole world and interconnect information and
control with one another, The whole solution is cbtained by composing their sub-scolutions. The
great advantare of this approach is its modularity. Firstly, since a problem is expressed by a collec-
tion of modules, readability and maintenance are good. Secondly, even for a large problem which
is unable to be treated in a centralized manmer, the approach is easily applicable by decomposing
the problem into distributed modules, and at the same time efficient execution can be expected
because of parallel execution of these modules. Moreover, there are a lot of problems which have
distributed characteristics by nature,

However parallelism explored =o far in distributed artificial intelligence is limited to so-called
and-parallelism, that is, parallel behaviors in one possible world. Yet another parallelism, called
or-parallelism, corresponding to simultaneous consideration of several possible worlds is not inves-
tigated enough, but is quite powerful in describing some ¢lasge of problems.

When one describes a problem on a concurrent system whose behavior is not perfectly under-

stood, a concept of a nondeterminate component which behaves indefinitely makes a declarative

t In this paper, following automata theory, the term “nondeterminste” mesns pursuit of all the possible choices
and the term “indeterminate” means arbitrary selection.

description of the problem possible. Consider, for example, fault diagnosis of a cireuit. A faulty
circuit can be naturally modelled by regarding doubtful components as nondeterminate cnes which
take correct or incorrect actions indefinitely. In distributed artificial intelligence framework, gen-
erally each agent has several possible actions which can be taken at some moment depending
op itz local cnvironment. Again such an agent can be naturally described as a nondeterminate
component. The behavior of a concurrent system with nondeterminate components has many pos-
sibilities depending on the series of actions taken by them. Furthermore, these possibilities increase
dynamically when such compoueuts take actions repeatedly.

From the point of view of computation, handling of nondeterminate components comprises si-
multaneons consideration of many possible worlds which may grow dynamically. Although they can
be executed sequentially by backtracking, parallel implementation of this or-parallelism together
with and-parallelism is of great interest [Takeuchi 84] [Conery and Kibler 85). In this paper, we
propose a parallel problem solving language ANDOR-II that has a language construct for describ-
ing a nondeterminate component together with its implementation scheme achieving both and- and
or-parallelism.

ANDOR-II iz derived from a current study of committed choice languages such as Concurrent
Prolog [Shapiro 83}, PARLOG [Clark and Gregory 84] and GHC [Ueda 86a]. Thus the syntax,
semantics and implementation of ANDOR-IT iz heavily influenced by these languages. The syntax of
ANDOR-IT is similar to one of the committed choice languages, GHC, but in ANDOR-II predicates
are divided inte two types : an AND-predicate for description of a determinate or indeterminate
component and an OR-predicate for a pondeterminate one. A program of ANDOR-IT is compiled
into a GHC program and is executed by a GHGC processor.

The paper i organized as follows. In section 2, overview of ANDOR-IT computation model 1=
informally introduced. Specification and computation model of ANDOR-IT is given in section 3.
Compilation into GHC is briefly deseribed in section 4. Section § gives an application to distributed
plan generation. Finally comparizon with related works and the remaining problems are described
in section G.

2. OVERVIEW OF ANDOR-II COMPUTATION

ANDOR-II computation starts with a set of processes, which are then executed in parallel.
This corresponds to and-paralleli=m. When a nondeterminate process which has several possible
actions is invoked, conceptually the world, that is, a set of all processes, proliferates into several
worlds, each of which corresponds te a world in which one of the actions has been taken. And these
worlds are executed in parallel. This corresponds te or-parallelism. In this model, the most crucial
part is the proliferation. Its naive implementation is to make a copy of a set of all processes, but
't seems unacceptable because of its expected overhead. We introduce an another implementation
scheme called coloring.

In coloring scheme, a world is acsociated with an identifier called coloz. Every term belonging
to a world with & coler C is also associated with €. On proliferation of a world, new colors are
generated and assigned to new worlds. A color records the histery of world proliferation. In coloring
scheme, a color is used to determine whether a set of data belongs to the same world or not, and
to enable to share processes among worlds and to prevent interference among independent worlds.
Thus it makes copying of processes unnecessary.

Before introducing the language syntax, we first explain the computation model based on the
coloring scheme using a simple example.

(=]

Example 2.1.

A process compule picks up an arbitrary element from the input list and returns the sum of
its squared value and cubed value. Here picking up is assumed to be a nondeterminate operation.
If the input is [1,2, 3], possible solutions are 2 (17 +1%), 12 (2% + 2°) and 36 (3° + 3°).

The program is informally expressed in a conventional style as follows (ANDOR-IT definition
will be shown later).

def compute(X:list) Z:@integer
type determinate
Y :=pickup(X),
Y2:=square(Y),
Y3:=cube(Y),
Z :=add(Y2Z,6¥3}
end.

def pickup (X:1list) Y:integer
type nendeterminate
select an arbitrary element ¥ from the input list X
end,

def square(X:integer) Y:integer
type determinate
Yi=X+X
end.

def cube(X:integer) Y:integer
type determinate
Yo=XeXsX,
and.

def add(X,Y:integer) Z:integer
type determinate
L:=X+Y.

end.

Figure 2.1. shows the data flow graph inside compufe. A node and an edge are regarded as
& process and a communication channel, respectively. When pickup gencrates an output value via
the channel Y, processes square and cube receive the value and generate squared value via Y2 and
eubed value via)73, respectively. Then process add adds them.

Suppose that compute is invoked with the input [1,2,3]. The list is directly sent to pickup.
Pickup is a nondeterminate process and has three possible actions, that is, seleetion of 1, 2 and
3. All these possible outputs are painted by distinct colors and packed in arbitrary order in a
vector form {v(1,¢1), v(2,¢2),v(3,¢3)}, where {.....} denotes a vector and v(X,C) denotes a value
X with a color €. Instead of sending each output value, this vector is sent to square and cube
via Y. For each element of the vector, sguare and cube perform their operations and create new
vectors, {v(1,¢1), v(4,¢c2),v(9,¢3)} and {v{1,c1), v(8,c2),v(27,c3)}, respectively. Note that since
square and cube are determinate they never change colors. Add is invoked with these two vectors.

square = Y2

cempute

Fig 2.1. Data Flow Graph of Compute

Conceptually add is requested to add X? and ¥* if X and Y are identical. Namely, when they
are derived from the same pickup action. Otherwisze, no addition is applied. Information about
identity of two elements from two vectors are earried by their colors, that is, the elements with the
same color are derived frem the same action of pickup. Therefore, two vectors are preprocessed to
make a set of pairs with the same colar, and for each element of the set add operation iz spplied.
Finally, a vector of the solutions {¢{2,¢1),¢{12,¢2),#(36,¢3)} iz obtained.

3. LANGUAGE ANDOR-TI
31. Syntax

In ANDOR-II , a program iz s set of AND-predicate definitions and OR-predicate definitions.
An AND-predicate definition consists of a mode declaration and a set of AND-clauses. An OR-

predicate definition consists of a mode declaration, OR-relation declaration and a set of OR-clauses.
A predicate defined by an AND{OR}-predicate definition is called an AND{OR)-predicate.

Definition(AND-clause OR-clause)
A elansze in the form
H :- B1,...,Bm.
1= called an OH-clause, and 2 ¢lause in the form
H:-G1,...,Cn | B1,...,Bm.
15 called an AND-clause.

In the above definition, K is called & head, G4.....7 are called & guard part, and By, ..., Uy are
called a body part. AND-predicates are used for defining determinate or indeterminate processes
and OR-predicates are used for defining nondeterminate processes. An OR-predicate definition
must be headed by OR-relation declaration of the form:

:= gr_relation p/n.
where p is a predicate symbél and n is its arity. In a mode declarstion, ‘+' and ‘" denote input

4

and output mode, respectively, The meanings of input and output are the same as in Edinburgh
Prolog except that for an OR-predicate, input mode imposes the restriction that the corresponding
argument must be either a ground term or a list whose head is a ground term at the moment when
head unification has succeeded. Note that a clause of either type can contain both AND-predicates
and OR-predicates in a body part. A goal in a guard part is restricted to a test predicate. This is
the same restriction as those of fat committed choice languages (see, for example, [Ueda 86a]).

Two ANDOR-II programs are shown below. The syntax of ANDOR-ITis similar to committed
choice languages, especially GHC, and can be read in the same way as GHC except for the OR-
predicate.

Example 3.1.
The following is an ANDOR-IT program of compute discussed in section 2.

-~ mode compute(+,-), pickup(+,-), square(+,-), cube(+,-], add(+,+,-).

compute(X,Z) :- true |
pickup(X,¥), square(Y,Y2), cube(Y,¥3}, 2dd(¥2,¥3,1).

:- or_relation pickup/2.
pickup([XIL].Y) :- ¥=X.
pickup([_IL],Y) :- pickup(L,Y).

square(X,¥) :- true | Y:=X+X.
W

cube{X,Y) := true | =X+X+X.
add{X,Y,Z2) :- true | Z:=X+¥,

Example 3.2.
The following i an ANDOR-II program of two communicating processes.

- mode cycle, pi(+,-), p2(+,=), multi(+,-),
equare(+,-), cube(+, -), add(+,+,-].

cycle :- true | pi(l21Xx].¥), p2(Y,X}.

p1([etepl .¥Y) :
p1C[XIX1],Y) :

true | Y=[].
true | add(X,1,A), Y=[A|Y1], p1(X1,Y1).

p20[X1X11,Y) :
p2([X1X1],Y) :

X>20 | Y=[step].
X=<20 | multi(X,4), Y=[AIT1], p2(X1,¥1).

:=- or_relation multi/2.
eulti{X,¥) - sguare(X ¥).
walti{X,¥Y) :- cubel(X,¥).

square(X,Y) :- true | Y:=X=X.
cube(X,Y) := true | Y:=X4XsX,
add{X,Y.Z) :- true | Z:=X+Y.

In the clause defining cycle, processes pl and p2 form a cyclic structure with the communication
chanmels X and V. pl receives the stream via itz first argument, increments the element of the
stream by 1, and sends the value to p2 via its second argument. p2 receives the stream via its first
argument, executes the goal multi on the received element, and sends the results to pl. In this
=y, the values put orto each cell of the stream X and ¥ are determined incrementally by affecting
each other.

[Remarks]
Some restrictions are imposed on programe in the current ANDOR-IT .
(1) wnique handler for a siream
If a variable iz expected to be bound to a stream, cach element in the stream is instantiated
by the same process.
{2) prohibition of multiple writers
Only one goal can refer a variable in an output mode in a clause.

(1) is introduced to make the direction of data flow unique. (2} is introduced to reduce execution
overheads.

3.2. Computation Model

ANDOR-II supports both and- and or-parallelism, that is, all the conjunctive goals are executed
in parallel {and-parallelism). And for an OR-predicate, clauses whose heads are unifiable with the
OR-predicate are executed in paralle]l (or-parallelism). In order to coordinate both and- and or-
parallelism, the notion of a color iz introduced. The idea is that when an OR-predicate is invoked
and possibly returns several answer substitutions, they are attached with distinct colors so that
basic computations such as unification and arithmetic operations are applied enly to a tuple of
data sharing the same color.

The computation rule of AND-predicates is similar to that of GHC |Ueda 8Gb]. That is, two
rules are imposed: rule of suspension and rule of commitment. And enly rule of suspension is
imposed on the execution of OR-predicates. Here, by the term, gnard computation of a clause C,
we mean both head unification and execution of the guard part.

[Rule of Suspension|

{1} Unification invoked directly or indirectly in guard computation of an AND-clause C called by
a goal (7 cannot instantiate the goal G.

{2) Unification invoked directly or indirectly in the body of an AND-clause C called by a goal G
cannot instantiate the guard and the head of € until is selected for commitment (see below),

{3) Unification between a goal G and the head of an OR-clause C called by the goal G cannot
instantiate the goal .

{4) Unification invoked directly or indirectly in the body of an OR-clause C called by a goal G
cannot instzntiate the head of € until the head of C is unified with G.

A piece of unification that can succred only by viclating the rules ahove is suspended until it can

succeed without such violaticn (end of the rule of suspension).

[Rule of Commitment]

When some AMD-clauze (7 called by e E'I 7 snceseds in solving its g‘.].a.l'd, the elause O tries
to be selected for subsequent execution of &. To be selected, C must first confirm that no other
clauses in the program bave bLeen selected for G If confirmed, € is selected indivisibly, and the
execution of €7 iz zaid to he committed to the clause O (end of the rule of commitment).

Fig. 3.1 shows the computation model of compuie in the example 3.1,

£

Fig 3.1. Computation model of compuie

33 C ed World

A world is a conceptual entity in which goals are semantically connected by a logical connective
AND and executed in parallel {and-parallelism) operationally. Worlds are semantically connected
by a logical connective OR and executed in parallel {or-parallelism). In coloring scheme, there is
no concrete object corresponding to a world. Instead of dircctly representing and handling worlds,
colorine scheme achieves the same effect by coloring data objects.

Here, we give a formal definition of color and colored value.

Definition (primitive-color.color,colored-value)

primitive coler ::= (clause-number, branching-peint)
coler LR

[primitive-colorfcoler]
colored-value i= y{value,colez)

where hranching-point is a unique identifier of an invocation of an OR-predicate, and clouse
wumber is the identifier of a selected clause at the branchiug point.

When an OR-predicate including a variable, say X, is invoked in a werld, conceptually the
world splits into several worlds along OR-clauses. In coloring scheme, instead of actually creating
new worlds, a new color C; i generated for each OR-clause. In computation of each OR-clanse
whose associated color is €, the variable X might be instantiated to a value V;. Such multiple
binding to the variable X is realized by instantiating X to a vector of colared values, denoted
by {z(Vi.C1), v(Vo, Ca), ey v(Va, Cr)}. We use a term colored vector or simply vector to denote
the data of this type and distinguish it from the stream, which is a different concept for stream
programming. A data without a color (i.e. simple value] iz called scalar.

7

Definition (same orthogonal. produstive}
For a pair of colors 7 and Cx, ocue of the fellowing three relations holds,
(1) If there existe a branching point bp such that (n1,bp) is included in Cy and (n2, bp) is included
in €5 where nl1 # n?2, then) and O are defined to be orthogonal.
{2y Lot Bpe(i = 1,.., k) be & brauching point sppearing both in € and Cs and let n; and m; be
associated clause numbers in €y aud Cu, respectively. If ny = my for all i = 1, ..., k), then &,
and C5 are defined to be the same,

(3) If C; and Ca share vo brauchiug point, C; and Cy are defined to be productive.

Intuitively, values with the same color have selected the same clauses at common branching
points and values with the orthogoual colors have selected the different branches at the commen
branching points, and values with productive colors have no common branching point.

Diefinition(consistency}

For colored walues o[Vi, 1) and o(V3, C2), if &) and O are either the same or productive,
then) and Oy are said to be consistent. For colored wvalues o(Vy, Cy), o(Vy, Ca), . v(Vy, Ca), if
for any 1,5(¢ # j), C; and C; are copsistent, then €, Oy, ..., O, are said to be consistent.

Definition(joint color)

When a goal receives the set of colored-values v{Vy, C1), 2(Vz, Ca), ..., v(Va, Cr), each of which is
received via different input arguments, and O, 5, ..., Oy are consistent, then the goal is applicable
to the values Vi, Vo, ., V. Let R be the result, Then, the color associated with R is defined as the
unton of €y, s, ..., Crp. It is calied joint color.

Example. 3.3.
Let ©,C1,C2 and O3 be the following colors, respectively,
€ : [(n1,£1),(n2,82)]
C1 : [(m1,%#1),(n1,#3}]
€2 : [(n2,#1),(n1,#3)]
€3 : [(n1,#3)]
€ and C'1 are the same and the joint color is [{nl,#1),{n2,#2), (n1,#3)].
 and €2 are orthogonal and no joint color 1s defined.
C and C3 are productive and the joint color s [(n1.#1),(n2,#2),(n1,#3)].

4. COMPILATION

An ANDOR-II program is compiled inte a GHC program. The compiler consists of twe main
modules : DFA module and TRA module. In DFA, a source program is analyzed and an interme-

diate code with some information is renerated. In TRLA, the intermediate code is transformed into
a GHC program.

The compiler discussed here 1= the revised version of that described in [Takeuchi et al. 87).
Since the technique is somewhat complicated, we will here give a brief sketch of the system.

4.1. DFA

DFA(Data Flow Analysis) contaings the following subprocedures:
(1) construetion of DFG(Data Flow Graph)
(2) type check of channels and shells

L e J

Fig 4.1. Structure of ANDOR-IT System

(3) generation of an intermediate code

As an aid for grasping the data flows among goals through shared variables and data types
flowing through them, the compiler makes graphs called DFG’s for all the clauses in an ANDOR-IT
program, respectively, based on mode declarations. A DFG is a graph in which nodes correspond
to poals appearing in the clause and edges to shared variables. Direction of each edpe is determined
by the following defimition.

Definition (input chanuel, cutput channel)

For a node N in a DFG, if a variable V appears in the argument of the input mode of the
corresponding goal, then V' is said to be an input channel of N, and if V appears in the output
mode, then it iz said to be ar ontput channel of N,

In order to collect more information about nodes and edges, a data type of each edge is
examined. In the ANDOR-II execution, three types of data may appear: scalar, flat vector and
lavered vector,

Definition(flat vector, layered vector, scalar}

(1) Flat vector bas the farm {o(Vy, €}, v(Va, Ca), .., v(V5, G,)} where each o(V,) is a colored-
value.

(2) Layered vector has the form of a list [X[Y] where X is a ground term of scalar type and ¥ 1s
either a Hat vector or a layered vector,

(2) Any other term is called Sealar.

A layered vector will appear as an output stream when a stream is sent to an OR-predicate.

A chanpel which is instantiated to either a flat vector or a layered vector iz called 2 vector
type channel. If a node has an input vector type channel, it is necessary to pick up each colored
valie from the vector. Therefore such & node is marked as a shell-covered node.

The main part of DFA module is to determine channel types and node types. It is mainly
done by checking whether a node has a direct or indirect data How from the node corresponding
ta an OR-predicate or not, and whether a channel is used for stream proceszing or not. Note that
types are undecidable. Thus, we have to apalyze as {ar as possible and adopt a safer information.
At Tast, an intermediate code annotated by these information is generated.

4.2. TRA
TRA(TRAnsformation} transforms the intermediate code into a GHC program. It consists of

the following subprocedures:

(1) shell creation

{2) OR-to-AND transformation

(3) predicate transformation
First, for each shell-cavered node, shell_creation clavses are created, Shell_creation clauses de-
compose a set of input vectors into a tuple of scalar values, pass them to the corresponding core
processes, apd put the output values together inte a set of vectors again. Note that all the output
channels of shell-covered nodes are always vectors. Each core process corresponds to computation
with one color, which iz a joint color of colors attacked to input data. Core processes are executed
in parallel. Some core processes may succeed and return solutions, while others may fail or deadlock
and return no solution. lo principle, solutions are put into output channels as soon as they are
generated by fair merge operators, so that all the solutions are obtained without being disturbed
by failure or deadleck in some worlds.

Example 4.1.
The shell-creation clauses {or a shell-covered node add in the example 3.1 are shown below.

add_Shell_2_1([v(X,Cx)|Xs],Y.2) :-

true |

add_Shell_2_2{v(X,Cx),Y,kZ1),

add_Shell _2_1(Xs,Y.Z2},

merge_BLT(Z1,22,Z2). % merging solutions
add_Shell_2_1{[],_.Z) :- true | Z=[7.

add_Shell_2_2(v(X,Cx), [v(Y,Cy)|¥s],Z) :-
true |
add_Cheek_2_1({v(X,Cx),v(Y,Cy), 21},
add_Shell_2_2(v(X,Cx),Ye,k 22},
merge_BLT(Z1,72,2). % merging solutions
add_Shell_2_2(_,[],2) :=- true | Z=(].

add_Check_2_1(v(X,Cx),v(Y.Cy2.Z) :- true |
censistent_Cecler([Cx,Cy] ,R),
add_Check_2_2(R. X, Y.,Z).

add_Check_2_2(success(C),X,Y,2) :- frue |

add_Core(X,Y,20,w(C)), % cere process
Z=[v(Z0,C}]. % seclution Z0 im
% mssocizted with its
% coler C.

add_Check_2_2(fail,_,_,Z) :- true | Z=[].

10

Special treatment is necessary for a shicll-covered node with layered vector channels singe stream
processing is expected. It means that if a colored value is put onto the stream, the remaining part
which will be instantiated to successive outputs must have the same color.

Example 4.2,
The shell for a shell-covered node p2 in the example 3.2 is shown below.

p2_AShell(¥s, [v(Y,C}¥s]) :- true | ¥ € is the color for one streem.
p2_AGo(Xs,Y,CJ), % The handler feor that stream.
p2_AShell(Xs,¥s).

p2_AShell(Xe,[]) :- true | true.

p2_AGe{Iv(X,C1)1Xe],Y,C) :- true |
F2_ACheck_1(v(X,C1),Y1,C), % Processing of input X with
% color C1 and the cutput
% stream with color C.
p2_AGo(Xe,Y2,C}, % Processing of other
% input mnd the output
% etream with celer C.
merge BLT{YL,Y2,Y). % See below.
P2_AGe([1,Y,_) :- true | ¥=[].

p2_ACheck_1{v(X,C1}.,Y,C) :- true |
censistent_Color([C,C1] ,Res),
p2_ACheck_2{(Res.X,Y).

p2_ACheck_2({success{C),X,¥) :- true | p2_Core(X.Y w(C)).
p2_ACheck_2(fail X.Y) :- true | Y=[].

A shell-covered node of the form, Z = [Xs | Y], where Xa is a vector is translated into a
special predicate makesloi_BLT. makeslot_BLT generates a new stream for each element of Xs.
The definition of makesiot_BLT is shown below.

makeslet _BLT([v{X,C)|Xe] ,¥,2) :- true | % Head ie X with C.
Y=[v(Y1,C)|¥s], % Create a new tail
% with €.
Zi=[X1¥1], % Create = new stream.
Z=[v(Z1,C312s]. % A new stream is ocutput.

makeslot_BLT([],Y.Z) :- true | Y=[], Z=[].

Next, OR-clauses are translated into a determinate AND-clause. In a resultant clanse, OR-parallel
execution of OR-clauses are realized by AND-parallel execution of goals corresponding to their
computations. And their solutions are collected as a colored vector by the fair merge technique
again.

Example 4.3.
rickup_Core(X,Y w(C)) :- true |

11

get_Branching Point(EP),

pickup_Core_1(X,¥1,C.BF), % computation of the
% first clause.
pickup_Core_2(X,Y2,C,EP), % computation of the

% second clause.
merge _BLT(Y1,Y2,Y}.

In the above program, gel_Branching_Point is a system predicate which generates a unique iden-
tifier on execution.

Finally, clauses corresponding to core processes are generated. The following example shows
the transformed code of two elanses defining 52 in the example 3.2

Example 4.4.

p2_Core{[XIX11,Y,w(C)) :- X>20 |
Yi=[stop],
Y=[v(Y1,C2].

p2_Core{ [XiX1]1,Y,w(C)) :~ X=<20 |
molti_Core(X, A, w(C)),
makeslot_BLTC(A.Y1,YD,
p2_Shell(X1,Y1).

In this model, when a shell-covered node has more than two input vectors, shell_creation
clauses need to check consistency of colors, which causes an overhead. However there are some
possibilities to reduce it in some situations. We briefly explain two optimization techniques which
are currently implemented below.

(1) Elimination of color consistency check

Let N be a shell-covered node with k input vector channels Iy,...,Ji. fno I; and J; (i #
7) share data Aowing directly or indirectly from a common node in a DFG, any pair of colors
is productive. Joipt color is determined by appending their color lists without checking their
consistency.

(2) Colorless block (Special case of the first)

Let p be an OR-predicate and G,.G5, ...,G, be DFG’s of OR-clauses defining p. If every
Gi(i = 1,...,n) satisfies the following two conditions, then p is said to be a colorless block.

(i) A node in G; iz either p or an AND-predicate which does not directly nor indirectly call an

OFR-predicate other than p.

(ii) G; includes no cycle.

(iil) There exists no node such that it is a shell-covered node with more than one input vector

channels and two of them share data flowing directly or indirectly from the same node.

Suppose pis a colorless block. During the computation of p with scalar input data, when two
colored values would meet at some node, they are always productive. Orthogonally colored values
never meet at any node. A set of solutions of p is then a set of values which are colored orthogonally
each other. In this case, we can omit coloring during computation. Although solutions become
colorless, they are known to be orthiogonal each other, so they are given orthogonal colors just
before they are exported to outside the block.

More general condition for the second eptimization, thus stronper optimization, is now being
studied,

12

[———

e | boa |
|-~ | = ====> J===--1
I v | | oa | I & |

Fig 5.1{a) Initial State Fig 5.1(b) Goal State

5. APPLICATION

Iu this section, we will discuss an application of ANDOR-IT to parallel problem solving using
distributed plan generation of block loading as an example.

5.1. Modeliing

There are three blocks a,b and ¢ on a table. The goal is to reload the blocks in the initial state
shown in Fig.5.1{a) into the goal state Fig.5.1(b).

A block can move only when there is nothing on it. A table is assumed to be large enough
to accept any mumber of blocks and is used for a dugout for a bBlock being asked to get away from
the current position. These are well-known characterizations of “block world.” Our purpose is to
generate a partially ordered plan which combines sequences of actions of each black. Aeccording to
this purpose, three assumptions featuring our distributed plan generation are introduced: (1) Each
Block is assumed to be an active agent knowing only its own goal state and trying to achieve it by
exchanging messages with other blocks, It can see only its current state, i.e. blocks on and under
it. (2) More than one blocks can move simultaneously if their tops are clear. (3} It takes finite
time (non zero) for a block to move from one place to another.

Each block can be modelled as a nondeterminate component which has a variety of actions
depending on its current state and received messages. lts actions are classified into two classes:
active actions and passive actions. The former are for achieving its own goal, while the latter for
fulfilling received messages.

Communication between blocks are modelled as follows. Any pair of blocks are connected by
two stream communication channels, one is for sending messages and the other for receiving. The
input streams to a block from the other two blocks are merged on arriving {Fig.5.2.)

The top level of the ANDOR-IT source program is shown below. The eighth argument of the
predicate block is used for storing the history of actions which corresponds to the plan for the block,
and the last argument is for the output of the plan.

pfi(Plan) :- true |

block(a, AB.AC, BA.CA, c{clear, table), £{c,b), [start], Pa),
bleck(b, BC,BA, CB,AB, c(c, tablel, {{a,table), [start], Pb),
bleck(c, CA,CB, AC.BC, clclear, bl, f{clear,a), [start], Pc).

Flan=[Pa,Fbt Pc].
block({Id,51,82, R1,R2, Current,Final B, Plan) :- true |

or_merge(R1,RZ,In),

action(Id, 51,52, In,Current, Final K Plan).

13

Fig 5.2. Model of Blocks World

In determinate parallel programming paradigm, the solution becomes guite complicated. Sinee
a top of each block can be regarded as a shared resource, putting one block on another block needs
complicated locking and unlocking of the target block. It needs more procedures when the top of
the target is already occupied by another block. Since the whole map is divided into local maps
which are maintained by each block, when one block moves onte another block, their maps must
be updated indivisibly. These are the essential problems when one encounters in programming
distributed systems. Owing to these problems, the resultant program becomes complicated and
almost all of the program are wasted by establishment of synchronizations of blocks.

In our model, when two message streams to a hlock are merged into one stream, nondeter-
minate merge, or_merge, is used instead of indeterminate merge. A nondeterminate merge is
vital to our modelling, since it greatly contributes to the simplification of the description. Using a
nondecterminate merge, the following assumption becomes possible.

Ifa block has once sent a message, then it can believe that the request is fulfilled eventually
in its local time.

This is becauze of a nondeterminate merpe and a nondeterminate block enumerates all the
possible situations. It iz worth noting that what a nondeterminate merge does is to enumerate all
the possible serialization (in global thne) of events which are known to occur only in loeal time. If
the request can be fulfilled without affecting the sender, then there is at least one situation in the
set of possible situations where the request can be fulfilled eventually in global time. If the request
is not satisfable, then the belief iz incorrect and the world in which this message sending occurs
just deadlocks or fails. Even in this case, alternative computations proceed in other worlds. Owing
to the above sgsumption, svochronization of blocks becomes completely unnecessary and hence the
deseription of a block becomes quite straightforward.

An informal description of a block is shown beiow {The whole program in ANDOR-IT is shown
in appendix), where ¢(On, Under) represents that a block is currently on an object (a block or a
table) Under and under an object On, e{clear, Under) expresses that nothing is on the block. A
goal state of a block is represented by [(FOn, Flnder).

Each block BLE behaves according to the following rules:
(i) active behavior

If On=FON and Under = FlUnder (Goal is achieved)

14

then it terminates.
H Under & Flinder,
if On = clear,
then zend the message move(BLA) to FUnder,
send the message clear to Under,
and also update ite current state to e(elear, Flinder).
if On &£ clear,
then send the message remove_from(B LK) to On,
and also update its curremt state to c{clear, Under).

[ii) passive hehaviar

Ou receiving the message move(B},
if On = clear,
then update its current state to o B, Under),
if On # clear,
then send a message remove_from({BLK) to On
and also update its current state to ¢(B, Under).
Qu receiving the message remove_from(B),
if Under £ B,
then jenore the message.
if Under = B,
if On = clear,
then move onto table.
and also update its current state to ofclear, table).
if On # elear,
then send a message remove_from(FLK) to On,
move onto fable.
and alen vpdate ite eurrent state to cclear, table).
On receiving the message clear,
then update its current state to o clear, Under)

Let us see what happens in the initial state according to these rules : Block ¢ wants to move
onto the block & in order to achieve its goal, Therefore, ¢ sends a message to a. At the same
time, it sende & message to b telling it to depart. On the other hand, the block 2 wants to move
onto the block b in order to achieve its poal. Therefore, two messages are sent to b, It canses two
alterpatives depending on which message arrives first. 1f the message from ¢ arrives first, b can
accept & immediately. On the other hand, if the message from a arrives first, b have to remove ¢
befare accepting a. These two possible situations are automatically pursuited by a nondeterminate
merge process in front of the block b

The source program is transformed into a GHC program by ANDOR-II compiler. On exe-
cution of the transformed program, several plans are generated. Let BLK and B be the sender
and the receiver of a message, respectively, There are three kinds of messages: move(HLK),
remove_from{BLK) and clear. If a block BLK sends a message move{ BLK) to a block B, then
BLE's action is recorded as move_to{ B), and B's action is recorded as accept(B). Similarly, as
for the message clear, their actions are recorded as clear and cleared, respectively. As for the mes-
sage remove_from(BLK), the action of BLK is recorded as remeove(H), and if B is no longer on
BLE, B's action is recorded as ignore, otherwise escape. 1t is also noted that these action record
it associated with an event identifier which is explained in the next subsection. In the following,

i3

we show some of solutions:

a: [end, (accept(c) #1015}, (cleer.#96), (move_to(b).#96) ,8tert]
lend, (accept(a), #96), (remove(e) #297), start]
c: [end,{clear, #1015}, (move_tola) #1015), (escape,#297) ,5tart]

o

n: [end, {accept{c) #346), (clear, #61), (move_to(b), #61), etart]
b: [end, (accept(a),#61), (clenred, #346) ptert]
¢: [end, (clear, #346), (move_teofal), #346) ,8tart]

a: [end, (mecept(cl),#10299) (clear, #3286}, (move_tol(b),#3286), (remove(c), #3228),
(accept(ec) ,#346) ,etart]

b: [end,(accept{a) ,#3286), (cleared, #346) ,5tart)

c: [end,{clear, #10299), (move_tola),#10298), (eecape,#3218), (clear,#346),
({meve_to(e),#346) ,5tart]

5.2, Towards A Total Plan Generation

A plan is a partially ordered =zet of actions. After getting a local plan of each block, a total plan
is constructed. An event is defined to be a message sending and is associated with a unique identifier.
In a plan, message sending and corresponding receiving are labelled by the event identifier.

Suppose that a block has a local plan in s colored world W

Ey, By, ... By
and that another block has a plan in IV
F]: Fz:---:Fm

where Ey, Eq, ..., E, and I}, Fy, ..., F,, are actions and they are totally ordered, respectively.
-El{.E:r‘f.---{.En
P]_{Fz{...-ﬂpm
Let the event identifier of E;{1 < { < n) be k;, and that of F;{1 < j < m) be [;, respectively.
If there is a pair of 1 and j such that k; = I; and E; and F; are message sending and receiving,
respectively, then Fj should happen after E;. Thus, the order E; < F; is imposed.
A set of local plans is consistent if and only if ordering imposed by events is consistent.
A consistent set of local plans is & rotel plan {The program in the appendix does not include
consistency check of local plans).

Three plans shown above are all consistent and thus constitute total plans. Here we give
concrete interpretations of the plans |, 2 and 3.

% Plan 1 (See Fig.5.3):

a: [end,(accept(c), #1015}, (cleer,#56), (move_to(b),#56) ,6tart]
b: [end, (accept(a) #96), (remove(c), #297) ,start]

c: [end,(clear,#1015), (meve_to(e) #1015}, (escape, #297) . start]

16

a: (gteart)=-=-===-=s---- >(move_to(b)eclear)---->(acceptic))-------- »(end)

| #96
v |
b: (etart)--->(removele))---->{accept(a))-=-===-==~--- |-=mrmmmm————— >(end)
| #2597 I
¥ 1#1015
e: (etart)---»{escapel----- CEssmEmmm—————— - >(mn"l.rn_tn[u)kclelr)'—-}f_:nd}

Fig 5.3. Plan 1

One of the possible readings of the plan 1 is as follows:

*

al
b:
c:

1. Block ¥ removes block ¢ onto the tahle and block a takes off to block b.
2. Block a lands on block b and block ¢ takes off to block a.
3. Dlock ¢ lands on block a.

Plan 2 (See Fig.5.4):
[end,(accept(c) ,#34€), (clear,#61), (move_te(b),#61) start]
[end, (accept(e) ,#61), (cleared, #346) start]
[end, (clear, #346), (mave_tafle) #346) . start]

a: (Bterhtl-—----a--- »(move_to(b)iclear)---->(accept{c))-===-===~ >({end)
|#61 -
V |
b: (gtart)--=-3({cleered)---->{accept(al)----====-=m- [===m====- >{end)
- |
| ————=smesmmmemme s cs s |
|#346
c: (start)---->(move_to{a)keclear)-=-------=--===-==-------= ----->{end)

Fig 5.4, Plan 2

One of the possible readings of the plan 2 is as follows:

%

b

L=

1. block a takes off to Llock b and block ¢ takes off to block a
2. block @ lands on block b
3. block ¢ lands on block a

Plan 2 (See Fig.5.5):
{end, (accept(c),#10299), (clear,#3286), (meve_to(b),#3286), {remove{c), #3228),
(zczept{c),#346) , etart]
: [end, (accept(a),#3286), (cleered,#346) ,5tart]
[end, (clear, #10268), (move_tole) #102588), (escepe, #3228), (clear, #346),
(move_tola),#346) ,start]

17

a: (start)--->(accept(c))-->(remove(c))-->(move_to(b)-->(accept{c))-->(end)

#3228 kclear) "
1 | #3286 |
------ | i |
| | v |
b: (start)----(cleared)-|---=----- fe--mm--- >(accept(a))------ [=-=om——- »(end}
- | i |
|e=nm== | |
| #3486 v |#10208
c: (start)--->(move_to{a)-->(escape)------=--------- *(move_to{a)------ *{end)
dclear) bclear)

Fig 5.5. Plan 3

Omne of the possible readings of the plan 3 is as follows:
1. Black ¢ moves onto block a.
2. Block « removes block ¢ onto the table.
3. Block & moves onto block b and block ¢ takes off to block a.
4. block ¢ lands on block a,

6. DISCUSSION
6.1. Comparison witlh Other Works

Design and implementation of a new language which has both features of and-parallelism with
indeterminacy and or-parallelism (nondeterminism) are studied intensively as an ultimate combi-
nation of a logic programming language and a committed choice language by many researchers.

Clark and Gregory pointed out the importance of further research in these areas and they
suggested the combination of PARLOG and Prolog |Clark and Gregory 87]. In this combination,
elthough two languages can comfortably call each other, but truly mixed combination of and/or
parallel execution is not considered.

Yaug proposed a language P-Frolog which subsumes both and- and or-parallelism [Yang 87]
and achieves true mixture of both parallelism. In this respect, P-Prolog is closely related te AND
OR-II'. One of the main differences is synchronization mechanism. In P-Prolog, clauses are divided
into single-neck and double-neck elauses and {or single-neck clanses exclusiveness plays a central role
in synchronization, while in ANDOR-I] mechanism similar to that of GHC is adopted. Other main
difference is implementation. We designed ANDOR-IT o that it can be compiled into a committed
choice language, while P-Prolog seems to be designed together with a new implementation scheme.

Naish proposed a parallel NU-Prolog which is an extension of NU-Prolog [Maish 87]. It can
express and-parallelism together with nondeterminism, A nondeterminate code can call and-parallel
code which (in restricted way) can call nondeterminate code. However, nondeterminism is only
handled sequentially.

Brand [Brand et al. 88] proposed the language Andorra which is aimed at a superset of both
OR-parallel Prolog and a committed choice language. Andorra and ANDOR-II share many features.
Une of the main differences is that lnvocations of nondeterminate goals are lazy in Andorra, while
eager in ANDOR-IT . Also scheduling of a nondeterminate goal is infinitely unfair in Anderra,
though this is for compatibility tc Prolog. Implementation is also different. ANDOR-IT adopts a

18

compiler approach, while they are designing a new machine for Andorra.

Program trapsformation from a nondeterminate program to a determinate program which
collects all the solutions is also intensively studied.

Ueda propesed continuation-based transformation from an exhaustive search program in Pro-
log into a determinate GHC/Prolog program {Ueda 86c]. Or-parallelism in the original program
i realized by and-parallelism in the transformed program, while the intrinsic and-parallelism is
not considered. He reports that transformed programs Las much more efficiency for a class of
programs, and that they do not lose much efficiency for others. In [Ueda 87), Ueda proposed the
extension of continuation-hased transformation to a nondeterminate program with coroutine. It
iz realized by statically determining scheduling of coroutines by compile-time analysis of a source
program. However, it is difficult to apply continuation-based scheme to nondeterminate processes
communicating each other since compile-time of process scheduling is undecidable.

Tamaki presented stream-based transformation from a logic program with and/or parallelism
into the ome in a committed choice language. lo his system, like our system, a set ef solutions
from & pondeterminate goal are propagated to other goals in a stream form. Owing to a stream
communication, dynamic process scheduling becomes straightforward and and/or parallelism in a
source program can be naturally realized. Iu comparison with our language, his language bas some
restrictions. One is that elements of a stream are processed one by one by a conjunction of goals
(called a block), that is, only one element can exist in a block at a time, while in our system a
conjunction of goals can process any number of elements in parallel. The other is that his language
does not allow communication among a conjunction of goals, while our language does allow and
such communication is essential to our applications. Conversely, in his system these restrictions
make an extra mechanism such as coloring unnecessary.

Okumura and Matsumoto proposed another approach called layered-stream programming
(Okumura and Matsumoto 87, It is a kind of programming paradigm in which recursively de-
fined data structure called a layered-stream is used. All the values in the same layer are alternative
solutions to the same problem. If we omit an associated color from a layered vector defined 1
section 3, a similar data structure would be obtained. Although the program written based cn this
paradigm provides high degree of parallelism, it is not declarative and it seems burdensome for a
povice user te describe a problem using this paradigm.

To sum up, cur contribution is as follows:

(1) Design of a logic programming lauguage with and- and er-parallelism. In other words a parallel
programming language with nondeterminism.

(2) and/or parallel execution model based on coloring scheme.

(3) Compilation to a committed choice language.

6.

2. FPuture Works

There are some remaining problems for future works.

Suppression of irrelevant computations is an important problem to increase efficiency. If a
process fails, then the conjunctive goals need not to be computed any more. However, the current
system completes all the computations.

Another problem is to share the result of computation in the different worlds. Logically,
computation in different worlds are independent. But from the pragmatic point of view, the
knowledge discovered in a world could benefit other worlds. It is desirable to utilize such cross
information How over worlde.

7. SUMMARY

We bave proposed a parallel problem solving language ANDOR-II which can declaratively

13

describe behaviors of concurrent systems cousisting of many determinate and nondeterminate com-
ponents acting interactively. It also has an ability of solviug the problems such as combinatorial
problems and cooperative planning on these systems. We have also shown the computation model
based en coloring in which reasoning such as search and simulation over all possibilities can be
executed efficiently. Although handling of multiple environment is expensive, it is inevitable to
solve a problem on concurrent systems, which is our target.

ACKNOWLEDGMENTS

This research was done as one of the subprojects of the Fifth Generation Computer Systems
(FGCS) project. We would like to thauk Dr K. Fuchi, Director of ICOT, for the opportunity of doing
this research and Dr. K. Furukawa, Vice Director of ICOT, for his advice and encouragement.

REFERENCES

[Brand et al. 88] Brand,P., S.Haridi and D.H.D.Warren, “Andorra Prolog, The Language and
Application in Distributed Simulation,” Proc. of FGCS'88, to appear.

[Conery and Kibler 85] Conery,§ and F Kibler, “AND Parallelism and Nondeterminism in Logic
Programs,” New Generation Computing, Vol 3, No.1, pp.43-70, 1985.

[Clark and Gregory 84] Clark,K.L. and S.Gregory, “PARLOG: Parallel Programming in Logic,”
Research Report DOC 81/16,Imperial College of Science and Technology,1984.

[Clark and Gregory 87] Clark,K.L. and S.Gregory, “PARLOG and Prolog United,” Proc. of 4th
Int. Conf. on Logic Programming, pp.927-061,1987.

[Huhn 87] Huhn M.N., “Distributed Artificial Intelligence,” Pitnum/Morgan Kaufmann Publishers,
1987

|Naish 87] Naish.L., “Parallelizing NU-Prolog,” Technical Report of University of Melbourne, 1987.

[{Okumura and Matsumoto 83} Okumura A and Y Matsumote, “Parallel Programming by Layered-
Stream Methodology,” pp.224-221 Proc.of Symposinom on Logic Programming, 1987.

[Shapiro 83| Shapiro,E.Y., “A Subset of Concurrent Prolog and Its Interpreter,” 1COT TR-003,
1583,

[Takeuchi 84] Takenchi.A., *On An Extension of Stream-Based AND-Parallel Logic Programming
Languages,” Proc.of 1st Confl. of Japan Society of Software Science and Technology, pp.251-294,
1984 (in Japanese).

{Takeuchi et al. 87) Takeuchi A., K. Takahashi and H.Shimizu, “A Ap description Language with
AND/OR. Paralielism for Concurrent Systems and Its Stream-Based Realization,” ICOT TR-
229, 1987,

|Tamaki 86] Tamaki,H., “Stream-based Compilation of Ground I/O Prolog inte Committed-choice
Languages,” Proc. of 4th Int. Conf. on Logic Programming, pp.376-393,1987.

|Ueda 86a] Ueda K., “Guarded Horn Clauses,” PhD. Thesis, The University of Tokyo, 1986.

[Ueda 86b] Ueda,K., “Guarded Horn Clauses: A Parallel Logic Programming Lauguage with the
Concept of a Guard,” ICOT TR-208, 1986.

[Ueda 86¢c] Ueda, K., “Making Exhaustive Search Programs Deterministic,” Proc.of 3rd Int. Conf.
on Logic Frogramming, LNCS 225, Springer, pp.270-282, 1986.

[Ueda 87] Ueda.K., “Making Exhaustive Search Programs Deterministic, Part II,” Proc.of 4th Int.
Conf. of Logic Programming pp. 356-375, 1987,

|Yang and Ajiso 86] Yang R. and H.Aiso, “P-Prolog: A Parallel Logic Language Based on Exclusive
Relation,” Proc.of 3rd Int. Conf. of Logic Programming pp. 255-269, 1986,

20

APPENDIX

4% Elock Loading Preblem in AWDOR-IT

.- mode pfl(-). block(+, =, =+, %, +,*,+,"). action(+,-,=.+. .+, +,-),
or_merge(+,+,-), lmerge(+,+,-), roerge(+,+.-},
act_action(+, =, =+, *. . %, "), pas_action(, -, = 4, +,4,+.7),
term_action(+,+,-}, send_megl+, +,+,-,-.*. %)

pfi1(Plan) :- true |

block(e, AB,AC, BA,CA. c(clear,tablel, flec,bl), [etart],.Pa),
bleck(b, BC.BA, CB,AB, clc.table), i(a,teble), [start] Pbl,
block(c, CA,CE, AC,BC, c{cleer,bl, f(clear,2), [start] Pe),

Plan=[Fa,Pb,Pel.

block(Id.S1.82,R1,R2,Current Final K,P) :- true |
er_merge(R1,R2,In),
action{id, 81,82, Tn,Current, Final E,P).

‘- gr_relation action/8.

actien{Id,& 8%, In,Current,Final H,P) :-
a:t_tatinn{!d,SE,SE,In.Current.Final,H,P].

uctiun{!d,ﬁiJEE.In,ﬂurrznt,Tinnl,H.P] -
pau_a:tinnild,51.32,ln,Currant.Finnl,H,FJ.

n:t_:ctiun(ld,ﬂl,Sz.In,:{Dn.Undch,E{Un,ﬂnaerj,E,P} c= true |
s1=[1.82=(],
term ection{In ¥ ,P).
&ct_actinnild,sl,EE,In_q{clear,Under}_ifFDn.?Under}.H,F] .= Under\=FUnder |
get_Event_ID(Ev), % system predicate which LEEigne
% 2 unigue event identifier to the variable Ev
send_msg{ld.FUnder,{muvu{ﬁd},Ev},Bi,SE,Ml.H!}.
send_nng{IE.Under.E:lenr.Ev}.Hi,Hz,Tl,Tﬂ}_
actinnEIdJTi,TE,In,cicllar,FUnder).fEFQnJFUnder}.
I{cltgr.Ev},{mnve_tn[FUndtr).Ev}|HJ.F}-
nct_actiun(ld45i.EZ.In.:[Dn,UnderJ.f{Fﬂn,FUnder},H.F) ‘-
Under‘=FUnder, On\=clear |
get_Event_ID(Ev)},
send_m;g{Id.ﬂn.{remuve_trnmfldl.Ev).SI,SE.Tl.TI}.
nctiun{Id,Ti,TE,In,cEcleur,Under}.i(FUn.FUnder},
[(remeve(On),Ev) |H],PJ.

Pas_actiﬁh{ld.Sl,Sﬁ.I{zcve{ELﬁ}.E¢}|1n].Eiclenr.UndeT}.Finhl.H-P} = true |
ncti&n(ld,SiJSE.In,:[EL\.Under).Final.{facﬂupt{BLR}.E?}|H].F}-
pls_actian{ld,ﬁi.sz.[{muve:BLE],Ev]1In],:[Dn.ﬂnder},Finnl,H.P) ;- Om\=clear |

get_Event _ID(EV),
aend_msgttd.nn,f:emuva_frem(ld),E?l}.EL.SE.Tl,TEJ.
setien{id,Tt,T%,In,c(BLE,Under) Final,

[(accept(BLE) ,Ev), (remove(On) ,Ev1} |H],P}.
pae_action(Id, 51,52, [{remove_frem(BLK) ,Ev)|In],c(0On,Under) Final H,P) :-
BLE\=Under |
action(Id,51,82,In,c(0n Under) Final, [{ignere Ev)|K] P).
pee_action(Id, 51,52, [(remove from(BLE) ,Ev)]In] . c(clear BLK) Final, H,P) :-
true |
action(Id,51,52,In,c(clear, table) Final, [(escape Ev) |H] P).
Pnu_nctian(Id,SI,SQ,[(rannvt_irna(BLK},Ev}IIn],:(ﬂn,ELK],Finll,H,P) 1=
On\=clear |
get_Event_ID(Evl),
send_msg(Id,0n, (remove_from(Id),Ev1),51,52,T1,72),
action(Id,T1,T2,In,cl{clenr,table) ,Final,
[{escape,Ev), (remove(ln) Evi)|H] ,P).
pas_action(Id, 51,582, [{clear Ev)|In],c(0On, Under), Final H,P} :- true |
ection{Id,51,82,In,c{clear,Under),Finel, [{cleared,Ev)|H],P).

term_action([],B,P) :- true | P=[end|H].

:= pr_relation nr_mergtfa_
er_merge(X,Y,Z) :- Ilmerge(X,Y,Z).
or_merge(X.Y,2) :- rmerge(X,Y,I).

lmerge([XI1X1],7,2Z) :- true | Z=[X[Z1), or_merge(Xi,Y,Z1).
Imerge([], Y,Z) - true | Z-Y.

rmerge (X, [YIY1],2) :- true | 2Z=[Y|21], or_merge(X,¥1,21).
rmerge(X, [], Z) :- true [Z=X.

send_meg(a.b,Meg.S1,82,T1, T2} - true | Ei=[Megl|T1], 82=T2.
send_megla,c Meg, 81,82, T1,T2) := true | S52=[Meg|T2],51=T1.
send_msg(b,c Msg,51,52,T1,T2) :- true | Si=[Meg|T1],52=T2.
send_meg(b,a,Meg,51,52,T1,T2) :- true | S2=[Meg|T2],51=T1.
send_meg(e,a,Meg.S1,82,7T1,7T2) :- true | Si1=[MegiT1],82=72.
send_msg(ec,b,Msg,81,82,T1,72) :- true | §2=[Nsg|T2],81=T1.
send_msg(_,table Msg,51,52,T1,T2) :- true | 5i=T1,52=T2.

