ICOT Technical Report: TR-409

TH-4H

An Evaluaton of FGHC on a Shared
Memaory Multiprocessor

by
T. Ozawa. A, Hosol and
A Hattorit Fujitsu)

July, [TRE

CIONR, 10OT

Mt Boobaesio Dl) LTI P 10

“ :D l = Al D-Chome Teden WAL |5
1,] 1 III‘\ 1 .

a1
AL HICERN ST B S N E

Institute for New Generation Computer Technology

An Evaluation of FGHC
on a Shared Memory Multiprocessor

Toshihiro OZAWA Akira HOSOI Akira HATTORI

FUJITSU LIMITED
Kawasaki Japan

Abstract

We are currently developing a FGHC language processor
on a multiprocessor with shared memory as one of activities
of Japanese fifth generation computer systems project. FGHC
ie a subset of the parallel logic programming language GHC.
The main problems which occur in development of a parallel
system such as this are managing the contention for common
resources, and realizing an efficient method for load
palancing. In this system we distributle common resources to
each processor prior to execution and support a mechanism
which redistributes them when one processor exhausts one of
them. To achieve efficient lcad balancing, each processor
has a 1local scheduling gueuese in addition to a common
scheduling gqueue shared among all processors. We evaluated
+he characteristics of memory consumption of FGHC. Most
data is discarded within a wvery short time after it is
created. But data with a life time longer than a certain
period is generally alive until the end of execution. We
have therefore concluded that a generation scavenging method

of garbage collection suits FGHC well.

1. Introduction

This paper stems from research in parallel programming
languages in which we have paied special attention to paral-
lel logic languages because of their semantical clearness.
This is one of activities of the Japanese fifth generation
computer systems project. We are currently developing a set
of emulators as an FGHC language processor system on a
shared wmemory multi processor (Symmetry CPU: B0O3B88&). Qur
system is a set of emulators. One emulator is assigned to
each processor and shares a common memory area to execute
one task together. Each emulator emulates KL1B codell],
which is the intermediate code generated by compiling FGHC

source code.

FGHC is a subset of +the parallel logic programming
language GHC[2] which doesn't require to support of multiple
environments, and is therefore expected to execute effi-
ciently. A sentence of GHC is called a clause and consists
of a head, guard goals, commit operator (|), and body goals.
The combination of the head and guard goals is called the
passive part and the combination of the body goals is called
the active part. In FGHC, guard goals are restricted
built-in goals. The passive part represents the conditions

under which the body goals can be executed.

Head :- Guardl,Guard2,... | Bodyl,Bedy2,... .
passive part active part

2.2. Execution

Toc execute a goal in GHC, a clause is chosen from tThe
set of clauses whose head can be unifyed withcocut any assign-
ment te the goal arguments, and whose guard ccals succeed.
The bodvy goals of selected clause are then executed in
parallel. Because no assignment to any geoal arguments is
allowed, the passive part of &ll clauses can be tested in
the same environment.

In FGHC, guard goals are restricted built-in goals
which do not need a separate environment to be solved. So

the execution of FGHC's passive part is not burdensome.

3. Implementation of FGHC on a multiprocessor

E'l‘ Basic control structure

An FGHC goal is represented by a data structure called
a goal-record[3]. Arguments and corresponding clause defin-
itiens can be accessed from it. When a goal-record 1is
created, 1t is put into a scheduling gueue.

An emulator gets a goal-record from a scheduling gueue
and tests the passive part of corresponding clauses, using
the geal's arguments. In our emulater, the tests are done

one by one. If the passive part of a clause succeed, the

body goals of that clause are created and put into a
scheduling queue. If the passive part of all clauses fail,
the execution of the goal fails. If a clause exists whose
passive part neither succeeds nor fails, because some argu-
ment of the goal are yet not instantiated, the execution of
the goal is suspended. This goal is bound to those unin-
stantiated arguments in order to be able to resume it when
one of them is instantiated. The resumption of a goal is
realized by re-inserting the goal into a scheduling gueue.
Goal-records are thrown away guickly, and many goal-
records are created during execution. This is managed effi-

ciently through a free-gcal-list.

3.2. Basic data structures

Begides a value field, data has a tag field for data
typing, & gc f£field, a lock field to t+he exclusive access.
The supported data types are atom, list, vector, integer and
floating point. There are two types of uninstantiated
cells. One indicates that no goal is bound. This cell's tag
is UNDEF. Another indicates that goals are bound. This
cell's tag is HOOK.

Data is allocated from a common heap area which is used

by all processors.

4. EResource contention

The free-goal-list and the heap are common TesOUrces.

1f we have an only one free-goal-list or only ene heap

4

allocation pointer, contenticns will undoubtedly occcur fre-
gquently.

Ta awvoid this centention, we assign a free-goal-list
and a heap allocation pointer to each processor. That is,
goal-record areas and heap areas are distributed to each
processor pricr to execution.

A mechaniesm is supported which redistributes these com-
mon resources 1if thev become exhausted in a processor. To
realize this mechanism, our sys.em has a oecial register,
REQUEST-FLAG, +that is accessible from zll processors. If
there is an operation which all processcrs must do together
or one processor needs to stop the execution of all the
other processors, this register is set with the correspond-
ing operation code. Each processor checks the REQUEST-FLAG
at the beginning of every reduction cycle.

For example, when one processor exhausts his own free-
goal-list, he sets REQUEST-FLAG to 'REQ_GOAL'. The other
processors will stop execution after finding the REQUEST-
FLAG set. After all processors stop, the processor which
set a flag collects free goal-record and redistributes them.
1f one processor exhausts the heap area allocated to it pre-
viously, garbage collection is invoked.

Because common resources are distributed prior to axe-
cution and there exists a mechanism for radistributing them,
exclusive access to these common resources is not necessary.
Their exhaustion 4is neot regular event., Because they are

reused in the way of free list management, this reduces the

overhead of the parallel execution.

5. Dynamic load balancing

Using the same method as was used for the free-goal-
1ist, distributing a scheduling gqueue is done to reduce the
contention for getting a goal-record. But, if the schedul-
ing gqueue is divided between each processor, we need a
mechanism that distributes the goal-records very guickly in
order +to reduce the idle time of processors(4,3]. It seems
toc be very common occurrence that a processer becomes idle
because there are no goal-records to be solved. If there
are almost the same number of goals to be solved as the
number of processors, the overhead of idle time in a bad
load balancing method becomes greater than the overhead of
contention for accessing one scheduling gueue.

In order to reduce both the idle time and the overhead
of contention for accessing, there is one more scheduling
gueue besides the ocne 1local to each processor has been
introduced. This gueue is called the extra-gueue. We also
introduced the register, EXTRA-LENGTH, which keeps the
length of the extra-gueue. This register and extra-queus
are accessible from every processor.

Goal migration for locad balancing is done by way cf the
extra-gueue. Goals in a processor's lccal gueue is manipu-
lated by only the owner processor of that queue.

If the value of EXTRA-LENGTH is shorter than

(his own queue length) * CONSTANT

+hen the processor gets goals from his local gueue and puts
them in +the extra-gueue until the abcve condition is again
satisfied. Because the extra-gueue is truly shared by each
processor, exclusive access to the exira-queue is necessary.
But exclusive access to a local scheduling gqueus is not
necessary, because it is accessed by only it's pwner proces-

S0r.

According to this strategy, when there are plenty of
goals, each processor's scheduling queue has goals and the
contenticn is eliminated. When there are not enough goals,

only extra=-gqueue has goals and idle time is reduced.

Tahle 1 shows the relation between CONSTANT, and con-
tentions and idle time. We can reduce the overhead by tun-
ing the value of CONSTANT. At the moment, FGHU is being
executed on emulator, but if we execute FGHC on a special
hardware, the execution speed will be very high. In such
snvironment, reducing the overhead of the contention will be

gven more important than it is now.

But, we can not control +the number of suspensions.

rable 2 shows the relation between CONSTANT and the number
of suspensions. The number of suspensions 1is not related

with CONSTANT in general.

CONSTANT 1 & B 16 32

Contention time 120 190 260 380 400
Idla time 3130 2300 2280 2200 2200
Total overhead time 2310 2490 2540 2580 2600

The unit iz Milli-Second.
The number of processors is 8.
Program is MAXFLOW.

Table 1 The overhead of contentions and idle

COMSTANT 1 i 8 16
The number of suspensions 38000 32000 37000 33000

Program is MAXFLOW.
Table 2 The number of suspensions

6. Performance evaluation

Figure 1 shows the relationship between the number of
processors and the execution speed. CONSTANT is set to 4.
From results of the Eight Queens program (which doesn’'t
suspend), the common bus seemed to be saturated. One reason
why bus traffic is high and speedup becomes dull according
to an increase +to the number of processors is because our
emulator's registers are actually in memory. Table 3 <chows
the percentage of time spent performing wvarious types of
cperations necessary o execute each program. Context
switeh is the operation that is getting a goal-record and

setting the registers. Idle is idle time Dbecause no goal

32
31000

3_
i
T p
6 E
5= g "
4- L
: 4 A7 .- BUP
3 Fe —_— DB
: A MAXFLOW
T — PRIME

i_n” - QUEEN
1 './'/ : L i ! i i
i 2 3 4 5 & 7 8
. . PEs
Figure 1 Execution Speed

can be found in his local queue and the extra-gueue. Pas-
sive part is the operaticn that is execution of a passive
part. retive is +the operation that is seclving built-in
goals in a active part. Goal creation is the operation that
s creating goals and putting them into gqueues. Suspension
is the operaticn that is suspension and resumpticon of a
goal. rTable 4 shows how long each operation takes for sin-
gle operation. These Indicate that idle time is very small
in +his 1load balancing method. The cost of one suspension
is rather larger andé the total cost dominants the overhead

of parallel execution.

But, we can not control the number of suspensions.

Suspensions can be reduced with single gueuse scheduling in

Qperation BUF DB MAXFLOW PRIME QUEEN

Context switech 16 12 10 B 13
Idle 1 1 2 1 1
Passive part 21 24 47 44 41
Active 32 38 26 45 22
Goal creation 20 14 4 Q 20
Suspensicn 3 7 10 2 0
Others 2 3 1 Q 3

The number of processors is B.
Table 3 The percentage of time spent in wvarious types of operaticn

Operation BUP j9)=] MAXFLOW PRIME QUEEN
Context switch 150 105 120 120 150
Pagsive part 1635 180 720 210 210
Active 195 270 270 225 120
Goal creation 360 270 345 240 380
Suspension 408 255 345 195

The unit is Micreon Second.
The number of processcrs is 8.
Table 4 The time spent performing various types of operation

some benchmark programs, but suspension is still the biggest
overhead for parallel execution of FGHC. Reducing the
number of suspensions appears to be wvery difficult using
only dynamic leoad balancing. To achieve a substantial
reduction in general, static analysis of program is neces-

Sary.

10 -

7. Memory consumption

We have evaluated the characteristics of memory con-
sumption of FGHC, using garbage collection (GC) called copy-
ing GC. When one processor exhausts his heap area, it sets
+he REQUEST-FLAG to stop the other preocessors. After all
processors stop, the processors begin to collect garbage in
their scheduling guesues.

Te estimate the 1life time, each data is assigned a gen-
eration according to when it was born. Data from Nth gen-
eration indicates that it was born between the end of (N-
1)th garbage collection and the beginning of Nth garbage
collection. Figure 2, 3 show the life time of data. Each
1ine of the graph indicates the percentage of remaining live
data of a certain generation. Each GC is invoked after about
3K words of new data are allocated. Most of all data is
thrown away very shortly. These characteristics come from
the fact +that many goals are thrown away gquickly and most
goals have input arguments which are not shared by other
goals. But, the data whose life time is longer ithan a cer-
tain time, is generally alive until the end of execution.
That time ig almost same for all generations. Most of these
data are pointed to by suspended goals. We conclude that
the generation scavenging type GC suits FGHC and is alsco
impeortant in reducing the suspension from point of wview of
memory consumption. If the creation of the geal which will

be suspencded for a long time can be postpeoned, much more

Remaining

Live Data
30 (¥
i lst Gen.
! \' |I
Zﬂi- \:\ 6th Gen. 1llth Gen.
| ,. _
\---_‘::I I"._
é L\\ .I'.. i
10 — i \._.________\

- : ‘.___\ N
o 20— 3040 30 60 70 b‘ﬁ%&:'ﬁu

Cumulative Data Allocations (K words)
Figure 2 Life Time of Data (BUF)

Remainin
Live Dat

6
Eqﬁ

50

ol - ;
100 700 300 100 500
Cumulative Data Allocations (K words)

Figure 3 Life Time of Data (MAXNFLOW}

garbage can be collected.

1%

8. Conclusion

Distributing common resources prior to execution and
redistributing them when the Tesources of one processor
becomes exhausted reduce the overhead of the contention of
accessing common Iesources.

We can support an efficient dynamic load balancing
method, using cne global gueue and processor's own gueue.

The method of generation scavenging for garbage collec-
tion suits FGHC well. Reducing the number of suspensions is
important not only for speed up but also for memory con-

sumption.

Acknowledgements

The authors would like to thank Manager Hayashi and
General Manager Tanahashi for their encouragement in out
research. We also thank our colleagues and the members of
the fourth research laboratory at ICOT for their discus-

sions.

References

{11 ¥. Kimura and T. Chikayama. An Abstract KL1 Machine and
Its Instruction of Flat GHC on the Multi-PSI. In Proceedings
of the Fourth International Conference on Logic Frogramming,
1987.

[2] K. Ueda. Guarded Horn Clauses. Technical Report TE-

103, ICOT, 1985

[3] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed
Implementation of Flat GHC on the Multi-PSI. In Proceeding
of the Fourth International Conference on Logic Programming,
1987.

[4] M. SATO, A. GOTO. Evaluation of the KLl Parallel System
on a Shared Memory Multiprocessor. IFIP WG 10.3 Working
conference on Parallel Processing in PISA,ITALY, 1988

[5] M. Sugie, M. Yoneyama, A. Goto. Analysis of Parallel
Inference Machines to Achieve Dynamic Load Balancing. In
Proceeding of International Wworkshop Artificial Intelligence

for Industrial Applications 1988.

14..

