ICOT Technical Report: TR-407

I H-4017
Horn Clause Transtormation by
Restrictor in Deductive Databases

by
No Miyazaki{Oki)., K. Yokota.
H. Hanuda(Ok1) and H. ltoh

lune, 1988

Colasy, 10

Moty hekusqm Dldg 217 031 AAG=318] ~ 5

IDD I 4=28 Mita 1-Chome Telox FCOT 5o

Minate-ku Tokve 18 Japan

Institute for New Generatiﬁ;i Computer Technology

Horn Clause Transformation by Restrictor
in Deductive Databases

June 1988
Nobuyoshi Miyazaki*, Kazumasa Yokota **,
Hiromi Haniuda® and Hidenor Itoh**
* Oki Electric Industry Co., Lid.

**Institute for New Generation Computer Technology

Abstract

Several methods have been proposed to improve the performance of bottom-up
evaluation by query transformation (or rule rewriting) in the deductive database field.
One way to realize this improvement is to introduce new predicates such as magic
predicates to be used as filters. This is considered as one of the most promising ways
to realize efficient query processing. Most algorithms in this category are formulated
based on the procedural semantics of the top-down evaluation, and their logical meaning
is difficult to recognize. This paper proposcs a method called Horn clause
transformation by restrictor (HCT/R) based on the declarative semantics. HCT/R is
formulated as an equivalent wansformation that maps the least Herbrand model 1o a
smaller model. It is most general in this category and can be considered as a logical
foundation of methods in this category. Optimization of this transformation is also

discussed and an optimal algorithm is proposed.

1. Introduction

There are two major ways of processing queries in deductive databases [4]. One is the
top-down method based on SLD semantics. The other is the bottom-up method based
on fixpoint semantics. When some arguments of a goal are bound, the top-down
method computes a certain subset of the least Herbrand model by restricting the search
space in order to obtain the answer. The bottom-up method computes the whole least
Herbrand model in order to obtain the same answer. Therefore, the bottom-up method
is not efficient although it is more suitable to use relational database operations.

Several algorithms have been proposed to overcome the problem of the bottom-up
methods by transforming queries before bottom-up evaluation. Examples of these
methods are distribution of selections [2] or push of selection conditions [6], and magic
set (MG) [3] [9] [10} and generalized magic set (GMG) [5]. The former two methods
are simpler but can be applied to only special cascs of queries, while the MG and GMG
are more complex but can be used for broader class of queries. MG and GMG that use
new predicates as a kind of filters are considered as one of most efficient ways 1o
process queries by bottom-up evaluation. These methods are formulated based on the
procedural semantics and explained as the simulation of top-down evaluation by
bottom-up evaluation. Logical meaning of MGs is difficult to understand because the
declarative semantics of them are not obvious.

This paper proposes a transformation called Horn clause transformation by restrictor
(HCT/R). HCT/R is formulated based on the declarative semantics, and can be
considered as a logical foundation of MGs as well as their generalization. HCT/R 1s
formulated as an equivalent transformation that maps the least Herbrand model 1o
smaller model while preserving the answer set. A simple optimal HCT/R algorithm 15
also proposed. Chapter 2 discusses the fundamental concepts of deductive databases.
HCT/R is proposed in chapter 3 and its modification for practical implementation is
discussed in chapter 4. The optimization of HCT/R and relationship with MGs are

discussed in chapter 5 and chapter 6, respectively.

2. Deductive Databases and Equivalent Transformations

The basic concepts of deductive databases and query transformation are discussed in
this chapter. It is assumed that fundamental concepts of logic programs in [7] are
known.
Definition 2.1 (Notations)
clanse: A clause means a definite clause in this paper. It is denoted <h,B> where h 1s an
atom and B is a set of atoms. A clause is also denoted h:-B where h is an atom and B is
a conjunct of atoms.
model: A model means the least Herbrand model.
prd(X): A predicate or a set of predicates of X. If X is an atom, prd(X) is its predicate.
If X is a clause, prd(X) is its head predicate, If X is a set of clauses prd(X) is a set of
their head predicates.
= : Let A be a set of clauses and B be a clause. A = B means B is the logical
consequence of A.

|
Definition 2.2 A deductive database (DDB) is a finite set of clauses. An exrensional
database (EDB) is a set of ground unit clauses, and an intensional database (1DB)1s a
set of other clauses. Thus, DDB = TDB w EDB. =
Definition 2.3 A guery is denoted by a goal which is an atom. Let g’ be a ground
instance of g. Then, the answer of the guery is the set G = (gl DDB= g'}. [
Note that the definition of the goal with an atom does nor practically restrict the

expressive power of the query, because the goal with a conjunct of atoms can be
mapped to a goal with an atom by adding a clause to the DDB. A goal combined with
the related subset of the IDB corresponds to a query in relational daiabases. The

following proposition is the basis of query processing [7].

Proposition 2.1 Let DDB, G and M be a deductive database, its answer for goal g,
and its model. G and M may be infinite sets if funcrions are used in DDB. Letg' bea
ground instance of g. g'e€ G iffg' € M. [

Because a model of DDB may be large and even infinite, the direct computation of &
model by a bottom-up method is not efficient. Therefore, the concept of equivalent
transformation that can reduce the size of models is defined.

Definition 2.4 Let DDB and DDB' be deductive databases and their answers for a
goal g be G and G respectively, DDB and DDB' is goal equivalent (or simply
equivalent) with respect 1o g iff G = G". This is denoted DDB =, DDB'.]

The relation "=," is transitive, reflexive and symmetric, i.e., it is an equivalence
relation.

Definition 2.5 Let f be a transformation from a set of all deductive databases o itself.
f is an equivalent transformation with respect ro g iff f(DDB) =, DDB for any DDB.
u

The term "with respect to g" may be omirted if it is obvious with respect to which goal
the transformation is equivalent. The amount of EDB is considered large in a deductive
database, and predicates in EDB can be handled efficiently by relational database
techniques. Therefore, usually it is not necessary to transform clauses in the EDB. This
fact gives the following definition.
Definition 2.6 Let DDB = IDB w EDB be a deductive database. An equivalent
rransformation f is a Horn clause ransformation (HCT) iff there exists a ransformation
h_and f is expressed as:

f(DDB) = h(IDB) w EDB, for any DDB.

Transformation h may also be called an HCT. |
Definition 2.7 Let { be a ransformation. Let answers of DDB and f(DDB) for g be G
and G' respectively. fis complete with respect to g iff G’ > G for any DDB. f is sound
with respect to g iff G o G’ for any DDB. »

A sound and complete ransformation is an equivalent transformation.

Now we have defined fundamental concepts of deductive databases and their
transformations. Let us consider how an effective ransformation can be obtained. First,
some clauses of DDB should be discarded in order to reduce the size of model.
However, the essential information must be preserved in order to assure the same
answer. The simplest way to achicve both requirements is to replace clauses by their
Jogical consequences. This consideration gives the following definirion.

Definition 2.8 Let S be a set of clauses and DDB = F forevery Fe S. LetE be a
subset of DDB. A clause replacement is a transformation that maps DDB to (DDB - E}
u S, u

Proposition 2.2 A clause replacement is sound with respect o any goal.

Proof It is clear that the model of DDBUS is same as the model of DDB.
Therefore, the result of a clause replacement has a model that is a subset of the model of
DDB. Hence, the resulted answer is the subset of the original answer by propoesition
2.1,]

The clause replacement is one of the most important principles of query
transformations, because various transformations are obtained by applying it using
fundamental principles of first order logic. For instance, Hom clause transformation by
partial evaluation [8] is obtained based on the clause replacement using resolution.
Another example is the distribution of selection for transitive closure |2]. This method
as well as its extensions [6] can be considered as special cases of methods based on the
clause replacement using ground substitution [1].

One more definition of a simple transformation is used in the following sections.
Definition 2.9 Let p be a predicate which does not appear in DDB, and S be a set of
clauses such that prd(S) = p. A clause insertion is a ransformation that maps DDB 10
DDB w S,]

The following proposition is obvious.

Proposition 2.3 A clause insertion is an equivalent transformation with respect to

g if prd(g) # prd(inserted clauses).]

3 Horn Clause Transformation by Restrictor (HCT/R)

An HCT based on the clause replacement using subsumption is discussed in this
section. Subsumption is one of the fundamental concepts in first order logic. Arguments
of atoms are not shown in this secrion. Therefore, an atom whose predicate ist 15 also

expressed as r.

Definition 3.1 Let B and C be clauses. B subswmes C iff there exists a substitution 8
such that B8 is a sub-formula of C. It is obvious that if B subsumes C, then (B} =
C. |

The basic idea of the transformation is as follows. Let <r,R> be a clause in DDB.
Replace this clause by a clause, <r, {r*}_R>, that is subsumed by <r,R>. The subset
of the model that corresponds to predicate, r, may vary depending on how r* is given,
but it should never be larger than the original subset.
Definition 3.2 Let DDB = IDBUEDB, and § be a subset of prd(IDB) called a
restricted predicate set. The following transtormation does not change clauses in EDB.
Let r* be a newly introduced predicate that corresponds to r € 8. The arity (i.e., the
number of arguments) of predicate r* is the same as the anty of predicate r. Let us
consider a transformation consisting of two steps.
{1} Insert clauses whose heads have such r*s.
{2} Replace all clauses in [DB as follows:

Let C be a clause <r,R> in [DB, where r is an atom and R is a set of atoms. If
prdirie S, replace this clause by a clause, C'= <r, [{r*}wR>, where r* is an atom and
arguments of r* are the same as those of r in the head. If prd(r}e 5, C' is the same as C.

The transformation consisting of above two steps is called clause replacement by
restrictor. Predicate (or atom) r is called a restricted predicarte (or arom) and predicase
(or atom) t is a restrictor predicale (or atom). A restrictor predicate (or atom) may be
simply called a restricror. C' s a restricted clause and a clause whose head is a restrictor

is a restricror clause.

The step 1 is an equivalent transformation by proposition 2.3. The step 2 is a clause
replacement and is sound by proposition 2.2, Thus, it is clear that clause replacement by
restrictor 15 sound. If it is complete, then it is an HCT and is called HCT by restrictor
{HCTI/R). u

The restrictor can be considered as a kind of filters discussed in the literature [4].
The relationship between models before and after clause replacement by restrictor is
shown in Figure 1. The original answer is G, and the answer after the transformation is

GM;. If the transformation is complete, then M;=G. Note that there is no guarantee
that M> is smaller than the original model, Mppg, unlike other transfonmations based on

clause replacement, because of step 1.

(&

M,

M, : Model after step 1
M., : Model after step 2

Figure 1. The Relationship of Models

The following proposition is useful to consider form of restrictor clauses.

Proposition 3.1 Let f be an HCT/R. Suppose DDB’ = f(DDB) and <r*,P> is a
restrictor clause. Let P' be a subset of P and DDB" be obtained by replacing <r*,P> by
<r*.P'>. Then DDB =, DDB".

Proof Let G, G' and G" be the answer to g of DDB, DDB' and DDB" respectively.
Because the transformation from DDB to DDB” is still a clause replacement, GOG".
Because [<r*P'>)= <r* P>, G"3G'. Therefore, G = G", because G = G.
|

Let us discuss conditions for restrictor clauses to make this transformation equivalent

by considering completeness of the ransformation. Let DDB' be the transformed result.
First, consider a restricted clause <g’,{g* }wR> where g=g'0 for goal g. It is necessary
that the same resulis as DDB are obtained in DDB’ by applying sequences of resolutions
to g. The resolvent of g and the original clause <g'.R> is R@. The resolvent of g and
the restricted clause is (g*,R)8 = (g*8,R8). If DDB=g*8, we obtain R8 from
{2*0,R0). Therefore, if DDB=g*6, DDB’ may be equivalent to DDB with respect to
g. This consideration gives the following definition.
Definition 3.3 Let g be a goal. Suppose prd(g) is an element of a restricted predicate
set, S. An initial (restrictor) clause is defined as a unit clause that consists of g* whosc
arguments are the same as g. If prd(g) is not an element of §, there are no initial
clauses. |

Next, consider other clauses in DDB. Let <p,{r}uP> and <r,R> be clauses in DDB.
To simplify discussions, assume pe S, re S and arguments of r's in both clauses are
same. The corresponding restricted clauses in DDB' are <p,{r}uP> and <r,[r*]UR>.
Consider sequences of resolutions in DDB and DDB'. In DDB, p changes as follows:

p — r,P— R,P where P and R are formulas in this notation, and italic indicates an
atomn 1o be resolved. In DDB', we have:

p— r.P—r* R.P.

If <r*,P> is a logical consequence of DB, then r*,R,P results in P.R.P and this

formula is logically equivalent to R.P. A simple way to make <r*,P> a logical

consequence of DDB' is to include a clause <r*,P'> in DDB’ where P is a subset of P,
because <r* P'> subsumes <r* P>, Thus, we obtain the following defimition.
Definition 3.4 Let C be a restricted clause <p,{r}uP> where 1 is a restricted atom
and P is a set of atoms. Let P’ be a subset of P. A candidarte equivalent restricior clause
(CERC)C* is a clause <r* P'> where the arguments of atom r* are equivalent to those
of rin ', If there are more than one atom in C' whose predicates are the same, 3 CERC
is defined for each atom. [|
Let us discuss whether restrictors obtained by initial clauses and CERCs give an
cquivalent transformation or not. If a CERC given by P'=P resulis in an equivalent
transformation, any CERC can be used for equivalent transformation by proposition
3.1. A CERC given by P'=P is called a primirive CERC.
Example 3.1 ancestor
IDB: ancestor(X.Y):-parent(X,Y)
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y)
EDB includes clauses for parent.
Let the restricted predicate set be [ancestor). The restricted clauses are:
ancestor(3,Y):-ancestor¥ (Y) parent(3,Y)
ancestor(X,Y):-ancestor*(X,Y),parent(X,Z}),ancestor(Z,Y).
A primitive CERC is obtained from the second restricted clause.
ancestor*(Z,Y):-ancestor*(X,Y),parent(X.Z)

The initial clause varies depending on the goal. For instance, the inirial clause obtained
for the goal ancestor(taro,Y) is ancestor*(taro,Y). It is easy to see that the resulted set of
clauses 15 equivalent with respect to any given goal for ancestor.

Next, let us consider more complex case.
Example 3.2 Mutually recursive query
IDB: p(X.Y)-a(X.Y)
p Y)-a(X,Z10,p(Z21,22},q(22.Y)
qfX, Y):-b(X,Y)

QEX, Y -p(X,Z1).e(Z1,22),9(Z2,Y)
Clauses for a, b and c are given in EDB.
Let restricted predicate set be (p,q). The restricted clauses obtained are:
pOXY) -p(X,Y).a(X,Y)
P Y)-p*(X,Y),a(X,Z1),p(21,22),9(22.Y)
QXY =g *(X,Y),b(X,Y)
Q(X, Y g * (X, Y),p(X,Z1),e(Z],22),q(Z2,Y).
Primitive CERCs are obtained from the second and fourth restricted clauses. The
second gives two primitive CERCs:
P*(Z1.72)-p*(X,Y),a(X,Z1),q(Z2.Y)
q*(Z2.Y)-p*(X.Y)a(X,21),p(21,22).
The fourth gives:
pH(X.Z13-g*(X,Y),e(Z1,22),q(Z2.Y).
qQ*(Z2.Y):-g*(X,Y).p(X,Z21),e(Z1,Z22).

The resulted set of clauses combined with an initial clause is not equivalent 1o original
set. For instance, the subset of model corresponding to p, g, and g* is always empty
for the initial clause p*(cl,c2) if there 13 not a(cl,c2) in EDB. Thus, CERCs do not
unconditionally give equivalent transformation. Let us consider the reason of this
problem by revisiting the discussion to give the definition of CERCs.

Let <g,[p.r}>, <p,P> and <r,R> be clauses in DDB, and assume prd(p) and prd(r)
are elements of restricted predicate set but prd(g) is not. Restricted clauses in DDB’
corresponding to these clauses are:

<g [pr]= <p,p*UP> and <rr*uR>.
Primitive CERCs obtained from the first restricted clanse are:

<p*r> and <r* p>.
If neither p nor q does not appear in the body of resiricted clauses other than
<g,{p.r]>, then there are no other primitive CERCs. We obtain following sequence of

resolvents in DDB,

10-

g=pr==Pr PR
The sequence of resolvents in DDB' is:

g —=pr = p-Pr - p*Pr*R
The resolution may be continued using CERC:s as follows.

p*Pr*R = rPr*R = r*RP;*R —=pRPr*R — p*PRPrR.
It is easy to see that it is not possible to get a formula equivalent to (P,R) even if the
sequence is further continued. The reason of this problem is considered as follows. The
head predicate of a clause is considered to be dependent to its predicates. We may
consider a dependency graph based on this dependency. In the above example, there is
a cyclic path,

p —p* =1 —=1* =),
in the dependency graph of DDB'. Therefore, we are not able to eliminate predicates in
this ¢yele. The problem may be solved if there are no such cycles. In the above
example, the cycle may be eliminated by cutting dependency of either p* —ror r* —
p {(dependency p — p* and r — r* should not be cut by definition). The sequence of
resolutions using CERCs without the first dependency, <p*.{}> and <r®p=>, is as
follows.

pr*Pr*R =-Pr*R - PpR = Pp*PR — PPR
The last formula is logically equivalent to (P.R).

The above discussion gives the following definition.

Definition 3.5 Let n be the number of resmicted atoms in the body of a restricted
clause, C. Let N be a set of clauses that is obtained by selecting a CERC for each
restricted atom in the body of C. N has n elements. A relation "—" is defined for each
element C* of N as follows. If p* = prd({C*) and a restricted predicate, 1, is in the body
of C*, then p—r. Here, a predicate that appears more than once in the body of C is
treated as if each instance has a different predicate by attaching identification numbers
to predicates. If there are m restricted atoms in the body of C*, then there are m such

relation instances correspending to C*. Consider a directed graph that is obtained by

collecting all these relation instances of elements of N. N is acyclic iff this graph does
not have a cycle. Let R(N) be a union of all Ns corresponding to restricted clauses.
R(N) is acyclic iff every N is acyclic. |

Proposition 3.2 Let DDB be a deductive database. Let DDB' be a set of clauses that
consists of restricted clauses defined by definition 3.2, an initial clause and elements of
acvclic R{N) defined in definitions 3.3 and 3.5. Then, DDB =, DDB". []

The proof is given in appendix 1. Note that proposition 3.2 gives a sufficient but not
necessary condition for the equivalent transformation. In fact, there are examples of

equivalent ransformations obtained by cyclic set of CERCs.

4. Horn Clause Transformation by Partial Restrictor

A modification of the transformation discussed in chapter 3 is described in this
chapter. There are two reasons for this modification.
(1) In restrictor clauses, variables of head may not appear in body. For instance, initial
clause usually has such variables unless all arguments of the goal are bound. This
causes two problems. First, the resulied set of clauses may not be bortom-up evaluable
[4] even if the original set is. Therefore, implementation may be difficult. Second, such
variables represent whole Herbrand space in the model, and result in large models.
(2) Only one restricted clause is obtained from one original clause by definition 3.2.
This may be roo restrictive.

The definitions in the previous chapter are modified using the concept of partial
restrictor that has smaller arity than the restrictor.
Definition 4.1 Let terms in definition 3.2 be changed as follows.
(1} r* is replaced by r*-M1, where b/f 15 a sequence of b and f and is used as an
adornment of T*. The length of the adornment is equal to the arity of r. The arity of
r*_bil {5 equivalent to the number of "b"s of its adomment. This predicate (or atom) is

called a partial restrictor.

._]2 -

(2) A restricted clause becomes <r,{r*-"f}UR> instead of <r,{r* JuR>. Here, the
arguments of r*-Y/f in the body arc same as those arguments of the head
corresponding to the position of "b"s. More than one restricted clause are generated
from one (original) clause, if more than one predicate r*-»T with different adornments
are used for the transformation.

The resulted transformation is called clause replacement by partial restrictor. 1f it is an
HCT, it is also called HCTIR. u
Proposition 3.1 is also correct for clause replacement by partial restrictor.

Definitions for restrictor clauses are also obtained by modifying terms of definitions in
chapter 3.

Definition 4.2 The inirial clause is obtained by changing definition 3.3 as follows.
g* is replaced by g*-P/f, Here, the arity is equal to the number of "b"s in adornment,
and arguments are the same as arguments of g corresponding to the position of "b"s.
|
Definition 4.3 The CERC for a clause replacement by partial restrictor is defined by
replacing r* by r*_! in definition 3.4. There may be more than one predicate, r*-b/,
corresponding to a predicate, r*, but only one of these alternatives is chosen.
Different predicates, r*-5/1, corresponding to the same restricted predicate, 1, can be
used as the head predicate of CERCs if they are generated from different instances of
the same predicate in the body of a restricted clause or from different restricted clauses.
|
Definition 4.4 A ser of CERCs for clause replacement by partial restrictor is same as
definition 3.5 except that definition 3.4 is replaced by definition 4.3, The acyeliciry is
also defined by replacing r* by r*.b/l, [

Proposition 4.1 Let DDB be a deductive database. Let DDB’ be a set of clauses that

consists of all restricted clauses defined by definition 4.1, an initial clause and elements

of acyclic R(N) defined in definitions 4.2 and 4.4. Then, DDB' =, DDB n

13

The proof of this proposition is similar to the one for proposition 3.2, The choice of
adomments is arbitrary exceplt that every element of prd({initial clause }_uR(N)) must

appear in the bodies of restricted clauses by definition 4.1,

5. Optimal HCT/R

Proposition 4.1 gives a sufficient condition for an HCT by (partial) restrictor. Let us
consider the way to obtain an optimal transformation that satisfies this condition.
Becanse the efficiency of processing depends on execution algorithms, the optimal
transformation may vary depending on the execution algorithms. However, we need
criteria relatively independent of the execution algorithms. We propose the following
two criteria for the optimality of transformation.

(1) The size of model (e.g., the cardinality of model).
(2) The processing cost to obtain smaller models is not large.

The first is the principal criterion for query transformations, because the model is
computed by bottom-up methods. The second criterion is used as a supplement. For
instance, we may choose to ransform even clauses in EDB. This decision usually gives
smaller models, but processing cost for transforming all clauses in EDB is very large.
Moreover, nothing practical is obtained by this transformation, because EDB itself is
considered as part of model and it is not necessary to compute this part of model.
Therefore, clauses in EDB should not be transformed by the second criterion, and the
definition of clause replacement by (partial) restrictor is determined not to change the
EDB. Some predicates in prd(IDB) may also be omitted from restricted predicate set,
because it may reduce the size of models. For instance, if the goal does not have any
bound variables, the model becomes smaller by deciding not to include prd(g) in
restricted predicate set. The effect of restrictor is obtained only by constants in IDB in
this case. The details of how to determine the restricted predicate set are not discussed in

this paper, and the set is assumed to be same as prd(IDB).

— 14 -

Let us consider how to minimize models with given restricted predicate set. The
DDB is considered as a mapping Ty, from a set of all Herbrand interpretations of DDB to
itself [7]. Tt is easy to see that the result of the mapping is smaller if there are more
atoms in the bodies of clauses. Therefore, we can obtain smaller models by having
atoms as many as possible in CERCs. However, it is sometimes time consuming to
evaluate some predicates in the body of a CERC. Consider the first primitive CERC in
example 3.2:

pH(Z1,Z2):-p*(X,Y)a(X,Z1),q(Z2,Y).
Suppose the initial clause is p*(c,Y). Variable X in the CERC is determined by the
initial clause, and other variables may be determined by evaluaring a and g in bottom-up
computation. Let us assume that the sets of clauses corresponding to a and q are large
{we consider that g has clauses in EDB here). The processing cost 10 determine values
of variables other than X may or may not be large depending on the form of the body.
For instance, determining values of Z1 by evaluating atom a(X,Z1) is not time
consuming if the range of X is restricted. Because Z1 is the first argument of the head,
we can consider the first argument of p* is always resmicted. On the other hand,
determining values of Z2 is time consumning because no arguments of q(Z2,Y) are
restricted. Therefore, we should choose to retain a(X,Z1) and to eliminate g(Z2.Y) to
ohtain:

PH(Z1,22)-p* (X, Y) a(X,Z1).

Because the first argument of p* is restricted but the second is not, we can make
model smaller by eliminating the second argument to obtain:

p* M(Z1)-p*-bi(X),a(X,21).

The above discussion results in the following algorithm. Although there is no
guarantee that this algorithm gives the smallest model for any DDB, it gives reasonably
small model for any DDB. Because it is difficult to consider an algorithm that always
gives the smallest model, the semi-optimal algorithm below is considered as a practical

optimal algorithm. Some definitions are necessary before defining the algorithm.

Definition 5.1 Let p be a restricted atom and C be a restricted clause, <r.{pjuB>.
Let C* be a primitive CERC, <p*, B> obtained from C. A binding propagation symbol
(BPS) of C* is defined recursively as follows.
(a) A variable that appears in arguments of the partial restrictor in B is a BPS.
(b) A constant is a BPS.
{¢) If there exists an argument of an atom in B that has a BPS (and if the argument is a
function, it does not have variables other than BPSs), then all variables of the atom are
BPSs.
(d) A symbol is a BPS iff it satisfies one of the above conditions. []
Next, a procedure that generates an acyclic set of CERCs based on the concept of
BPSs is defined.
Definition 5.2 A CERC generation procedure genCERC(C,S);
(is a restricted clause, <r, B> and S is a given restricted predicate set.
genCERC(C .S)
R:=&
for every atom p in B such that prd(p) € S do;
B':=B-{pl
* '= <p* B'>; /* p* has the same arguments as p. ¥/
decide BPS in C* according 1o definition 5.1;
B” := B'- {atoms that contain non-BPSs);
decide atom p*_¥f according to positions of BPSs in p* in C¥;
R:= R wi<p* bl B">});
end;
if R is not acyclic then R := makeAcyclic(R);
remrn K;

end, |

— 16

The procedure makeAcyclic(R) makes a set of CERCs acyclic by removing some
predicates from the bodies of the CERCs. Finally, the definition of the optimal
algorithm, procedure BPA (binding passing algorithm), is given.

Definition 5.3 A binding passing procedure BPA(g [DB),
This procedure regards the whole prd(IDB) as a restricted predicate set.
BPA{gIDB);

Trestrictor ‘= {g* 20} 1* p* b is an initial clause obtained by removing argumenis

thar include variables from atom g. */

Trestricted ;= &

do for every p*_bfe prd(Trestrictor);

R := {restricted clauses having p*_bf in their body generated according 1o
definition 4.1};
Trestricted = Trestricted U R;
do for every (new) C € Trestricted do;
Trestrictor = Trestrictor L genCERC(C prd(IDB));
end;
end;
renarn Trestricted O Trestricior;
end. -
The following proposition is obvious from proposition 4.1 and the definitions.
Proposition 5.1 h(IDB) = BPA(g IDB) is an HCT. |
BPA is an optimal HCT/R in the sense that it preserves binding by constants as far
as possible and results in reasonably small models for most DDB. The acyclic set of
CERCs is uniguely determined by genCERC for many queries. However, if there is
more than one aliernative, i.e., if makeAcyclic is invoked, the concept of the binding
passing alone cannot decide which alternative 1s the best, and information on the EDB is
necessary to select one alternative. Examples of the information to be used by

makeAcyclic are the size of relations and the position of index on relations.

The following example illustrate how BPA works.
Example 5.1 Mutually recursive query
goal: ple,X)
IDB: same as example 3.2. n
First the initial clause is determined as p*-M(c), and the restricted predicate set is
(pal.
The first set of restricted clauses having partial restrictor p*-f are:
p(X, Y):-p™-PI(X),a(X,Y)
p(X,Y):-p”(X),a(X,21),p(Z1,22),q(Z2,Y)
Following two CERCs are obtained by genCERC from the second restricted clause.
p'-P(Z1):-p™-P(X),a(X,Z1)
q°-b(Z2):-p"-bi(X),a(X,Z1),p(Z1,22).
A parial restrictor ¢"-Pf is generated. It gives two restricted clauses:
q(X.Y):-q™-P(X),b(X,Y)
q(X, Y):-q* (X)), p(X,21),6(21,22),q(Z2,Y).
From these restricted clauses genCERC generates restrictor clauses:
p*-BI(X):-q™-PI(X)
q"-M(Z2):-q"-P(X),p(X,Z1).c(Z1,22).
BPA terminates because no new partial restrictors are obtained. Note that acyclic
CERCs are obtained without using make Acvelic in genCERC. However, if the goal is
plC1,C2) instead of p(e,X), makeAcyclic is necessary to determine acvelic CERCs,
because the concept of BPS results in cyclic CERCs. Another example is shown in
appendix 2 to illustrate how more than one type of adomment are obtained.
The acyclic set of CERC:s is decided by the concept of BPSs in genCERC. We can
consider slightly different algorithms to determine CERCs. Some zlternatives are as

follows,

(1) Atoms that do not contribute to decide variables in head may be eliminated. For
instance, the atom ¢(X,Z) in a™Pi(Y):-a"-P{(X),b(X,Y),e(X,Z) may be eliminated
although it contains BPSs.

(2) We may choose adornment with fewer b's than that decided by BPSs in order to
reduce the number of partial restrictor predicates. For instance, if a"-Pf is already used,
a* M is selected as head predicate of a CERC instead of a*-*® that is obtained by BPSs.

Comparison of these alternatives is considered to be a subject of the future work.
Although BPA gives reasonably small models for most queries, there are cases
where it fails to obtain smaller models. This anomaly is introduced by clause insertion
of step 1 in definitions 3.2. The subset of model corresponding to original predicates is
guaranteed to be smaller than or equal to the original model, but the subset
corresponding to restrictors may be large for some queries (see Figure 1). This problem
does not occur for Datalog, i.e., if functions are not used in DDB. An example for the

problem and the suggested improvement is discussed in appendix 3.

6. Relationship with Magic Sets

HCT/R works correctly for any type of query, including mutually recursive queries.
Other methods that give similar result to HCT/R have been proposed. Examples are
magic sets (MG) 3] |9] [10] and generalized magic sets (GMG) |5]. Magic predicates
and modified rules in these methods correspond to (partial) restrictor predicates and
restricted clauses respectively. It is easy to see that these methods satisfy the condition
for HCT/R, i.e., the condition of proposition 4.1, with little or no moedification,
although they are formulated based on different concepts. MG gives the same
(sometimes slightly different) result as BPA, although it can be used only for special
types of gueries such as linear or nested queries. GMG can be used for a broader class
of queries. Because GMG and HCT/R are formulated based on the different concepts,

the details and the intuidve meanings are different. However, the ransformed results are

similar to each other. The principal differences between GMG and HCT/R are as
follows,

{a) GMG 1s formulated based on the concept of sip (sideways information passing),
which is an abstraction of how binding information is passed by a top-down evaluation.
The transformation of GMG is performed as follows. First, clauses are adomed based
on the concept of sip . Next, clauses having magic predicates in head are determined
based on the adornments and sip . Finally, the modified rules (restricted clauses) are
obtained, Thus, the sequences of transformation are opposite in GMG and HCT/R.

(b) HCT/R does not have a concept directly corresponding to sip . However, the
concept of acyclicity of CERCs corresponds to the acyclicity of sip , because both
correspond to partial order of atoms in the body of a clause. The formulation of
acyclicity of CERCs is simpler because it concerns only the restricted atoms while sip
concerns all atoms. However, they are essentially equivalent. The procedure genCERC
also corresponds to deciding an optimal sip for GMG, although how to decide the
optimal sip is not discussed in [5). genCERC is also essentially an extension of the
algorithm for MG based on the binding graph given in [10].

(c) Syntactically, adornment of both resmictor and restricted predicates is done by
GMG, but only restrictor predicates are adomed by HCT/R. If adomments of restricted
predicates are eliminated, the result of GMG satisfies the condition of HCT/R, i.e., the
condition for proposition 4.1. Adornment of the restricted predicate is an essential step
in GMG, but is not essential for the equivalent ransformation, although it can be done
in HCT/R by slightly changing the definitions. Adornment of restrictor predicates is
also not an essential condition for the equivalency of HCT/R, but it is introduced in
order to improve the transformation.

(d) The formulation of GMG is based on the behaviors of top-down and bottom-up
processing, while the formulation of HCT/R is independent of execution algorithms. As
a result, the formulation is simpler and the separation of the transformation from

execution algorithms is more complete in HCT/R. Note that it is claimed that sips and

conwrol (of execution) are independent components of a query evaluation strategy in [5].
For instance, GMG imposes well formedness condition on clauses in DDB, but
HCT/R does not have such conditions. Thus, the condition for HCT/R in proposition
4.1 is the weakest one so far known.

(e) The framework of HCT/R is generalized in order to properly handle constants in
DDB by introducing a restricted predicate set and by treating constants as binding
passing svmbols. The adornment in GMG contains only f's for an atom with no
incoming arc (in sip graph).

(f) A simple optimal algorithm, BPA, is given for HCT/R, and it is pointed out that the
concept of binding passing alone is not sufficient 1o obtain an optimal transformartion.

Thus, HCT/R is the most general algorithm of methods that introduce new predicates

1o be used as a kind of filters. It is also a framework that gives logical meanings to MG
and GMG that have been difficult to recognize. However, the concept of sip has also
its advantage because it can be used as a basis of a related method, generalized
counting, that reduces the amount of redundant computation as well as the space of
computation. The performance obtained by MG is known to be good compared to other
methods [4]. The performance obtained by HCT/R is better than MGs, because it gives
same performance us MGs for simple gueries and better performance for complex

(UETIES,

7. Conclusions

This paper proposed a method, Horn clause transformation by restrictor (HCT/R),
that transforms queries by introducing new predicates called resmrictors in order to
improve the performance of query processing. Although it is formulated based on
different concepts, 12 gives similar transformed sct of clauses to magic sets. Major

conmributions of this paper are twofold.

z'l

(17 HCT/R gives a logical foundation to methods that introduce new predicates such as
magic sets, because it is based on the declarative semantics rather than procedural
semantcs. It is also more general than magic sets and generalized magic sets.

{2) An optimal algorithm, BPA, was proposed by considering criteria for optimal
ransformation. Although similar algorithms have been proposed for magic sets, it is the
first optimal algorithm that is effective for broad class of queries including mutoal
recursion. Moreover, it was pointed out that the concept of binding passing alone is not

sufficient to optimize some queries.

Acknowledgement
We would like to thank our colleagues of the KBMS PHI project at ICOT and Oki
Electric Industry for their valuable comments and discussions. The example in appendix

3 is shown to authors by 1. Seki of ICOT.

References

[11 Abiru, Y., et.al., Constant Propagation in Deductive Databases, Proc. 36th Annual
Convention IPS Japan, Mar. 1988 (in Japanese),

[2] Aho, AV, and Ullman, J.D., Universality of Data Retrieval Languages, Proc. 6th
ACM POPL, 1979.

[3] Bancilhon, F.. et. al., Magic Sets and Other Strange Ways to Implement Logic
Programs, Proc. 5th ACM PODS, Mar. 1986.

|4] Bancilhon, F. and Ramakrishnan, R., An Amateur's Introduction to Recursive
Query Processing Strategies, Proc. ACM SIGMOD, 1986,

[5] Beeri, C. and Ramakrishnan, R., On the Power of Magic, Proc. ACM PODS, Mar.
1987.

[6] Ceri, 5., et.al., Translation and optimization of Logic Queries: An Algebraic
approach, Proc. 12th VLDB, Aug. 1986.

[71 Lloyd, 1.W._, Foundations of Logic Programming, Springer-Verlag, 1984,

[8] Miyazaki, N., Haniuda, H. and Itoh, H., Horn Clause Transformation: An
Application of Partial Evaluation in Deductive Databases, Trans. [PS], Vol. 29, No.1,
1988, (in Japanese)

(9] Sacca, D. and Zaniolo, C., On the Implementation of a Simple Class of Logic
Queries for Databases, Proc. ACM PODS, 1986.

[10] Sacea, D. and Zaniolo, C., Implementation of Recursive Queries for a Data

Language Based on Pure Hom Logic, Proc. ICLP, May 1987.

Appendix 1: Proof of proposition 3.2

Let DDB and DDR' be the original set of clauses and its transformed result
respectively. Because the clause replacement by restrictor is sound, the completeness of
the transformation is shown below.

It is shown that there exists a node in the SLD tree of DDB’ corresponding to every
node of SLD tree of DDB. If such node exists, there exists a success node in DDB' tree
corresponding to every success node of DDB mee. Hence, the transformation is
complete,

The computation rule in SLD refutation , i.e., the order of atoms to which resolution
is applied, is determined as follows.

[Computation rule for DDB]

(1) Atoms in body of a clause is reordered from left to right according to 2 full order that
is consistent with the partial order of corresponding acyclic CERCs in DDB".

(2) The next subject of the resolution of each goal clause is the left most atom.
[Computation rule for DDB

(1)Body of a restricted clause is reordered same way as its original clause, except that
the restrictor is put at left most side. Body of a restrictor clause is reordercd same way,
although it has fewer atoms.

(2) Same as (2) for DDB.

Note that SLD refutation is sound and complete independent of the computation
rules. Under the above preparation, the completeness is proved. Substitution of
variables are omtted to simplify the discussion, because the same substitution are used
in both DDB and DDB' trees.

[1] Resolution of the goal g.

(a) In DDB, :- A is obtained from :-g and clause g"-A where prd(g) = prd(g’).

(b) In DDB', :-A is obtained from :-g and g":-A if prd(g) is not an element of restricted
predicate set, :-g* A is obtained from g and g':-g*, A, otherwise. :-A is also obtained
from :-g* A and the initial clause.

{2] Assume that there exists a node N* in DDB' tree that corresponds to a node N in
DDE tree.

{a) Lera goal clause, :-r A, correspond to N in DDB tree where A is a conjunct of
atoms. :-A',A is obtained from it and r:-A’ by resolving .

(b) In DDB', N* also corresponds to :-r,A. If r is not restricted, then the result is same
as (a) above. Otherwise, -r* A’ A is obtained from :-r,A and ri-r* A’ by resolving r. A
sequence of resolutions that refutes r* as a sub-goal always succeeds, and a goal clause
-A'A is obtained. The reason why the refutation of r* succeeds is as follows,

A clause that has rin body, p:-p*,L,r,R, is used for resolution in the path from the
root o node N* Let the result of resolution be :-p*.Lr,R,B. To reach N* | the
refutation of p* L must succeed. There is a restrictor clause that has * in its head and
the body is p¥,L" where L' is a sub-expression of L, because of the computation rule.
Therefore, the refutation of r* whose first resolution is performed with this clause
always succeeds.

The existence of 2 node in DDB’ tree corresponding to every node in DDB tree is
proved by mathematical induction on the path length from the root to a node by [1] and

[2] above. Therefore, the transformation is complete. [|

Appendix 2: An example of BPA.

24 —

The following is an example where two partial restrictors with different
adomments for a restricted predicate are obtained.

Example: (non-symmetric same generation) [4]

goal: sg(c,X)
IDB: sg(X.X)
sg(X,Y):-parent(X, X 1),parent(Y, Y 1).sg(Y1.X1)
Clauses for parent are in EDB.]
The initial clause is sg™f(c). The restricted clauses having sg*-®f are:
sg(X X)-sg™-PHX)
so(X,Y)-sg"-B(X),parent(X, X 1),parent(Y, Y 1),sg(Y1L.X1)

A restrictor clause is obtained by genCERC from the second restricted clause.
sg*-fP(X1):-sg"-bE(X),parent(X X 1)

Because a new partial restriclor is obtained, new restricted clauses are obtained.
sg(X,X):-sg"-M(X)
5g(}(,‘:’j:-Eg'-fh('i’},parent{}(,}{]},pa.rtnt(Y,Ylfl,Sg{Yl,Xi]l

genCERC generates a new restrictor clause.
sg” (Y 1):-sg™- oY), parem (Y, Y1)

The pantial restrictor obtained here is not new and BPA terminates.

Appendix 3 An example where BPA fuils to obtain smaller model

goal: s(fiflc)n

1DB: s(Xh-s(f(X)

EDB: ground unit clauses for s

It is clear that this DDB has a finite model, and a bottom-up evaluation can

effectuvely computes answer. Let us apply BPA 1o this query.

The initial clause is s™-2(f(f(c))). A restrited clause having s"-P is:

s(X):-s"-P(X),s(£(X))

A restrictor clause 15 obtained from this clause,

25

s* BOF(X))-8"-P(X)

Because the resulted set of clauses has an infinite model, the bottom-up evaluation
does not terminate for the transformed query. Note that a top-down evaluation also fails
to terminate for the original query. This kind of anomaly never occurs if functions are
not used in DDB, Moreover, there are cases opposite to this example, i.e., the original
model 1s infinite but the transformed model is finite. We may change the algorithm as
follows to cope with this problem. If the argument in head is more complex than the
argument in body having same variable, then it is adorned by [instead of b. We can

obtain a finite model by this modification for this example.

