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Abstract

A declarative semantics of a parallel programming languare based
on Horn logic such as Fiat GHC is presented. The domain of iu-
put /output (I/ 0} histories 15 introduced. T'he denctation of a program
is defined as a set of 1/0 histories. The notion of truth is redefined for
goal clauses and sets of guarded clauses. The semantics of a program
is defined as the maximum model of the program. We also show thal
the semantics is characterized as the greatest fixpoint of the function
obtained from the program. The properties of programs which con-
tain perpetual computation controlled by guard-commit mechanisms
can he discussed using the semantics.

1 Introduction

In recent vears, several parallel programming languages based on Horn logic
have heen investigated. Examples are PARLOG [Clark £6], Concurrent Pro-
log |Shapiro 86] and GHC [Ueda 88]. In such languages, the notion of pro-



cesses which execute infinite computations controlled by guard-commit mech-
anisms communicating with other processes using input/output streams can
be represented naturally. Several results on the formal semantics of these
languages are reported [Saraswal §5. 87, Ueda 86, Shibayama 87, Takeuchi
86]. Howcver, these results arc hased on the operational approach. Thus,
they should be considercd as a formal specification of the language Processing
sysiem. In order to give a Jogical base for program verification methods or
transformation methods, a kind of declarative semantics is expected.

In purc Horn logic programnung, languages, the result for declarative
semantics based on the least fixpoint is reported in [Apt 82, Lioyd 84]. In this
approach, the denotation of a program is given as the minimum model of the
set of Horn clauses, in other words, the st of unit clauscs which is equivalent
to the program. The set of unit clavses is characterized as the least fixpoint
of the function obtained from the set of definite clanses. In this approach,
we can characterize the sei of solutions as the logical conscquences of the
program independently from iLe execution mechanisms. This approach is
one of the besi ways of appreciating the clarity of logic prograims. Extensions
of this approach for programs which contain infinite computations are also
reported in [Lloyd 84, Sakakibara 85).

However, these resulis are reported for pure Horn logic languages. They
cannot be applied to parallel languages which contain the notion of a guard-
commit mechanism directory, A model theory must he reconstructed for
Horn logic with the comml operator. Thus several extensions are reported
for such languages [Levi 87, 82, Falaschi 88al. [Levi 88] discusses the seman-
tics of Flat GHC programs as the sets of guarded atoms. A puarded atom
is a guarded clause such that all atoms in the guard part and the body part
are unifications. For example.
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They can be considered as unit clauses ol Flat GHC.

However, in this approach, the guarded atom describes only the relation
between the input substitutions and the compute substitutions which are
obtained when the goal succeeds. It is difficult Lo discuss the infinite com-
putation of the program only with such reiation. As [Takeuchi 86] reported,
there are two programs which cannot be distinguished only by relations of



imput and output substitutions, and output different results when they are
executed in parallel with other processes. Thus, the information for the in-
termediate result of the computation is necessary Lo discuss the semantics of
such programs.

This paper introduces a new declarative semantics for Flat GHC programs
which contain perpetual processes. The notion of inpul/output (I/0} history
is introduced instead of the notion of the guarded atom. lntuitively an 1/0
historv denotes an example of a computation path of a program which is
generated when the program is executed without any failure or deadiock.
We define the notion that a goal clause or a set of guarded clauses is true
wri a zet of 1/O histories. The semantics of a program is defined as the
maximum set of 1/0 histories which makes the program true, in other words,
the maximum model of the program.

The notion of a true goal clause wrt the model of a program does not
necessarily mean that the goal clause succeeds on the programn. That is, not
only all successful goal clanses are true but also goals which do not succeed
finitely but can be executed infinitely without failure or deadlock are true.
A goal clause with a goal which suspends can also be true if the goal can be
activated with some input from other processes.

This paper also shows that the semantics of a program can be character-
jwed as the greatest fixpoint of the function obtained from the program.

2 Guarded Stream

This section introduces the notion of the the guarded stream. For simplicity
we only consider programs on the domain of lists of {a, b } .

Def. 1

Let Var be a set of variables, Fun= {a, b, nil, cons} he a set of
function symbels. Each element of Fun has its arity. The arity of a, b and
nil is 0. and the arity of cons 1s 2.
Def, 2

Let Terms be the set of terms defined as follows,

(i} if r €Varor 7 € {a.b.nil}, then 7 € Terms.

{8V if 7.0 € Terms, then cons(Ty, 7;) € Terms.
Def, 3



A term 7 is said 10 be simple, when 7 €Var, 7 € {a, b, nil} or 7 has
the form of cons( X, ¥}, and X and } are different variables.
Def. 4

A mapping, 7 Var — Terms is called a substitution if it satisfies the
followmg condition:

HE={XleN s XX € Var}, then I is a finite set.

We expand the domain of substitutions from Var to Terms.

Def. 5
For each 1 € Terms. o7 is recursively defined as follows.

a X if 738 X € Var
oF = T itrefa, b, nil}
cons(om. o) il 7 = cons{ry, m2), 7.7z € Terms

Def. 6
Lot = be a simple term and X € Var.

N=r

is a simple substitulion form or a suhshiution form simply. X = X 1s
denoted irue.

A substitntion o is denoted using a finite set of simple substitution forms,
for example.

g=1{% = consl¥, Z), Y = at.

cons(X, Y} is denoted [X|Y] and nil is denoted [ ].
Def. 7

Let o be a set of simple substitution forms. If o is a substitution or
equal to Up_.. 0 defined below for some substitution #. then & is be an
w—substitution.

fy=10
fi.y = i
{X = 7|X occurs i 7' {or some (Y =1") € b,
(X = 7") & 8, and no variables occurring in 7
oceur in any element of B}



A w—substitution defines a mapping from a term to an infinite term.
Def. 8

Let V' be a set of variables (V' CVar), and £ be the set defined from a
mapping ¢ as Def. 4. If £ C V|, then o is restricted to V. T LNV = ¢,
then ¢ is invariant on V.

The notion of I/O history introduced in this paper corresponds to the
notion of element of the Herbrand bases for pure Horn logic programs. 1/0
history is an extension or modification of a guarded atom of [Levi 88]. An
1/0 history is denoted as follows with head part H, which denotes a form
o a Process, and the budy part GU, which denotes a trace of i-Il]'}l‘.ItS and
outputs of the process:

H: =GU.

H is defined in the next section. GU is a set of tuples < o|U/; > where ¢
is a substitution which is expressed in the form of a set of simple substitution
forms, and [/, is a formula which represents an execution of a unification in
the body part of some clause. Intuitively, < ¢|U, > means that the arguments
of the process are instantiated with o, then unification I/; is executed. For
instance, in the following program:

[a1X1], &
[B1Xi], B

I

= [BIY1]l, B = b, p1(X1,Y1).

pi(X,Y) = X a | Y
o | Y = [AIY1], 4 = a, pt(X1,Yi).

pi{X,Y) - X

The following is an example of /O history which denotes the computation
such that pl reads a in input stream X first, writes b in output stream Y,
then reads b and writes a.

p1X.Y): ={< {X = [A]X1], A = a}|¥ = [B|Y1] >,
< {X=[AX1],A=a}B=b>,
< {X = [A]X1],A = a X1 = [B1|X2],B1 = b}|

Y1 = [A1[Y2] >,
< {X = [A]X1],A = a, X1 = [B1|X2],B1 = b}]
Al=a>,...]

An 1/Q history of a process H represents a possible execution of the



process. Thus, there exist different 1/O histories for different executions
which commit to different clauses. There may be different 1/O histories for
different schedulings.

The body part of an 1/O history represents a normal execution of Flat
GHC programs, thus GU is well founded with the partial order of execution,
namely, for any < o[l >.< 73|l =€ GU, i o9 C o3, then [y is
executable before Ul,.

U has several characteristic which correspond to the properties of nor-
mal executions of GHC programs. In the rest of this section, the notion of
guarded stream is introduced which characterizes the normal executions of
GHC programs.

Def. 9
Let 7 be a simple term and X € Var.

X'=r1

is a simple test form or a lesl form simply.
Def. 10

For a substitution &, X € Var, and a simple term 7, < gluni(X,7) > is
a guarded unification, where uni{X,7) denotes X = 7 or X7 = 7. & is the
guard part of < gluni(X,7) > and uni(X, 7) is the active part.

Intuitively, if uni(X,7) is a substitution form, it denotes a unification
which actually instantiales X, and if it is a test form, it denotes a lest
unification.

Def. 12

Let < a|l/ > he a guarded unification. | < e|U/ > | is the set of substitu-

tion forms or test from defined as following.

<ol > |={lU}ue

Def. 12
Let GI7 be a set of guarded unifications. For < oy]uy >, < oajug »>€ GU,

< ayluy > << oyluy >

holds if and only il oy C o7 and 0, # 2.
It is easy to show that < is a well founded ordering.



Def. 13
A set of gnarded unifications GU is said to be a guarded stream if the
{ollowing are true.

(i) For any < oy|lf; >, < ea|ly € GU, if < oy |U} ># < a2|lz > and

[/, and [, have same variable on their left hand side theun, either Uy or
[/, is & test form and their right hand sides are identical. Furthermore, if
[/, is a substitution form and U, is a test form then

< my|la ==< oy |l >

does not hold.

(il If < a|l/ >€ GU, then (X = 7) ¢ ¢ for any < 0|X =7 >€ GU.
(iii) For any < 8|X? = r > GU,if 7 # 7', then (X = 7') & o for
< o|ll »e GU.

(iv) For any < o1|Uy >, < m3|Uy >€ GU, i (X = 7) € 0, and

(X =7') € og, then 7 = 7.

Conditions (i) to (iv) mean that all variable in GHC programs are logical
variables and if they are instantiated, the values are never changed.
Example 1

The following are examples of guarded streams. (U represents an ex-
ecution of the process which takes a sequence of “2"s in Z and outpuls a
sequence of “b"s in Y. GU; represents an execution of the process which
takes a sequence of “a"s in X and a sequence of “b”s in Y respectively, and
merges them and outputs the result to Z.

Gl = {Q’uh":]- < t]‘}:

guyy =< {Z = [&]Z1), & = a}|y = [B|Y1] >

guyg =< {Z=[A|Z1,A=2a}BE=b>

guyy =< {2 = [A|Z1],A = a,Z1 = [A1]22], A1 = a}|V1 = [BL|Y2] >
gus =< {Z = [A]Z1],A = a,Z1 = [A1|Z2],A1 = a}|Bl =Db >

GUy = {gua;(1 < j))



qug, =< {X = [A0[X1],A0 = a}|Z = [AlZ1] >

quy =< {X = [AO|X1],A0 = a}[A=2a>

guy =< {X = [A0[X1},A0 = a,¥ = [B|Y1],B = b}|Z1 = [A1|Z2] >

qugs =< {X = [AO[X1],A0 = a,¥ = [B[Y1],B="D}[Al =] >

gugs =< {X = [AO[X1],A0 = &, = [B[Y1],B = b,Y1 = [B1]Y2], B1 = b}

22 = [B2|23] >
guze =< {X = [AD|X1],A0 = a,¥ = [B[Y1],B=DbY1 = [B1Y2],B1 = b}
B2=b>

]

The following notion is defined to obtain the guarded stream rep resenting
the computation of a goal clause from the guarded streams which represent

the computation of each goal in the goal clause.

Def. 14
Let GU,,...,GU, be guarded strcams, and Gui(l < k) be as follows:

Guy = {< o|l/ > 3,3 < alll »€ GV,
YU e a, ¥y, < U7 =€ GU;)

Guyey = Gugl
{<o|U > |3i,3 < o'|U > GU,WU" € &',
((¥i, < o"|U" »¢ GU; )V < a"|U' =€ Gug)A
g = (o = {U'| < a"|U »€ Gup} U
{U"|U" € o, < a"|U’ >€ Gur}}

and let G be as {ollows,

GU = |J Gue

k=m0

If GU is a guarded stream and if

(U] < olU > GUY = {U]3i < olU >& GU;)

then (U7 is a synchronized merge of GUy, ..., GUy, and is denoted:



... IGU,.

If n = 1, then the synchronized merge can always be defined and it is
equal to Gl itselll

In Def. 14, for < ¢ll/ >¢ GU,, if < g/l/ > Gu, then that means [/
waits o from outside of GU,|| ... |G/, and waits nothing from GUy(7 # 1).
If < alll »€ Gugsy then that means U waits some inputs from outside of
GUh .. JIGU, and waits that /' is executed in some GU;{j # 1) such that
it 15 already found that it waits ¢” from outside. If [/ waits /" € &" from
outside of GU,|[...||GU,, then U also waits U'".

Consider following guarded streams.

Glh ={< {X=a}lf =b>}
Gl ={< {Y=b}X =a>}

They represent computations of the g1 (X, Y) and g2(Y, X) where,

g, ¥Y) (= X==a| Y =h.
g2(Y, X) (=¥ =b 1 X = a.

In this case,
WU el > GUY = ¢
On the other hand,
{Ulgi < ol > GU;} = {X =a,Y =1}

Thus GU,||GU; cannot be defined. It is impossible to obtain the guarded
stream which represents the computation of goal clause g1(X, Y), g2(¥,
X} from GU; and GU,. In fact, neither X nor ¥ is instantiated by execution
of g1 (X, Y), g2(Y, X).

Example 2
Let GUy and GU; be the same as Example 1.

Guy = {QUEJ sgu'ﬂl}



Gy = Guy U{< {X = [A0X1],40 = a}|Y = [B|Y1] >,
< {X = [A0|X1],A0 = a}[B=1b >}

Chuy = Glugl)
{< {% = [a0jX1], 40 = a}|21 = [41]22] >,
< {X = [a0}X1],A0 = ajjaL1 =1 >}

Gy = Gusld
{< {X=[A0]X1].A0 = a,A1 = a}|Y1 = [B1|Y2] =,
< {X = [AO[X1),A0 = a, Al = a}|Bl = b >}

A1 is instantiated to a in the guard part of an element of Gu,, however, it
is instantiated to b in the body part of an element of Guz. Thus, ;... Gux
is not a guarded stream. Therefor, the synchronized merge of GU, and G,
cannot be defined.

]

3 Model Theoretic Semantics

This section introduces notions which correspond to the Herbrand base and
unit clauses. for parallel logic language based on the notion of guarded
streams. First, a parallel language based on Horn logic is presented. The
langnage i essentially a subset of Flat GHC [Ueda 88] with only one system
predicate, = unification of a variable term and a simple term. Furthermore
all clauses are assumed to be in a nermal form, namely all arguments in the
head part are different variable terms. However it is not difficult to show that
the language presented here does not lose any generality compared te Flat
GHC using the modification of the transformation algorithm for the strong
normal from [Levi 83].

Let Fred be a finite set of predicate symbols. Each element of Fred has
its arity. We denote each element of Pred using lower-case letters.

Def. 15



Let i, i3y, Hs. ..., B, be an atomic formula defined from Pred, every term
which appears in areument of H be a different variable, and U, ..., U and
[T Uy be simple substitution forms. The [ollowing 15 a guarded clawse.

i —{.-"51,. Lay [-'r_,m]Uﬁi.. .+1HM“EH Eg,. . ,Bn

A finite set of guarded clauses is & program.

We define Var(H) = {X, X3,..., X} when H is p(X;, Xy, ..., Ay
Def. 16

For a guarded stream GU and an atom p(Xy, Xa,..., Xi),a psendo I/O
hisiory ©1s:

p( A0, Xay ooy Xi) 0 =GU

where p €Pred with arity k, Xy, Xo,..., X, are different variables, and
for every gu € GU if U € |gu| then the left hand side of I7 is an element of
of Vi(GU) for some 1 where Vi(GU) is defined as follows.

VolGU) = Var(p( X1, Xz, ..., X3))
Vin (GU) = VI(GU)U
{X13gu € GU, Juni(Y,7) € [gu|. X appears in T,
Y e V,(GU) and You' € GU,

if gu' < gu then X does not occur in gu'}

p( X1, XNay ... X3) is called the head part of  and GU is called the body
part of 1. Intuitively, GU only contains variables which are visible from
outside through the head part.

In pseudo I/ O history, the same compulation can be represented in several
ways. In other words, if {; and 1, are identical except for the names of
variables which do not appear in the head parts. they are considered to
represent the same computation. Thus an equivalent relation is introduced
to the domain of pseudo [/O histories.

Def. 17
A mapping o :Var— Var is a renaming mapping if there exists a mapping
a', such that

11—



Let GU be a guarded stream and ¢ be a renaming mapping. oGU is a
guarded stream, defined as follows.

aGU = {ogujgu € GUY}

where
cgu =< o+ Bjuni(eY,o7") >,

for gu =< fluni(Y, ') > and o = § is a substitution defined as follows.
gl ={oX =0o7|X =7 €8}

It is easy to show that if GU is a guarded stream, then oG is also a
guarded stream.
Def. 18

Let t, : H : —GU, and t, : H : —GU; be pseudo 1/O histories with the
same head part H. If there exists a renaming mapping ¢ : GU; — GUs
invariant on Ver(H) such that #GU; = GU; then

ty =ty

holds.

It is easy to show that = is a equivalent relation. We denote the quotient
set of all pseudo 1/0 histories with = as I /O — hist. Each element of /O —
hist is called an [/ history.

Def. 19
An interpretation is any subset of J/0 — hist.
Def. 20
Let ¢ be a 1/O history and g be a goal. t is a trace of g if for each element
of ¢ has the form of H ; —GU and there exists a w—substitution ¢ such that
ol = g and the followings are true.
(1) For any < 8|/ >€ GU, there exists a set of substitution forms o' such
that o' U@ = o' U and ¢’ U f(= ¢’ U ¢} is a w—substitution.
(2) For any < 8|/ >& GU,if U is a substitution from X = r then o does
not instantiate X and if U is & test form X7 = 7 then ¢X is equal
to &7
A mapping = does not instantiate a variable X if o X = Y{€ Var) and
there is no Z such that ¢Z = 1~ except X.



Def. 21
Let I be an interpretation and g be a goal. g is true on I when there

exists a trace of g € 1.

For goals gi....,gn. let 11, 1q be their traces. If they are [/0 histories
which are obtained when these goals are executed in parallel, the shared
variables in t; and ¢; must have some value, and they vccur as subterms of
values of the same variables in #; and t;. The following notion is introduced
to formalize these conditions.

Def. 22

tieeeo iy is variable compatible if for any ¢ and j (1 < 4,7 < n), the set
of variables which occur in both #; and t; is equivalent to Commoni(t,t;)
defined as follows.

COM@“.‘.{ ij} = Vﬂ?‘[H{} M Var-;;Hj]

COMyan (t:+15) = COMa(ti 1)U

{X|3Y € COMq(t:,t;), 3+ which has the form of X, [X|Z], or [Z]X],
Sgu, € GUL, (Y = 7) € lgui V(Y1 = 7) € lgu)A
Vgul € GU;, if gu! < gu; then X does not occur in any I €lg uj|A
Sgu; € GU,, (Y = 7) € lows| V (Y7 = 7) € lgu; DA
Ygu' € GU;, if gu’ < gu; then X does not occur in any U €lg uil}

Common(t, 1) = ) COM;
— oo

where H,, denotes the head part of t, and G, denotes the body part.
Obvieusly, for n = 1, #; is variable compatible.
Def. 23

Let I be an interpretation and gq,...,9, be a goal clause. g,...,gn is
true on I if there exists a trace of ¢; € I for every i{1 < ¢ < n), and there
exists a synchronized merge GUy ... ||GU, where G5, ..., GU, are body
parts of elements of ¢;,....1,, which are variable compatible.

The empiy goal clause 1s always true.

It is easy to show by the following proposition that Def. 22 is well
defined, namely the truth value of gi,...,g, docs not depends on which
element is selected from the trace of each goal.

Frop. 1



Let GUy.....GU, be guarded streams and ¢ be a renaming mapping. If
there exists GI/y|l...[|GU,, then there also exists oGUy| ... leGUL..

'I'he proof is straightforward from the definition of synchronized merge.

Tor a given goal g, it is easy to show that g is true if and only if the goal
clause with only one goal g is true.
Def. 24

Let GU be a guarded stream and V be a finite set of variables. The
restriction of GU by V :GUT | V is the set defined as follows.

GU LV ={<olum(X,7})>]|< oluni(X,7) > GU, X € Vi for some k}

where

Vo=V
Vigy = ViU {X[Fgu € GU, Juni(Y, 7) € |gul,
X appears in 7,Y € V; and Ygu' € GU,
if gu' < gu, then X does not occur in gu}

If GIV is a guarded stream then GO | V is also a guarded stream.
Def. 25

Let GU be a guarded stream and # be a set of simple substitution form.
The set (717 1 § is defined as follows if it is a guarded stream.

GUME=[<ollh>| <l > GU,0 =8 Ue'l

Def. 26

Let D be a finite set of guarded clauses and J be an interpretation. [ is
a model of D if for any t € I, there exists a clause H : U, ..., Upm| X7 =
Teooo  Xo =7 B1,..., By € D, each element of { has the following form:

H:—{<{Un,....Upm, Huni(Xy, 1) >,...,
< AlUg1e ooy Uy Huni{Xp, ) >}
(GUIL- G 3¢ Uy s Upm}) & Var (i)

where GU; is the body part of some instance of a trace t;(€ I) of the
goal o B; for some w—substitution ¢ = {Ugi,. ... Upm} U {(Xy=mn,.... =
71} U ', which is restricted to Var(H)U {Xy,. .. , X} and



V< 6l =€ (GUL. . JGU) M {Usy, ..., Um0 C o
The following proposition is easy to show [rom the definition of models.
Prop. 2
Let M,(i € Ind) be a class of models of D for a sel of indices Ind. Then,

L M,

t€ [aed

is also a model of IV

From Prop. 2. it is easy to show that there exists a unique maximum
mode! for a given D). The semantics of D is defined as the maximum model
of D. A goal clause gy,.... gy is true on D if it is true on the maximum
model of D, Intuitively. the maximum model is the set of all compntations
without failure or deadlock on [

Example 3

For the following program I

shuffle(X, ¥, Z) = X = [A1iX1] |

Z = [A1121], shuffle(Xi, ¥, Z1).
shuffle(X, Y, Z) :- Y = [B1lv1i] |

7z = [B1121], shufflelX, Y1, Z1).

invalZ, ¥) - 2 = [AlZ21], A = a |
¥ = [BIYt], B = b, inva{Zi, Y¥Y1i).
inva(Z, ¥) := 2 = [B]Z1], B = b | inva(Z1, Y).

The maximum mode! of D) contains the elements of the form such as:

inval(Z.Y) : =G/,
shuffle(X,Y,Z): =G,

where GU; and Gl are introduced in Example 1. For goals of the
form inva(Z, Y) and shuffle(X, ¥, 2Z), these goals can run as GU/ and
(315 respectively when they are executed independently. However it can be
shown that if these goals are executed in parallel as the goal clause inva(Z,



Yy, shuffle(X, Y, 2), then they do not run as GU; or (L), because the
synchronized merge of GU; and GU; cannot be defined.

In general, if goal clanse inva(Z, Y), shuffle(X, Y, Z) is executed
with an infinite number of “a”s in X as the input, the number of “b”s in the
instantiated part of the output Z never exceeds the number of “a"s in Z. Tt
can be discussed by showing that for any result of synchronized merge of
traces of each goal, the numher of “b"s in the output does not exceed the
number of “a™s in the output on this semantics. This kind of discussion 18
impossible in the method of [Levi 88] or on semantics for pure Horn logic
programs with a complete Herbrand universe such as [Sakakibara 85].

i}

The semantics presented here is defined for characterizing the goal clauses
which runs normally without failure or deadlock on the program as true on
the model of the program. However goal clauscs which run normallyare
not necessarily the successful goals. That is goals which run infinitely are
regarded as goals that run normally. Furthermore a goal clause suspending
goal can also be true. Consider the following example:

plX, ¥) :=X=a | ¥=h.
a(X, ¥) ;- Y=% | X=a
£(X, ¥) :- X = a | true, p(X, ¥}, q(X, ¥).

Although goal t(X, Y) suspends on this program, if X is instantiated
to a, then the execution proceeds. The maximum fixpoint of this program
contains:

w{LY):—
(< {X=a)jtrue >, < {X=a}jy=b>, < {X=2}XT =2 >}

Thus, goal t(X, ¥) is true on this program. On the other hand, let us
consider the program obtained from the previous program by replacing the
third clause with:

t :- true | true, p(X, Y), q(X, Y,



In this case. when goal t is invoked then goal clause plX, ¥), qlX, Y)is
invoked and suspends, it cannot proceeds the computation whatever process
runs in parallel with €. Goal such as t are false on the semantics presented
here.

4 Fixpoint Semantics

This section discusses the fixpoint characterization of the semanlics of pro-
gr-ﬂ.l]’lﬁ.

Ji i easy to show that the set of all interpretations IF defined from
T/O — hist is a complete lattice with a partial order of set inclusion. The
maximum element is /0 = hist and the minimum element s ¢.

Def. 27
Let D be a program. @p: [P — [P is the function defined as follows.

dpl5)=5N
{t| each element of { has the form of

H:—{<{Un, .. UpmHuni(Xy.m} >,y
< {Uq, .., Upm Huni( Xy, 7) > JU
(GUL . |GED W { Uy U ) | Var(H)

for some clause
H: '_Lrgl-u--'-.['r‘qﬂatux-l = T|,...,}I:-h - Th:B'.h-r*!Hk S D

where GU. is the body part of 2 element of
the trace of ¢ B:.c is a w — substitution such that

T = {U_I?l'.'"""f"lrﬂm"Xl = 'n'_]_,......Xh = '.rh} Ll'l?'II
for some o', resiricted to Var(H) U {X;,..., Xa}, and
0 Co

for all < 68U € (GU ... |GU) % {Ugre. ., Ugm ).}



For a chain S:: 5y O3 & D ..., the greatest lower bound of S; is denoted
.5
Def. 28

Let L be a complete Jattice. A function f: L — L is w—confinuous from
below, if for any chainS; : 5, 2 52 2.,

N{S(S)I0 <1} = FNHSil0 < 1))

It is well known that if f is w—continuous {rom below then f is monotone,
that is if §;, O 5., thenf{S,) = f(5;). The following two propositions are
well known (see [Park 69]).

Prop. 3

Let L be a complete lattice with the maximum element, T. If f: L — L

is w—continuous from below, then f has the greatest fixpoint gfpf and,

gfpf = [ {f(T)n 2 0}

where fP(X) = X, f**1(X) = f(f~(X)).
Prop. 4
If f 15 a monotone function, then:

gfef = U{X|f(X) 2 X)

where | § is the least upper hound of S,

Tl {ollowing properties are easy to show from the definitions.
Prop. 5
$p is w—continuous from below.

proof:

(1) @u(NS;) CN{@plS)} -
For any 1 € $p([5;). there exists a clause:

H: -tfrsjf. *'?{fymixl = Tjaen- ,}':.I, = TJHBh. . ..,Bk € D
An element of t has the form as following.

H:—{<{Uy.... . UptHuni( Xy, 7] =,
< {0 Uy Humi( Xy, 7 ) > U



(GUs]|.. NGUQ) ™ AU, Ugm}) | Var(d)

where GU. is the body part of an element of a trace 1;(€ M S;}) of aB;
and o is a w—substitution which satisfies the condition in Def. 27. From
i € ﬂ{SJ}, i e 5‘{ for H.uj‘ Thus for all j, te ‘i‘j’}[gj:'l Since, ﬂ{“t"g[s_,]]' is
the greatest lower bound of {®{S;)}. then:

te(WHoolS))

(2) @p(NS;) O N{®o(55)} :

sssume ¢ € ({®p(5;)}. For any j,t € ®p(S;). Ao element of ¢ has the
form of

H : _{{: {UF'!IF' - '.'L'r_q'lil.}!urltl{'YI?TI} }3' S |
< U1y e« s U Hume( X, 7a) >u
(GUL| .. N GUR) 2 {Uan, .., Upm}) L Var(H)

where G, is the body part of an element of a trace ti(€ N{S;}) of ¢B;
and o is a w—substitution which satisfies the condition in Def., 27. For any
i, since t; € §;, then #; € N{5;} for each &. Thus, 1 € S5}

]

Prop. 6
(1) o Iif and only if [ is & model of D.

proof:
if part:

Let T he & model of [} and 1 € [. From Def. 26, {here exists a clause:
H : _Ug;lh e :'r'rgm.:xl = Tiyes '1}".'1. = TJHEE:-'-- 1 Hﬁ: = L
and ¢ has the form as following.

I —{<{Up,. ... Upm}uni{X1. 1) >,
- {{-35,1. C ,Ugm}ltmf[.‘f},r Th] }}LJ
(CT - JGU % {Upr, - Und)  Var(H)

19 —



where GU, is the body part of an element of a trace t; € | of #B5; and
7 is a w—substitution which satisfies the condition in Def. 27 . From the
definition of &p, t € @plT).

only if part:

Assume @p(l)} O 1, in other words for any ¢ € I, t € &p(]). From the
definition of ® (1),

{ € {t| there exists a clause
H:-Uy,....UmlXy =7 . Ko =m, Ihoo . Be e D,

each element of { has the following form:

H:={<{Un,....Upm, Huni( Xy, 7)) >,.. .,
< AUp,y ooy Ugme Huna{ Xy, 7)) >0
(GUs ... [GUR) % {Upss..., Upm}) | Var(H)

where (71, is the body part of some instance of a trace t;{€ I}
of the goal #B;, 7 15 a w—substitution such that

T = {Uglw . .?Uym} U {_}:1 = 71, ..-._.Xj,_ = 'Th} I J',
which is restricted to Var(H) U {X,..... X, } and

W< B >€ (CUL||. .. |GUL ™ {Uy,... Um0 C o}
This is the definition of the model of D.

Thus, we derive the {ollowing theorem.
Theorem
Let D be a program and Mp be the maximum model of D. Then:

Mp =[{&H(I/O - hist)[n = 0}.

5 Conclusion

This paper presented a new declarative semantics {or a subset of Flat GHC
programs based on the maximum model. Using the semantics, the solutions



of programs which contain perpetual processes controlled by guard commit
mechanisms can be characterized as the logical consequence of the programs.

The semantics presented here is a kind of snceess set scmantics. Thus,
it is enough to discuss the results of normal computation. However, a true
goal clause on this semantics is a goal clanse which can run normally. This
does not mean that a true goal clause always runs normally. For example,
if a subgoal of the clause commits to a different clause, then it can fail or
deadlock. GHC is a don't care non-deterministic language. Thus, a method
to characterize the set of goal clauses which run in any case is also expected.
Such a set is characterized as the set of goal clanses which are not in the set
of clauses that can fail or deadlock. A result of such a fatlure sef is reported
in [Falaschi 88] for a sequential logic language. The author believe that it
is possible to characterize the failure set for parallel logic languages using
notions presented here, such as guarded stream and synchronized merge.
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