ICOT Technical Report: TR-402

TR~

On Structures Tor Etficient Unification Jom

and Select Operations

by
L. Henschen. 5. Leel North western Uiniv.)
M. Murakami and Y. Morita

Tune. 198K

Clyss, 10T

Mia hokusar Bldg, 21F TG R ST) e

I! O i =28 Aa 1-Chomg Toles WWOT Ja2und

Minate-ku Tokvo 108 lapan

Institute for New Generation Computer Tecllinulngy'

On Structures for

Efficient Unification Join and Select Operations!

Lawrence J. Henschen and Sanggoo Lee
Department of Electrical Engineering and Computer Science
Morthwestern University
Evanston, lllinois 60201

M. Murakami and Y. Morita
Institute for New Generation Computing Technology
Tokye, Japan

Abstract

Recent research at ICOT has focused on extending the concept of a relational database to
that of a relational knowledge base; ane that allows mare general terms as elements of tuples in
retations. This requires 2 more saphisticated treatment of the relational operations, in particular,
join and select. We propose in this paper some techniques for reducing the amount of work to
compute unification joins and selects. The main idea is to take advantage of commen struciure
between terms when eomputing unifiers, This technique allows a faster computation of certain
additional pairs of terms when the Most General Unifier (MGU) of one pair is found.

1. Introduction

Recent research at JOOT has focused on extending the concept of a relational
database to that of a relationzl knowledge base [MURASS, MORI86|. One aspect of this
research is to allow general terms as elements of tuples in relations. This, in turn,
requires a more sophisticated treatment of the relational eperations, in particular, join

and selection. The natural extension of the eguijoin and select operators is to require
corresponding attributes in the reletions to unify as opposed to just being equal. Thus,
for example, to unify-join two relations £ and R, on attributes @, apd ay, 2ll pairs of
terms {{,t2) with ¢; as attribute a; in some tuple of R; must be tested for unification.
For any pair that is vnifiable, the join relation will have a tuple constructed from the

pairs of tuples from Ry and R, with the Most Geperal Upifier (MGU) applied.

The key point here is that maoy upification tests need to be performed. It is to

be expected in a rich knowledge base that a relation may have thousands or even

P This work was supperted iz part by the MNational Science Foundation under Grant DCR-8808711

millions of tuples. Joining two such relations by unification could require a prohibitive
pumber of unification tests. For example, il each relation has 1,000 tuples, then one mil-
lion pairs of terms would need to be tested. If the average time per unification could be
made as low as 100 gsec by the use of specially designed hardware, the join operation
will regquire 100 seconds just for the unification tests; there will, of course, be additicnal
time for retrieving the terms [rom long term storage, generating the pairs, fermulating
the new tuples and applying the MGUs. For two relations with 100,000 tuples each, the
time for unification goes up to 10,000 seconds. It is, therefore, crucial to develop
methods for processing unification joins that reduce the amount of unification necessary
to compute a joip and optimize the computation of MGUs for those pairs of terms that

do untly.

Sueh reduction and optimization can be accomplished by & combination of algo-
rithms, date structures, and hardware specially designed [or kpowledge bases. An
important first step in this direction was taken in [MORI8S]. They introduce the idea of
fltere to eliminate pairs of terms that can readily be seen not to unify. They also pre-
pose data structures and 2 hardware system based on their fitering mechanism. They
give an example in which the number of unification tests required is reduced by about

50%% and in which the number of unification tests that succeed Is about 675%%.

We propose in this paper some alternative techniques for further reducing the
amount of work to compute unification joins and selects. The main ides Is to take
advantage of commen structure between terms when computing unifiers. This technigue
allows a faster computation of certain pairs of terms for the initial unification test. A
system can maximize the number of pairs to which this faster computation can be
applied. This technique requires a modification to the storage scheme proposed previ-
ously as discussed in section 5. We also mention some other filtering mechanisms which
mey have a higher efiiciency than the outer-most total ordering of IMORIS6], perhaps as
high as 90-93% in typical cases. Such a scheme would reduce the number of unification

attempts and insure that almost every attempt resulted in success.

In section 2, we discuss the main advantage of using the gemeralily pariial order.

Io section 3, we give the algorithm for computing MGUs of less general terms from more

general terms {top-down}, and in section 4, the algorithm for computing MGUs of more
general terms from less general terms (bottom-up). In section 5, a comparison of storage

requirements is given, and in section 6, we cite some additional Glering mechanisms.

2. Advantages of Generality Ordering

In [MORIES|, the partial ordering given by generality of terms is extended to 2
total ordering in two different ways, left-most and outer-most. These total orderings are
useful in filtering out pairs of terms that cannot unily and therefore should not be sent
to the unification uait of the unification engine. The total ordering is especially uselul
for this filtering purpose because it allows terms to be sorted, which in turn sllows [or an

eflicient pair generation algorithm.

However, the major effort in unification join and unification selection is the actual
unification of pairs of terms. For this efiort, the fellowing two properties, which held lor
the partial order determined by generality but not for either total order, will be most
useful :

L. il ¢ is more genera] than ¢ and @ is the minimal substitution such that s & == ¢, then

5 and f are unifiable and #is a MGU of 5 and t.

1=

il sy and &, are unifiable with MGU & and if ¢; is more general than 5 for :==12
and il #; are the minima! substitutions mapping ¢, to s;, then ¢, and ¢, are unifiable
and their MGU can be computed directly from o, §; and &, with complexity no worse
than 2nd normally much better than computing the MGU of t, and fa with the nor-

mal unification algorithm.

We propose maintaining the partial order lattice for all terms in the knowledge
base along with the fis by which less general terms are instances of more general ones.
When a unification jein, for exampls, is attempted, the sublateices for the two lists of
terms should be formed; these sublattices may very well be small enough to fit in the
core memory of the upification engine of i'MC}H]SE]. We may then proceed either top

down or bottom up.

In the top down schems, we find the highest level paire that unifly and compute

unifiers for pairs below directly from the top unifier and the # substituticns of the

lattice, The downward process stops when a non-unifiable pair is found. This is
justified by the contrapositive of remark 2 above. It is to be expected that the # substi-
tutions it the lattice will be much simpler than the actual terms themselves. Thus, com-

puting {rom s should be much [aster than computing from the terms directly.

As for the bottom up method, we propose to form a list of candidate pairs as in
IMORIE6]. However, there will now be three distinct processes for finding the set of all
unifiable pairs. First, any pair in which one term is more general than the other requires
no real computation; they are unifiable, and the MGU is already available in the lattice.
Second, in order to take advantage of the second remark, we should attempt to unify
pairs which occur as low as possible in the lattice; when such 2 pair is found, all pairs
above it in the lattice are removed from the list of pairs to send to the normal
unification unit. Third, we directly compute the MGUs for all pairs of terms above two
such unifiable terms. IT there is a great deal of common structure among the terms in
the knowledge base, then the first and third processes may be expected to provide 2
large percentage of the unifiers; this is desirable because each of these processes is more
sficient than general unification. On the other ha_mi, il there is little or no commen
strueture, most pairs will require the normal unification test, & situation nmo worse than

that proposed in [MORISE).

Concerning storage, the lattice specifying the partial order and the corresponding
substitutions should be a permanent part of the knowledge base storage and can be
stored on disk. It is possible that an efficient storage scheme for the actual terms of the
knowledge base itsell can be derived from this lattice, so the storage for the lattice may
in fact reduce the storage required lor the knowledge base itsell. Thie will be examined
in section 5. During an actual join or select operation, it will very likely be necessary to
store the relevant sublatiice in the local memory of the unification engine. This will
require 2 somewhat larger local memory, perhaps, than in [MORISS]. However, the kind

of storage scheme discussed in section 5 may again offset these storage requirements.

As for computation, we need an efiicient algorithm for deriving the unifiers of Jess
general terms from those of more general ones, or vice versa. These are provided in sec-

tions 3 and 4. In the top down process, when two terms, s, and &,, are Jound to be

unifiable, we process all pairs of less general terms in a2 special order down the lattice;
first process s, with the immediate descendants of 54, then with their immediate descen-
dants, then s, with the immediate descendants of s, etc. That is, each new pair is
obtained from a given pair by taking an immediate descendant of one of the terms. In
the process of doing so, we would want to avoid visiting the same term {which may be a
descendant of several terms) more than once. The procedure for generating the set of all
pairs of descendants in this manner is quite straightforward. The bottom up process is

quite similar.

Finally, there is the overhead of maintaining the lattice and its related substitu-
tion when terms are added to or deleted from the knowledge base. Deleting 2 term is
fairly easy — just delete the node in the lattice, reattach the links and adjust the substi-

tutions. For example, if we had

N 8,
f(z.h(y]) f (zi,h(a)) f{ah{a))
and t, is deleted, then the lattice must be adjusted as follows.
a
t £
f(z.h{y]) S (a,k{a)}

The new substitution & is cbtained from the compesition of 8, and #,, more specifically,

£ = §,6s — 62, assuming ¢, and t» bave no variables in common.

When a new term, ! is zdded, the computation is more difficult. We must find
the lowest position(s) where ¢ is an iosiance of an existing term. We must then detach
existing links and reformulate the substitutions. For example, if the kpowledge base
loaked like

8, &, 8y

!l £ IJ — fl‘

and a term ¢ was added which was an instance of ¢4, then (is also apn ipstance of 1y
and . but its proper position 15 below ¢, If £, is an instance of ¢, then t, will no

longer be 2 direct subordinate of tg, in which case the substitutions should be modified

as [ollows,

8, B, 8 g

where ;8 =t and t8* =t I[¢, is not an instance of ¢, then &, remains as well as

its link, and the link to ¢ from ¢, forms a branch.

8 8, 8,
t, ——— fa ~- ts - t,

i

Of course, the storage scheme is & lattice, and there may be several links into and out of
2 term that is being deleted or inserted, so the problem of updating is not quite so sim-
ple. The update overhead may be reduced by proper indexing schemes. We discuss this

ssue in section 6.

3. Computing Unifiers for Less General Terms (Top-down)

T
g b
Jl-- a8y oo ozge) Slrrvsgy omg hloza) o)
g !g
' T
c d
Jr(...;l.,..,:,"lg...gﬂ...} .J"["'5*:',13""2"'“---12---]""]
Figure 1

In this secticn we discuss the computation of unifiers in a top-down [ashion. For

this discussion let us assume the lollowing notation:

g, b, c and d are terms with no variables in common:
a zod b are ypifable witk MCU &
¢ and d are instances of @ and & by the substitution &

ist the wvearizbles occurring in ¢ and & be depoted by z,, - - .z,, 2nd let those

occurring in ¢ and d be yg, - ,¥m; for this discussion, it is not necessary to be
able to refer to the separate variables of ¢ and b or ¢ and d; note that {z; } and
{y; } are disjoint;

suppose ¢ and d are unifiable with MGU r.

Pictorially, we have Figure 1. Because no variable in @ or b occursin ¢ and 4, & must
substitute a term for every z; even if that term is just one of the variables y;. We may
sesume that & is minimal so that it does not substitute for any variable other than
2y, 2, . Oun the other hand, ¢ need not substitute a term for every z;; for example,
f(z,) vs. [(g(z4)). Similarly, 7 need not substitute for every y;. Let us number the
z and y variables so that the variables appearing in o and rare the first of their respec-
tive sets. Then we have the [ollowing;

ce= {8/ |1 =1---,n*}

f={t;/z; |{ =1, ,n}

r={w/y li=1"-",m"}

where n* <n and m* <m.

The ¢, terms in Figure 1 are those from £ substituted for z;. The .s,-r.,- terms are
those that eccur at pesivions corresponding to the variable z;. For example, suppose we
had two terms,

Sz g(za zy) e) and [(A(zy) glh(zs) =4 74l
Since h(r,) and z, appear in positions corresponding to variable z,, thev hoth are s{
terms (s, —h(z,), §12 =23 Likewise, sglrl s=h(zg), #4, =2, and s.:=0a. Since
75 does not have a term corresponding to its position, there zre o .s; terms. Clearly,

there Is at least one term s._-’ for each { <n*. As noted above, there may be many.

Much of the theory developed in this section depends on some facts about
unifiers. The reader is recommended to refer to [CHANTD] for definitions of substitu-
tions, compasition of substitutions, and other terminclogies that we use without [ormal
defnitions. We define here the combinalion of substitutions and present the Upification
Algorithm [rom IHAYET3). The algorithm differs from the Rabinson’s Algerithm
[ROBIB3] enly in restricting the dirsction of substitution for variable-variable pairs (step

3). We also present four basie lemmas without proofs, which are quite straightforward.

!

=

Definition Let f = {t,/z,, ..., t, /1, }, » = {uy/y,, ..., un /yn } be substitutions
where the y; "s need not be distinct from the z;"'s. From & and &, we define

Ei=PFPlzy, . .. 2,91 - . ¥m) and Eg=FPt,, ..., ty,uy, ..., u,)
Then 6 and » are said to be conststent il and only if £, and E. are unifiable. A MGU

for £, and £, is called a combination of § and A.

The Unification Algorithm

Unify (E,, E.)

Stepl. Set k=0, Ty =E, Ty =FEg, 0, =¢

Step 2. U Ty = T; then stop; o isa MGU ol £ and E..
Otherwize, let Dy = the set containing the lefimost (or rightmest) subexpressions
from T} and T; which do not agree. Go o Step 3.

Step 3. 17 [, contains a term £, which is not a variable and a variable v, which does not
occcur in f; , go to Step 4.
If D; contains two variables, let f; = the variable from T; and vy = the variable
from Tl.] , and go to Step 4,

Otherwise, £, and E 5 are not unifiable; stop.

Step 4. Set opgy=o{te/v), Teor= Te(te/we) Toar = Ti (L /w) and
k=FL=1
Gao to Step 2,

Lemma 1 If 7 is a MGU produced by the Unification Algorithm, then oo = o.

Lemma 2 Let o={g; /v; [f=1, - - n} be a substitution, and suppose that no v
occurs in any ¢;. Then o is the MGU of P(v,, - - ,v,) and P(g, - -+ 9,) produced
by the Unifieation Algorithm.

Lemma 3 Il ¢ is the output of the Unification Algorithm applied to terms A and B,

then no variable or term part of ¢ contains any varizble not occurring in either A or B.

Lemma 4 Let o={g; /v; |1==1,...,n} be the output of the Unification Algorithm.

Then g;0 = g; .

We now begin to show the main result, namely, that a MGU of ¢ and d of Fig-
ure 1 can be computed directly from ¢ and & by

1. formicg the combination of ¢ and #, and

a2 deleting from it the components over the 2 variables.
Recall the definitions of &, §, and 7
o={s/5|i=1...,n")}
0= {t;/z; |i=1,..., 0}
= (g /u =L, .., m*)

Let us assume ¢ and = are computed by the Unification Algorithm.

Theorem 1 oo =a, 8§ =2§ snd 7= r.
Proof. The result for ¢ and = follow directly from Lemma 1, since these are MGUs. #
maps ¢ 2nd b onto ¢ and d which have no z variables, so no f; can contain any I;.

By Lemma 2, & is also an MGU produced by the Unification Algorithm. QED

Lemma 5 67 == o) for some A,
Proof, alf’) =(a8)r =c7 =d7 =(bf)r
= b I:ﬂ‘.':].

Therelore, &7 unifies a and b. ¢ 1s the MGU. QED

Lemma 6 Let v* = #r= ok Then v* = &7 +7,

where 8% = {(;7)/z; {i=1,..., n} and '+’ indicates set union.

Freof =~* == &7, Note that no ¢ 7 can be the same a5 I; because f, and r come {rom ¢
and d which contain no z variables. So, no (t; 7)/z; will be deleted in the computation
of the composition of ¢ and 7. Further, the variable parts of 7, ¥y, « -y ¥mes and the
variable parts of @ =, ..., 1, are distinct, which allows every component of 7to be
added to the resulting compositicn. Therefore, there are exactly n —m* components in

4% 8% substitutes for the z variables and 7 for the y variables. QED.

Theorem 2 =% unifies
FPlzy ..., 2ee,my, - - ., 2, and Plsy, oo, Saedy oo 00

Proof For i <n*, we have

4t =axlak) = () = &5 & and
s = 5 (ch) = (5, 0)A = s % and
tyr =t {67) = (1 8)r =L

= (5; , 0)7 since 7 unifies ¢ and d, it unifies
corresponding terms in ¢ and d

= 5, (fr) = 5;11 (e}) = [55:1 o)A

= 5 A since ¢ unifies corresponding

terms in 2 and b,

Fori>a* Lq* =4{7) =(48F =17

I; -I’ = 1 {ﬂr:] = {Il- E;If — I,; T

Corollary. The combination of ¢ and # exists. Call it 4. Then 4* = 4\ * for some
W
FPreof. Since the two terms in the abeve theorem are unifiable, the MGU is v, and ~* is

o unifier. QED

Lemma 7 5 = ok = 8, [or some X, and A,
Freof = is computed by the Unification Algorithm from
Plzy oo tae,zyy oo, z,) and Plsy, . oo, Saesty, . ooy b).

If we proceed left to right, after n* steps, ¢,. of the Unification Algorithm will just be
c. The remaining n steps upify

Pl oo, 808, ., 850, Tpesy, ..., %,) and

Pl oo Sanity, oo e diny, oo, b))
Note, no f; coniaios 2 x;, so the f; terms are unchanged so far. Thus, the last steps

of unification just compose more components to o, (=e). Similarly, if we proceed right

to left, after n steps, we have 8, etc. QED

Thus, under the assumption that ¢ and d are also unifiable, we proved that the
combination 7 of & zod @ exists and that it is more general than 5*. We now show that

~vunifies ¢ and o and a subset Fof v is a MCU.

Theorem 3 - — 7\ for some h
Froof Consider ¢y and &+ Let the position vector r . ro...r, denote z maximal {ie.,

bighest) position of ¢ and 4 that are different {the position veetor £y .ra..r; is a vector

— 10 =

of integers and indicates the r, th argument of the ry_jth argument - - of the rth
argument of ¢ or d) One of ¢ and & contains a variable in that position, since they
are unifiable. Without loss of generality, we may assume that it is ¢ . Thus ¢ contains
y, for some [<m* in position rj.ra..r;. Since ¢ is an instance of @, some supErposi-
tion ry...res, k* =& of o contains a variable, say z;. If the position of b corresponding
to r,...rp. does not exist, then b also has a variable z; at 2 higher position, say ry..1p
with k' <k?. Then the term in position r, ..r, of a is an sj' . 1f position ry...ree of
B has a nop-variable term ¢, then g is an s; . Il ¢ and b both have variables in posi-
tion r .74, then one of them is an s for the other. [n eny case, ¢ and b differ in
some superpasition of ry..ry. with a corresponding z; and &, :]. Let that superposition
be ry.r,, p <k. Then the chosen difference position of ¢ and d occurs as & subposi-
tion of ry..r,, and the differing terms of ¢ and & oceur 2s subterms of ¢; (=az; §) and
5;1,&', Note that ¢ of z; must satisfly 1 <n* because a and & must disagree at that
point (if @ and b were identical at that point, they would have the same variable, and
¢ and ¢ would not have disagreed at that position). Then we have t;y = &7 = 2,7

by the definition of 4 and the fact that ¢ <n”. Further,

{'EEFI;F:I",' = {E;irﬁ}&)\: b]r' L'Emma- 7
= SEIJWE}“E} = 5i:f(a}‘2} = § I.I"F
= 5on) = s iloex) = (s 40)0
= s5;{e}x) because & unifies ¢ and &

= & 7.

The diference position ip ¢ and ¢ are unified by 5, and thus, = unifies ¢ and 4. Since

ris 2a MGU of ¢ and d, the result foliows. QED

Note that ~ contains only variables over z,, ..., z, aed vy, . - ., ¥ - However,
it could contain substitutions for variables v, with j >m*. Fer example, = might con-
tain & component v, /yy while o has vy, /v, . In any case, 7 consists of components
whose variable parts are among {z; } and componenis whose variable parts are among
{yl]- Let us write = as

~ = 8+t

where & substitutes for =% and *lor y's Further let

e o/ i,)
where each 2 is a y;. As above, a z; may be ay; with y >m*. Also, i need not be

the same as m* .

Theorem 4 No z; occursin a v,

Proof. In computing 7, we may proceed right to left. In the proecess, even il any 1, is a
single variabie y;, the Unification Algorithm presented earlier guarantees that z, gets
substituted by g {=!) Afier n iterations of the algorithm, we get o, equal to 8
Further, the formulas remaining to unily are

Pl ooty oo,) and Psyf, ., 5.6, ...,)

In these formulas, no z; occurs. Thus, all the components leading to @ have already
been introduced and all the components leading to 7 are produced in the remaining
steps. In these steps, no variable z; can participate either as the variable of a substicu-

tion or a part of the term replacing it. QED

Theorem 5 ¥ = 4 {or some &

since no T, occurin ¢

Freoaof. ¢} ;

-y

-
—_—

L= =1

1

b |
Tt

=cq == g~ by Theorem 3

== 4 {fL% == 437 since no I; occurin 4.
! J

Thus, # unifies ¢ and ¢, 2nd 7is a MGU. QED

s s gy T f_ ! q
Theorem 8 FisaMGUol Pz, .. ., z,0and Plu,, ..., v)
Froof -« satisfies that none of its variable parts occur in any of its term parts, and Tis a

subset of 4. The result follows from Lemma 2. QED

- i .
Theorem 7 7= % [or some §
Frocf 7 o=z (8 =5 since 1+ only affects = 's
=z " =5 = (B
= z Fn* since & onlv affects = 's
v bt
rr o=y (=5 Sihce OO T OCCuUrs In 1y

=y’ —yht = (BN

= y; Th" since no I OCEUTS In v
=y A",
Thus, 7 unifies Pz, ..., 2,)and P{vy, .., vg) and Tisen MGU. QED

Thearem 8 7is 2 MGU of ¢ and d.

Proof We have shown that 7 unifies ¢ and d, and = 26 forsome & . risa MGU of

¢ and &, thus Fis also. QED

Thus, we may compute unifiers of pairs of terms in a unification join or select in 2
top down fashion. This has several advantages over the bottom up method of the next
section. First, the top down method uses only standard unification. As will be seen
below, the bottom up method requires a second operation to be performed on the lower
unifier, requiring corsiderably more hardware,/software. A second advantage is that
more parallelism can be used. The system may siart computing unifiers as soon as the
initial parts of the sublattice of terms for the two joining relations are formed. (These
sublattices will surely be formed top down.) In order to take fullest advantage of the
technigue, the bottom up method needs to unify the lowest possible terms first, and thus
hes to wait until the full sublattices for the two lisis of terms are formed. Finally, the
top down methoed unifies terms at the top first, and then computes uaifiers for lower
oairs. These top most pairs will also be the simplest terms. The bottom up method

must unify very complicated terms first.

The top down method has the advantage over simply applying unification directly
to all pairs because the top dewn method meed never actually generate the terms of the
lower pairs. It only uses the top level unifiers and the @ substitutions [rom the lattice.
The terms upifed in the composition operation can be expected 1o be much simpler than
the actual terms in the relations. FPor example, the zctual terms may have several
cecurrences of a variable z for which a complicated subssitution is made for the next
lower term. Computing with the terms themselves would require the comman instance
term to be examined several times while the top down method only looks at it once in

computing the combination.

13 -

\We envision a system somewhat like the [ollowing. When the join command is
issued, two extraction engines work in parallel to construet the two sublattices of terms.
As soon as there are terms in these two lattices, a unification engine (or engines) begins
working in parallel to find top level unifiers. When these are [ocund, a third set of
enzines works in paraliel to compute eombinations for the lower pairs. O course, the
untfication engines are all the same and can be shared between the top level unification
tests and the lower ones. At any point where a unification test [ails (either top level or
combination), no pairs of terms below the [ailing pair are tested. This eliminates the
need to sort terms and changes the pair gemeration engine from what is deseribed in

IMORISS].

4. Computing Unifiers for More General Terms (Bottom-up)

While we believe the top down method is the best, for the sake of completeness,
we show in this section how to calculate MGUs for more genera! terms (rom unifiers of
their instances. In particular, we will present an algorithm for terms t; and ¢; given 2
MGUo ol t; and ¢, and 2 substitution & such that £,6 = t, (Figure 2). To this end, we

describie @ modified representation [or vnifiers, alter which we describe the algorithm

itsell
- b3
"_II"_
.-ﬂ"ﬂ.,
- f
_FJ"
ty” to
a
Figure 2

4.1 Hepresentztion of Unifiers

We use 2 modified representation of unifiers in which 2 substicution is trezted as
2 set of term blocks, each block containing all che terms that must be alike. In addition
1o that, each term in a block must have a list of its aceurrences in f, or [a; because we

assume the variables are separated in the original terms, it is not necessary, except for

ground terms, to indicate from which of £, or £, the oecurrence arises. Oegourrences are
represented by position vectors used in the previous section. The use of the position
vectors will be explained in the next section; they are not necessary Lo simply represent
the unifier, but will be used to compute the unifier for the more general terms. MNotice
that each block contains a list of terms exactly as they occur in Iy and ., no substitu-
tions are applicd, although the actual unifying substitution can easily be constructed

from the set of blocks. \We present some examples to illustrate the representation.

Example 1 Lett, = (i(g(h(b,z)y)glw.z)u.v,s,t)
and ta= [i{g(n, ¢)lglneln,ne.c)
Here, b and ¢ are constants, and 7, y, 2z, w, v, w, & [, n are variables. The MGU is
represented by the two blocks
[n {1.1.1, 2.1, 3, 4}, b (b,2){2.1.1}, w {21}, u {8}, v {4}, and
(v {1.1.2}, z{2.2}, e {1.1.2, 2.2, 5, 6}, s {5}, t {6}].
The firs: block indicates that the variables n, w, u and v must all be replaced by the

term k(b ,x) O

Example 2 Let ty= f(z,¢{z,v)g(z.b)) and fo=[(c v u Y. The unifier is
represented by the blocks

Iz{1,223.1}, e {1}]

ly {22}, b {3.2}], and

6 (2.3}, g (r.¥ 12}, 0 (2 5)(3})
Notice that the terms ¢ (z,y) and ¢ (2,6} occur in the last block as opposed to their
instance ¢{e,b). The meaning of this block is that the terms v, g (z,y), 2nd gz b)
rust be alike for £, and £, 1o be unified. The Rrst two blocks coutain the subsiituiions
required for ¢ (z,v) and g(z.b) to be made alike. Thus, the firss two blocks are subeor-
dinate to the last one If the substitutions in the lowest level blocks are applied o the
higher blocks, the actual unifving substitution cag be obtained. Ip the present case,
applving the first two blocks to the last ope yields u, g{a.b). gla,b]] which is the
proper substitution for uv. Of course, the actual substitution fer u would be wriiten

gl b)iv. O

It should be elear that the normal unification process caa easily be mociled to

produce a unifier in the above representation,

4.2 Constructing the MGU

We start this section with some motivating examples. We assume at the outset
that the variablesin ty, ., and 4 are all separated. Further, we assume that & includes
the position vectors for the variables of 5. Note that the separation of variables in »

from variables of ¢35 will require = substitution compenent for every variable of ¢ in 8.

Example 3 e tgfilp,g,r dnmmuo)

-
—
-
——
—_ &

-
-
——

—
—
-

- =) .
rli.llr {ﬂrﬁ'{"'“’lz]rﬁ)ufﬁrf:f:s II] - fz:f [urg{t‘r.rc}iwfdleIFIJa}

eis [u{l}, a{ty:1}
[v{2.1}, h{b,z){21}]
(¥ {2.2}, e {t.2.2}]
[{3.4.3}, w {3,5}, d {tx:4}]
475 {67}, e {t,:6}]
|z {8}, a {t28}].
fis (p {1}/, ¢ (2Mo{v.e) r (3}/w, n {8}/uw, m (8,7}/t, 0 {8}/a).
Note that we are using a reverse notation for substitutions for 8. Consider each block of
o in turn. The first block references v which is in & pesition affected by § (position 1).
Thus, the term in position 1 of ¢, arises [rom the corresponding term in peosition 1 of £,
Obviously, fer ¢, and t; to unily, the terms in position 1 of ¢, and t; must be in the
same block. Therefore, we replace v in block 1 by p. Moving on to the s=cond block,
the one contzining k{6 ,7), we see that it occurs as a subpeosition of a substitution com-
ponent of 6. That is, in f; the variable ¢ occurs in a pesition which includes A (b .z).
In fact. the same is true for the block containing ¥ Since g ocecurs in position 2 of t,
we must form a new block containing ¢ and the corresponding term of ¢;, namely,
g(h{t =z }y) The position vector attached to ¢ in € tells us immediately which Ly term

to use. The new biock s

- 16 -

and in this case we may delete the two blocks corresponding to positions 2.1 and 2.2,
For the block containing z, w, and d, we see that w occurs in two positiens for which
there are substitutions in 8 Thus, w{3} in ¢ must be replaced by r {3}. Similarly,
w {5} is replaced by n {5}. Because m occurs in positions 3,4 and 3, =, r, 7 and d will
again occur in the same block in the unifier of ty and ta. Similarly, the occurrences of t
are replaced by cccurrences of m from 8. Finally, the occurrence of @ in position 8 of {4
also has a component in §. Therelore, o {8} is replaced by o {8}. MNote that in this case,
the non-variable term in ¢ occurs in exactly the same position as the variable in tg, in
contrast to the situation of the variable ¢ which was 2 proper superterm. The resulting
set of blocks is

[p {1}, e {1}]

fg {2}, e (A (b2)y {2}

(= {3.4,5), {3}, n {3}, ¢ {4}]

(s {7}, m {67}, ¢ {£,:6]]

[z {8}, o {8}l.
Note acain that the although g (h(b.z),v) occurs io the second block, the last block
indicates that r and o are identified. O
Example 4 _tyf{nm,op)

-]

- -
-

tf (z,z,5.8) — to f (s.b,5,¢)

cis 1=(12), ¥ (3} ¢ (13, b (2] (4), € (3)]

0= (n{1}/s, m {2}/b, 0 {3}/s, p {4})
As befare, we begin by replacing occurrences of terms in ¢ coming from f{a by
corresponding terms from 3 as determined by 8. In this case, there are no proper super-
term replacements, 50 the replacement is fairly simple. Note however, that the replace-
ment is based on position. Therefore, £ {1,3} 15 replaced by two separate icems, n {1}
and o {3}. The resulting blocks are

= (1.2), v (3}, n {1}, 0 {3}, m (211 L= {2}, p {4}]
However, these two blocks do not represent a MGU of ¢t and ¢, because too0 much sub-

stitution is indicated. The problem is that positions io tg that were the same are not

- 17

the same in {4 but rather distinet variables. Thus, in wnifving ¢, and (4, positicns 1
and 2 must be the same because of z, but position 3 is now independent. Thus, the first
block above needs te be split. This can be accomplished easily by a kind of erbit
antalysis. Consider the variable z. It oceurs in position 1 and 2 of its item. Any other
itemns in that block with positions 1 or 2 must be kept with . Thus, m and n must
stay in the same block as z. Since m and n do not eecur in anv positions other than 1
and 2 which are already in the orbit, one block in the unifier of ¢ and ¢4 15 |z {1,2},
n {1}, m {2}]. The remaining items of the above block oceur only in position 3 and form

a second block, [y {3}, ¢ {3}!. The unifier of {, and ; is therefore given by
{12 n {1}, m (2} [w{3},o{3))] [z{4)}.p {4} O

Example 5 - taf (i{g)g.o.p.e)

_— E
——
o-.'-.-...'-

tpf (ilgth{® z)y)lolw,2)u,vs) tof (i{g(n,e))g{n,eln,ne)
o is [n {1.1.1.2.0,34}, k(b,2){1.1.1}, w{2.1}, u {3}, v {4}
v {1.1.2}, e {tx1.1.2,2.25}, s {3}, = {2.2}]
fis ({112} g(n,e), 0 {3}/n, p{4}/n).

The first two oceurrences of n, 1.1.1 and 2.1, are delered because § contains 2 com-

ponent replacing 2 proper superterm of these positions in t3. This also requires a new
block with ¢ and the corresponding two terms from ¢,. Similariy, the first two position
vectors for e are deleted. The remaining replacements are sttaightforward. The result
is

[g{1.12}, g (B (6.2)w){11}. o(wz2}{2)} the new block

lo {3}, p {4}, A (b2 {110}, w {21}, v {3}, v {4}]

(v {1.1.2}, 5 {3}, e {105}, = {22}L
Simple orbiting produces

lg {102}, 9 (h (8,2),0) (11}, ¢ (w,2 }{2)]

(o (3}, 5 (3)] [p {4}, v (4]

(A {b,z){1.1.1}] f {2.1}] lv {L.1.2}]

22 (s (5}, e {5}

wich four degenerate blocks, We ecappot simply delete these four hlocks sinece £ {b 2]

— 18 -

and w as well as v and z must match. Positions 1.1.1 and 2.1 are in fact in the same
orbit because there is another block in which proper superpositions are in the same orbit,
namely the first block above requires positions 1.1 and 2 to be in the same orbit. There-
fore, all corresponding pairs of subpositions of 1.1 and 2 must be in the same orbits.

Carrect orbiting, then, will produce

A(ba)010) w2l 1) z{22) O

The algorithm can now be stated. Its stziement is considerably simpler than the

examples that led us to it.

Algorithm for Computing MGU for More General Terms

1. Use & to replace items in ¢ 2nd pessibly create new blacks.

9, Perform orbit analysis : two positions @ .6 - - ¢; and by.by - b; arein the same
orbit if
i. they occur in the same position list ([} bracket) of a term, or
ii.ay - s and by - b;s isin the same orbit and gjepy - @y = by k;.

3. Delete anv degenerate blocks,

5. Storage Schemes for Terms

COur suggestions for storage terms arise from the following two remarks. First,
each term in the knowledge base has at least one occurrence in the generality lattice. [T
the maximal terms in the lattice are stored explicitly, then any term, {, appearing &t a
lower level can be reconstructed by iteratively applying the substitutions leading from
any maximal superior term down to ¢. This might be reguired in the bottom up stra-
tery or when printing a result, for example. Similarly, the initial non-variable strings
vsed in the total orders can be constructed from the lattice if those orderings are to be
used (see Section §). Thus storing both the lattice and explicic representasions of terms

15 redundant.

Moreover, as the terms become more complex, the simple term representations,
like character siring or tree representaticns, repeat large pumbers of common stTuctures.
For example, if the term ¢, = f (g (h(b,z),y)) occurs and i there are n instances of {,
through n diferent substitutions for z, the izitial structure f (g {h (b will be repeated

n times. Similarly, if the term k{z.z.z.z) has zz instance cobtained by substituting

19—

the above f; for =, the entire term may be repeated in the storage of the knowledge
base. On the other hand, the lattice representation will not repeat any of these struec-
tures, but rather store them only once. In the case of n different instances of ¢, each
one will be represented by a link in the lattice labeled with only the substitution for z;
the structure of ¢, will not be repeated. Similarly, in the case of the instance of
k{r,z,z,r), there will again be a labeled link on which ¢, will occur once as the
replacement term for . Thues, storege requirements may actualiv be reduced by storing

terms only indirectly through the lattice.

Of course, such 2 scheme requires more computation to retrieve a term, which
leads to the second remark. Typically, the only accesses to terms are for printing
answers and performing unification joins and selections. The whole purpose of the lat-
tice is to help speed up unification join and selection, so there should be a net gain in
computational speed for those operations. As for the output of terms as answers, it is
clearly less eflicient when the terms must be reconstructed than when the terms already
exist explicitly. However, I/O is a much slower process anyway. Further, the lattice
storage method lends itsell to a very fast, stream-criented scheme for generating the
lower level terms. One main objection still remains, namely, if the term to be output
occurs many levels deep in the lattice, the system has to generate all the terms in
between the top and the desired term. This could be avoided by storing the transitive
closure of the lattice, but of course at 2 much larger eost for storage and update compu-

tation. This point remains as & difficulty for the lattice storage method.

It should be noted that various other schemes exist for optimizing the storage
terms. For example, a system may provide [or only one occurrence of each term to be
stored independent of the number of times that term occurs in formulas of the
knowledge base (for example, [LUSKS2} or [BOVYET2]). These schemes could be used to
optimize for both the original proposal of IMORISE] as well as the present proposal. The
lattice representation is alse well suited for storage as a relational database using a
thres-placed relation scheme

L (tag,, tag. subst)
where teg, is the identifier of a term, say t, teg, is the identifier of a term & which lies

immediately below ¢ in the lattice, and subst is a pointer to a represeniation for the

cubstitution that maps t to s. Then traversing up or down the lattice is equivalent to

selecting on the second or the first attribute, ete.

fi. Term Indexing Schemes

Before discussing outlines as an alternative to the indexing schemes given in
[MORISS], we point out yet another potentizl tradecfl between storage and response
vime. This tradesf involves the use of the indexing scheme {any of left-most, outer-most,
or outlines) as & hash function for accessing terms. In the outer-most scheme in
MORI86), the hashing function is just prefv{t); thatis, all terms with the same initial
string of non-variable symbols are stored together in the same list. Just as in outlines,
the set of prefixes can be compared when they are created once and for all to determine
which pairs of prefixes are compatible for potential unification. For example, any term
with prefix [(g{a)b is potentiallv unifiable with any term whose prefix s f (. We
propose stering the prefixes in a network which links together compatible prefixes;
prefix [(g(a),b would be linked to [(, f (g, ete. In fact, these prefixes also display a
partial order relatienship (py<p. if p, is an initial substring of pa). This structure is
very easy to maintain as the knowledge base is updar?ed.. Further, it eliminates the need

for the sort units in the unification engine.

Pair generation can be accomplished in the [ollowing way. We are given two lists
of terms, L, and Lo, and are to find all pairs, ¢ zod f,, that are unifiable. Recall, all
terms are stored in & single lattice. Therefore, in order to distinguish which list a term
belongs to, we mark =ach term of L; in the prefix petwork with the svmbol m; , for
{==12 Then, starting with one prefx, say p,, we form all pairs {¢,,¢,) such that t, is
in p, and has the m, mark and f. is in a prefix linked to p, and has the mark m..
Repeat this for each prefix. Of course, at ibe end the m; marks must be removed, The
advantage here is that pair generation requires no comparison of prefixes. Prefixes are
compared only when the network is built and maintained. This speeds the computation
of 2 unification join er select and simplifies the structure of the unification engine at the
expense of storing the prefix network and some extra computation for maintaining it 2s
the knowledze base is updated with new terms. An interesting question is whether or

not the prefix newwork and the generality lattice could be lncorporated into a single

—] —

structure in a way that would allow pair generation to automaticelly produce pairs
lowest in the generality network first. Then, processes 1 and 3 in section 2 could be

incorporated inte the pair generation unit.

As for the actual unification filter, the total orderings proposed in [MORISG| are a
simple and eflective mechanisms, but not as effective as some other known schemes. The
difficulty is that the filtering comparison stops at the first non-variable position in either
of the terms. One scheme that avoids this problem is outlines [HENSE3]. For the
present, we will not give any background on outlines here, but only cite the advantages
and disadvantages of it and pessible fix for the major disadvantage. The disadvantage is
that the outline siructure requires a commitment to a maximum number of argument
positions for any symbol in the language and assumes that every symbol (including vari-
ables and constants) has that many arguments. The filtering mechanism does not take
into account any arguments of terms bevond the maximum. On the other hand, the
larger the maximum number of arguments, the more space is required, and the length of
an outline grows exponentially with the level of nesting of terms. A key point however
is that the outline for a deeply nested term tends to have mostly blank space; furiher,
the location and length of the blank space can be easily computed as the outline is being
formed. Thus, while the storage required for outlines will in generz! be more than that
required for prefixes, the efficiency in eliminating pairs to be sent to the unification unic
will generally be more efficient in filtering out pairs of terms. Test cases have shown
that cutlines are usvally 80-95% accurate in eliminating non-unifiable pairs. This is of
particular importance in unification joins and selects where the major computational
eflort 1= in unifving pairs of terms. [n addition, outlines can be used to filter pairs for
generality, that is to determine if ¢, could he more general than t» (The cuter-most and
left-most schemes can zlso serve this purpose). As above, an interesting guestion is

whether or not outlines could be incorporzted inte the generality lattice.

7. Conclusions

We have presented a number of altercatives that mey improve the response time
of unification joins and selects. The implementation of these technigues and the degree

of improvement requires further study.

Relerences

[MUR,&LSSL Murakami M., Yokota, M., Iteh, H., *"Formal Semanties of a Relational

Ipowledge Base” 1COT Technical Report TR-149, Dec. 1985.

IMORISS] Morita, Y., Yakota, H., Nishida, K., Itoh, M., "Retrieval by-Unification
Operation on a Relational Iinowledge Base" Proceedings of the 12th Int'l Conf.
on VLDB, Kvoto, Aug. 1986

[ROBIS5| Robinson, J.A, TA Machine-oriented - Logic Based on the Resolution Princi-
sle,” JACM, Vol 12,1 (Jan 1963).

[HAYN73] Haynes, GA, "Completeness of Variable-Constrained Resciution,” A5
thesis, Dept. of EECS, Northwestern Untv, Ewvanston, L., Aug. 1973,

[CHANT3] Chang, C.L., Lee, C.T., Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, NY, 1973,

[HENSE3] Henschen, L.]. Nagvi S., "An Improved Filter for Literal Indexing in Resolu-
tion Svstems,” Proceedings of [JCAI Vancouver, BC, 1983.

[LUSKEZ} Lusk, E., Overbeek, B. McCune, W, "Logic Machine Architecture ; [{ernal
Functions,” Froceedings of CADES, 1982,

IBOVET?} Boyer, R., Moore, J., "The Sharing of Structure in Theorem Proving Pro-

grams,” Machine Intelligence, Vol 7, Edinborough Univ. Press, 1972

