ICOT Technical Report: TR-399

TR-399

Preservation of Stronger Equivalance
in Unfold 'Fold Logic Program
Transformation |

by
T. Kawamura and T. Kanamori{Mitsubishi)

June, T98H

WeRs1COT

Mita kKokusar Bldg. 21F 030 456-3181~5

“ :D | 4-28 Mita 1-Chome Telex ICOT 132964

Minwle-ku Toekvo 108 Japan

Institute for New Generation Computer Technology

Preservation of Stronger Equivalence
in Unfold /Fold Logic Program Transformation

Tadashi KAWAMURA Tadashi KANAMORI

Mitsubishi Electrie Corporation
Central Research Laboratory
8-1-1 Tsukaguchi- Honmachi

Amagasaki, Hyogo, JAPAN 681

Abstraet

This paper shows that Tamaki-Sato’s unfold/fold transformation of Prolog programs pre-
serves equivalence in & stronger sense than that of the vsual least Herbrand model semantics,
which Tamaki and Sato originally showed. Conventionaly, the semantics of Proleg programs
is defined by the least Herbrand model. However, the leasi Herbrand model dose not always
characterize what answer zubstitutions are returned. This paper proves thal any program
obtained from an initisl program by applying Tamaki-Sato’s transformation returns the same
answer substitutions as the initial program for any given top-level goal.

Keywords: Program Transformation, Prolog, Fanivalence of Programs.
Contents

1. Intradunction
2. Unfold/Fold Transformation of Prolog Programs
3. Preservation of Stronger Equivalence
3.1 Froof Tree
3.2 Partial Correctness
3.3 Total Correctness
4. Discussion
5. Conclusions
Acknowledgements
References

1. Introduction

The eflcctiveness of the unfold/fold rules in program transformation was first demonstrated
by Burstall and Darlington [1] for functional programs. Manna and Waldinger [6] indepen-
dently proposed a program synthesis method based on similar rules. Becaunse the purpose of
program transformation is to mechanically derive programs which perform the same task, one
of the important properties of such program transformation rules is preservation of equiva-
lence. An equivalence relation between programs is defined based on a semantics of programs.
Different semantics can give different notions of equivalences (cf. Maher [5]). Tamaki and
Sato [7] [8] {9] prepesed unfold /fold rules for Prolog programs which preserves equivalence
in the sense of the least Herbrand model semantics, which is the conventional semantics of
Prolog programs. However, the least Herhrand model semantics dose not always character-
ize what answer substitutions are returned. For example, consider the following two Prolog
programs Py and P,

Fy o p(X).
q(a).
P o:pla).
qfa).

Because the Herbrand universes of) and P, are both {a}, they are equivalent in the sense
of the least Herbrand model semantics. However, these two programs respond in different
manners to a qunery

- p(X)
Py returns the empty substitution <>, while P; returns substitution <X <=2> as its answer.
To make a distinction between these programs, more zefined equivalence is required.

This paper shows that Tamaki-Sato's unfold /fold transformation of Prolog programs
preserves equivalence in a stronger sense than that of the usual least Herbrand mode] se-
mantics. First, Section 2 describes Tamaki-Sato’s transfoimation of Prolog programs. Then,
Section 3 introduces a set of pairs consisting of a given top-level goal and the answer substi-
tution as the semantics of Prolog programs, and proves that Tamaki-Sato’s transformation
also preserves equivalence in the sense of this semantics,

In the following, familiarity with the basic terminclogies ol first order logic such as
term, atom, definite clause, substitution, most general unifier(m.g.u.) and so on is assumed.
A program is a set of definite clauses. The syntax of DEC-10 Prolog is followed. As syn-
tactical variables, X\ Y are used for variables, and A, B for atoms, possibly with primes and
subscripts. In addition, f, %, ¢, 7 are used for substitutions, and A# for the atom obiained
from atom A by applying substitution 8.

2. Unfald /Feld Transformation of Prolog Programs

This section describes Tamaki-Sato’s unfold/fold transformation following [9].

Definition Initial Program
An initial program Fp is a program satisfying the follawing conditions:
(a) Fpis divided into two disjoint sets of clauwses, P, and F.s. The predicates defined
by F... are called new predicates, while thase by P,y are called old predicates.
(b} The new predicates never appear in Fayg nor in the bodies of the clanses in Ph.y.

Exampie 2.1 Let Py = {C;,C5,C3} be an initial program, where
Cy oap(] .MM

Ca : ap((X|LLM,[XIN]) == ap(LM,¥).
Cy :insert(X, M N) = ap(U,V M}, ap(U [X|V],N).
and Pug = {C1,Ca}, Paew = {C3}. Then ‘ap’ is an old predicate, while ‘insert’ is a new
predicate.

Definition Unfolding

Lot P be a program, C be a clause in Fy, A be an atom in the body of C, and
C,,Ca,...,Cy be all the clanses in Fi_, whose heads are unifiable with A, say by m.g.u.'s
8,,8,...,0,. Let C! be the result of applying @, after replacing A in € with the body of G;.
Then Piyy = (P {CHU{C}, €4, ..., Ci}. € is called the unfolded caluse and C,,C>, ..., Cy
are called the unfolding clauses.

Example 2.2 Let Fy be the above pregram. By nnfolding G at atom ‘ap(U.V, M)’ in the
body, program F; = {Cy,Cq,C4, Cs} is obtained, where

Cy : insert{X,M, N} - ap(!],[X]M],N).

Cy ¢ insert(X.JY|M],N) - ap(UV,M), ap([Y[UL[X[V],N).
By unfolding €4 and Cy further, program Py = [C,,C3,Cs,Ce} and Py = {C,C2,C,Cr}
are obtained, where

Cg + insert(X M, [X{M]).

Cy + insert(X,[YIM]L[Y|N]) = ap(U,V, M), ap(U [X|V],N).

Definition Folding
Let F; be a program, C be a clause in F; of the form
Ag - Al Ag,.. A (0> 0)
and D be a clanse in Py of the form
By :- By, Ba,...,Bm (m>0).
Suppose that there exists a substitution # satis{ying the following conditions:
(a) B8 = Aj, Bl =Ay,,...,B,0=4;, where F11 32000+, jm are different natural nom-

bers.
{b) Fur each variable appearing only in the body of D, # substitutes a distinct variable not
appeating in {Ap, Ay, An} = {45, Aje o A

(¢) D is the only clanse in Pr.o whose licad is wnifiable with Bg# .
(d) Either the predicate of C's head is an old predicate, or C is unfolded at least once in
the sequence I, My, ..., B
Let ' he a clanse with head Ap and body { B} U ({41, A2, ..., Am}={A5 Ajyr oy Ajn 1)
Then Py = (P~ {CHu{C'}. C is called the folded clanse and D is called the folding

clause.

Example 2.3 Let P be the above program. Then, by folding the body of C'7 by Ca, program
Py = {C1,C;,Cs,Cs} is obtained, where
g insert{ X,[YIM],[YIN]) = insert(X M N).

Definition Transformation Sequence

Let P, be an initial program, and P4, be a program obtained from F; by applying
either unfolding or folding for #+ > 0. The sequence of programs Py, Py,..., Prnis called &
transformation sequence starting from Fy.

Example 2.4 The sequence P, Py, 5, Fa, Py Example 2.1-2.3 s 2 transformation sequence
starting from Fp in Example 2.1. Note that, for query

2

?. insert{ X, [Y]LN}L

these five programs return the same answer substitutions
< Ne=[X, Y] >,
< N&lY, X]>.

3. Preservation of Stronger Equivalence

This section first introduces several basic noetions of proof iree, then proves preservation of
equivalence in the stronger sense along the same line as [9] [8].

3.1 Proof Tree

Becanse we need to consider what answer substitutions are returned for given top-level goals,
more refined notions of proof trees are necessary so as to avoid the complications due to the
strategy in nondeterministically selecling atoms to be resolved.

Definition Labelled Tree

A Jabelled tree iz a finite tree whose nodes are Jabelled witlr expressions of the form
“4=B" where 4 and B are unifiable atoms, The set of all the labels of labelled tree T is
called the Jabel set of T The number of nodes of labelled tree T iz called the size of T,

Definition Most General Unifier of Labelled Tree

Let T be a labelled tree and E = {4, = B;, 4; = Ba,...,A; = B;} be the label set
of T. Then T (or E) is said to be unifiable when there exists a substitution e such that
Ao and B,e are identical for all ¢ = 1,2,...,k A substitution 7 is called the most general
unifier of T {or E) when r is the most general substitution among such substitutions.

Definition Most General Unifier of Substitutions

Subslitutions oy, 02,..., 7, e said 1o be wpifieble when there exists a substitution o
such that, for each oy, there exists a substiluion = satisfying ¢ = oo, A substitution 7
is called the most general unifier of oy, 02,..., 0p when 7 is the most general substitution
among such substitutions.

Definition Proof Tree
Let P be a program, T be a labelled tree and Ty, Ty, ..., T, be its immediate subtrees.
The labelled tree T is called a proof tree of atom A with answer substitution ¢ by P when
there exists a clawse < in P of the form
H: Hy,Hy, .. By
such that
(a) A and B are unifiable, say by an m.gu. ¢,
(b} the oot node of T is labelled with “4 = B,”
(e) 1,15, ... Ty are proof trees of By, Ba, ..., B, with answer substitutions o, 02, ..., @q
by P respectively, and
(d} « is the restriction of an m.gu. of #, 5y, 05,..., 0, to the variables in 4.
The clanse 0 is called the clawse wsed at the root of T, and Ty, T%,...,T, are called the

immediate subproofs of ', Proof trees are denoted by T and 5, possibly with primes and
subscripts.

Example 3.1.1 Let Py be the program of Example 2.1. Then proof tree Ty of ‘insert(X,[Y],N Y
with answer substitution <N <= [X,Y]> by Fp is depicted below:

3

“insert(X,[Y].N)=inser1(Xo,Mo.Na)"
/ \

“ap(Up, Vo, Meo)=ap([|, M1,M1)" “ap{Up,[Xo|Ve).No)=ap(] |,.Ma2,Ma}"

Proaf tree Ty of ‘insert(X,[Y],N)” with answer substitution <N <= [¥,X]> by Fo is depicted
beiow:

“insert[}i,f‘:’],lﬁ'}:insert[;:{g,mg,ﬂu)”
I

L'“?{Uurvo.}ﬂn}:ﬁﬂ(ixi L] My X R "ﬁP{Uﬂ.E}:DWQ]:Hn}IHr{[f‘[:|L2}.M2,IX2|H2D“

“EP{LhI\I-_{,Hl}:aP{E }!M31M 3 T’ HEPELE lhllﬂsﬁﬂ}:ap[[]s}I-i -]"Il:]h

Definition Proof Forest

Let P be a program, and T1,Ty,..., T, be proof trees of atoms Ay, As, o A, with
answer substitutions oy, 0q,...,7, by P. A multiset F = {T,T5,. oy Tu} is called a proof
forest of atom sequence Ay, Ag, ..., A, with answer substitution T by F when ris an m.g.u.
of @y, 04, ..., 0n. Proof trees Ty, To,..., Ty ate called the component proof trees of F. Proof
{orests are denoted by F, possibly with primes and subseripts.

Example 3.1.2 Let P be the program of Example 2.1 Then proof forest F; of atom sequence
‘ap(Un, Vo, [¥]), ap(Uq,[X|Vo],N)’ with answer substitution <Up =[], Vo &= Y], N<=[X.Y]>
by Fp is depicted below:

“ap(Ua,Vo,[Y])=ap([].M1,M1)” “ap(Uq,[X{Va],N)=ap({ |.M2,Mz)"

Proof forest Fy of atom sequence ‘ap(Ug, Vo, [Y]), ap(Upg,|X|Ve],N)® with answer substitution
<Ug=[Y], Vo [, N =Y X]> by Fyis depicted below:

“EP{Um‘f'u.[‘!'l};-‘!P{[lK; | L] My [X NG)7 "ap[Um[xlVo],N}=aPI(DizIL:I Mo, [Xa|Na])”

“ap(Ly, My Ny)=ap(]],Ma.Ma)” “ap(La,Ma,No)=ap([] M4,M4)”

Definition Success Set

Let P beu program. The set of all the atom-substitution pairs {4, e) such that there
exists a proof tree of A with answer substitution 7 by P is called the success set of P, and
denoted by M({F).

Note that the success set charzcterizes Prolog programs more precisely than the least
Herbrand model. In the following discussion, we consider preservation of the success set in
place of the least Herbrand model.

Lemma 3.1.1 If T is a proof tree of atom A with answer substitution @, then o is the
restriction of an m.g.u. of the label set of T to the variables in A.

Proof. Hv induction on the structure of proof trees. Let “A = B” be the label of the root
node of T, # be an m.g.n. of A and B, and Ty, T=,..., Ty be T's immediate subproofs of
By, Ba,..., B, with answer substitutions ¢y,032,...,0,. By the induction hypothesis, o; is
the restriction of an m.g.u. of the label set of T; to the variables in B; for 2 = 1,2,...,%.

4

From the definition of proof tree, & is the restriction of an m.gu. of #,04,03,...,0, 1o the
variables in A, and the variables in A never appear in the label sets of Ty, 75, ..., T, Thus
7 is the restriction of an m.g.u. of the label set of T' to the variables in 4.

Lemma 2.1.2 Let E be the label set of a proof tree T°, *A = B” be an element of F, and
be an m.g.u. of A and B. Then, substitution #r is an m.g.u. of E if and enly if 7 is an
m.g.u. of (E — {A = B})f.

Proof. Obvious.
3.2 Partial Correctness

Let Py and P, be Prolog programs such that F; is obtained from Py by applying the trans-
formation rules. A transformation of Prolog program is said to he partially correct when
M Fy) 2 AP holds. This subsection proves partial correctness, which is the easier direc-
tion of stronger equivalence.

Lemma 3.2.1 Let F, be a program and C be a clause in F;. Let ¢ be a clanse obtained
from € by permuting the atoms in the body of €, and P! be (P — {C}) U {C"}. Then
M Fr) = M(F]).

Proof. Let T be a proof tree by P, and T’ be 2 proof tree obtained from T by permuting the
subproofs of the atoms in the body of C according to the permutation from C to €' when
clause C is used at the node. Then, this correspondence gives a one-to-one correspondence
between A(F) and M.

This lemma implies that we ean arbitrarily rearzange the atoms in the bodies of the
clauses in program F; belore applying the next transformation rule while keeping the success
set of P,

Lemma 3.2.2 Let £ be a program in a transformation sequence, and T he a proof tree of
atom Af by program £, Let T be the labelled tree obtained from T by replacing A# in the
left-hand side of the root label with A, Then T is a proof tree of atom A by program F,.

FProaf. Obwvious.

Lemma 3.2.3 Let /; be a program in a transformation sequence, T be a proof tree of atom
A with answer substitetion ¢ by program P, and & be & substitution for the variables in 4
such that & and o are unifiable. Let 7" be the labelled tree obtained from T by replacing
A in the left-hand side of the root label with A8, Then TV is 2 proof tree of atom A#@ by
program J§.

Proof. Obvious.

Lemma 3.2.4 let Fy, Py,..., Py be a transformation sequence. [[M(F,) = M(F;), then
M(F) 2 M(Figy) for i = 0,1,..., N 1.

Proof. Let (A, e) be an atom-substitntion pair in AM{P;y;), and T be a proof tree of A with
answer substitution & by F.y;. By induction on the structure of T, we will construet a proof
tree T of A with answer substitution ¢ by P;. Let C be the clause used at the root of T,

Case 1: Cisin P,

n

Let € be of the form
Ap 1= Ay Agy ..., Ag (n>0)
and Ta,:Tass-r-1da, be T's immediate snbhproofs of Ay, 45 ..., Ay, By the induction hy-
pothesis, there exist proofl trees T4 , T4 ,..., T of 4y, Az ... A, by Fi with the same
answer substitutions as Ty, ,Ta,,...,T4,. Let T be a proof tree obtained by putting the
root node lahelled with A = Ag” over T;I,T:T,. T, - Then, from the definition of an-
gwer substitution, & is an answer substitution of T'. Hence T" is 2 proof tree of A with
answer substiteiion & by F;.

HA = Aun

Figa | \\

TA11TA1:-“1TA.
induection |

A = x‘l.:,

Fi: /TA“ 7

Jj’

Figure 3.2.1 Construction of Proof Tree for Case 1

Case 2 : is the result of unfolding a clause C in Fj.
Let C' be the unfolded clanse of the form

Ay 1= A Aa A (02 0)
and [} be the unfolding clause of the form

B|_'| Hl .Bl,Bz, . ..,Bm [:'m‘- = G}
From Lemma 3.2.1, without loss of gencrality, we can assume that 4, and By are unifiable,
say by an m.g.u. @, and O is of the form

Al = B0, ..., B8, 4.8, ., Aul.

A = AT
Pt “’f’ _“

TEﬂ.‘s . T.H édaq8, - -uT,-:.,P
induction I}

IJA — AD”
Pi: Tb1ﬂ""’T.erﬂ’T.;-:P""5T.{1.“F — “‘Al = Bﬂ“ \“‘-“""'-—.‘_‘_‘
Lemma 3.2.2 Tg,o-- T Tayn--n Ty,

Figure 3.2.2 Construction of Proof Tree for Case 2

First, let Tge,.... To.6, Tase,.... Ta e be T's immediate subprooks of Bif, ..., B, 4,
Aqfl oo AL8 By tlm mdur:t.mn]npn'lhc-_us there exist proof trees T Ti? g1 3 age
Ty g ol Byl oo B8 A0 A0 by Fowith the same answer su.{:rstltuhons as Tg,e,
Tp6, Tasg, - Ta,e. Let Iy he the union of the label sets of T, 5, .-, T _a0 Tisgo-- oo
Tyeand {A = Agf}. From Lemma 3.1.1, ¢ is the restriction of an m.g.u. of £} to the
variables in A.
Next, from Lemma 3.2.2, there exist proof trees T .. Ty Ty, .o Ty of By,
B, Az, ..., 4, by P, such that they are identical 10 T 5, T 5. T ... T 4 cxcept

&

the left-liand sides of the root labels. Let T be a proof tree obtained by putting 2 root
node labelled with “4, = By” over Ty ..., T . Let T" be & proof tree obtained by putting
a root node labelled with “A = Ag” over T ,T,,,.. T, and E' be the label set of T,
j.e., \he union of the label sets of T, T Taye-o . Ty, and {A = Ao, Ay = By}. Then
Ey is identical to (E' — {A; = Bo})0. From Lemma 3.1.2, ¢ is the restriction of an m.g.u.
of I’ to the variables in A, since # does not substitute for the variables in A. Hence, T isa
proof tree of A with answer substitution ¢ by F,.

Case 3 : (7 is the result of fulding a claunse C" in F;.
Let ¢ be the folded clause of the form
.-'q.ﬂ Ha .rq.j_,_Ag,,.An {ﬂ s ﬂ}
and D be the folding clanse of the form
By :- By, By, ooy B (m > 0).
From Lemma 3.2.1, without loss of generality, we can assume that A;, ..., A, are instances
of By,..., B, say by an instantiation &, and, from folding condition (h), C is of the form
Aﬂ i BD§1AHE+1?"' |-'dj1l'

“A — AE:J
Figr J ™
TﬂnﬂlTi-n-nr serasAg
induction i
“A = Ap”
I ¢ il _.__,..-r"" ra \ Ea.__‘_‘_
P TED'F"TAmH"""{J“-n — fj i 1"‘"‘*-?]
T‘:" "TA ? -“m+|"‘“1 d‘1'“.
bhypothasis I} it hypothesis
".EU'F = Bun
PI:I: fr \ = 5.";1"'1‘qdm
by TR 3 lemma 3.2.3

Figure 3.2.3 Construction of Proaf Tree for Case 3

First, let Tge.Tapnys oy T4, be T's immediate subprools of Baf, Amgr, ..., As. By
the induction hypothesis, there exist proof trees Tg 5, T4 ..., T, of Bofl, Amga, ..o, An
by P, with the same answer substitutions as Tge.Ta, 0ys---: T4, Lot Ey be the union of
the label sets of Ty, o T ... T and {4 = Ag}. From Lemma 3.1.1, & is the restriction
of an m.gu. of I to the variables in 4.

Second, by the hypothesis M(F) = M(F;), there exists a prool tree S of Bgf
by Fy with the same answer substitution as T ;. Because the predicate of Bg# is a new
predicate, the clanse nsed at the roat of Sg,g is in Phey. Further, by folding condition (c),
this clause should be 2. Hence, the root label of S is “Bal = Ho,” and Sgpe's immediate
subprools are prool trees Sg,,...,5p, of By, ..., B.. Let Fs be the union of the label sets
of Sps, Ty, i---. Ty and {A = Ag}. ‘Then, from Lemma 3.1.1, & is the restriction of an
m.g.u. of s to the variables in A,

Third, from Lemma 3.2.3, there exist proof trees 54,,..., 54, of Ay, .., 4m by Fa
such that they are identical to Sg,, ..., 5p_ except the lelt-hand sides of the root labels, since
Bi#=Ay,..., B0 = A, from folding condition (a). Let Ey be the union of the label sets of
SagenSa T o Ty, wnd {A = A}, Then Ej s identical lo (Ey — { B = Bg})d.

it

1

From Lemma 3.1.2, ¢ is the restriction of an mg.u. ol Fa to the variables in A, since ¢ does
not substitute for the variables in A.
Last, again by the hypothesis M{F) = M(Fy), there exist proof trees T ..., Ty,

of Ay,..., A, by F; with the same answer substitutions as S4,,...,54,,. Let T be a
proof tree of A by P obtained by putting a root node labelled with "4 = Ag® over
TL,__.IT}"_”T:.M!,.,,1T:‘", und F' he the label set of T, ie., the union of the label

sets ol T, .- Y S b R Ty, and {A= Ap}. From Lemma 3.1.1, o 1s the resiriction
of an m.g.u. of E'. Hence, T" is a proof tree of A with answer substitution o by F.

3.3 Totsl Correctness

Let Fp and F; he Prolog programs such that 7 is oltained from Fp by applying the trans-
formation rules. A transformation of Prolog program is said to be totally correct when
M(Fy) = M(P,) holds. This subsection proves total correctness, which is the harder direc-
tion of stronger equivalence. First, several definitions are prepared.

Definition Weight of Froof Tree
Let Py be the initial program in a transformation sequence, T te a proof tree of alom
A by Py, and s be the size of 7. Then the weight of T', denoted by w(T), is defined as follows:

w(T) = s —1, if the predicate of 4 is a new predicate ;
R if the predicate of A is an old predicate.

Example 3.3.1 Let Fy be the initial program in Example 2.1, and Ty, T3 be proof trees in
Example 3.1.1. Then w(7}) = 2 and w(Tz) = 4.

Definition Weight of Atom

Let % be the initial program in a transformation sequence, A be an atom, and ¢ be
a substitution. The weight of A with answer substitution o, denoted by w(Ad, g}, is the
minimum of the weight of the proof trees of A with answer substitution 7.

Example 3.9.2 Let Py be the program in Example 2.1, and Ty and Ty be proof trees in
Example 3.1.1. Then

wlinsert(X,[¥1,2), <2< [XY]=)} =1,
because T is the minimum proof tree of ‘fimsert(X,[Y],Z) with answer substitution <% <=
N,Y1» by P Similarly,

wlinsert{X,[¥1,2), <Z = [V X]>}=4.

Definition Weight of Proof Forest

Let Py be the initial program in a transformation sequence, F be o proof forest by Po,
and Ty, T3,.... T be the component proof trees of F. Then the weight of F is defined as
ihe sum of the Ty, Ta. ..., Tu's weights, ie., w(F) = w(Ti) + w(Ta) + -+ w(Ty).

Example 3.3.3 Let Py be the initial program in Example 2.1, and Fy and I3 be proof forests
in Example 3.1.2. Then w(Fy) =2 and w(fz) = 4.

Definition Weight of Atom Sequence

Let Py be the initial program in a transformation sequence, 4y, Aa,..., Aq be an atom
sequence, and @ be a substitution. The weight of Ay, Ax, ... Aq with answer substitulion

B

r, denoted by w({Ay, Az, ..., An)i T}, i8 the minimum of the weight of the proofl forests of
Ay, Ag, ..., A, with answer substitution 7.

Example 3.3.4 Let Fy be the program in Example 2.1, and Fi and F3 be proof forests in
Example 3.1.2. Then

w((ap(U,V,[¥])ap(U,[X|IVL.N)), <U], V=[Y], N=[XY]>) =2,
becanse F is the minimum proof forest of ‘ap(U,V,[Y]),ap(U,[X|V],N}" with answer substi-
tution €U <[], Ve [¥], N<=[X,Y]> by Fo. Similarly,

w((ap(U,V,[Y]).ap(U,[X|V],N)), <U<=[Y], V<[], N=[Y.X]>) = 4,

The following notions, which are generalizations of those in 9], play an important role
in the following proof.

Definition Descent Claunse
Let P: be a program in a transformation sequence starting from initial program Py, 4
be an alom, o be a substitution for the vanables in A, and C be a clavse of the form
Ag 1= A3, Az, An

whose head Aq is unifiable with A, say by an m.g.u. 5. Then clause €' is called a descent clause
of atom A with answer substitution ¢ in F; when there exists a proof forest of A4, 42,..., A
with answer substitution = by Fy such that

(a) the restriction of an m.g.u. of 7 and r to the variables in A is 7,

{b) w(A, o) > w((A1,4z,...,4,),7), and

(¢) w{A o) > w((Ar, Az, ..., As), 7) when C satisfies folding condition {d).

Definition Weight Completeness

Let P; be a program in a transformation sequence starting from initizl program Fy.
Then P is said to be weight complete if and only if, for any atom-substitution pair (A, 7]
in M(Fy). there exists a descent clause of A with answer substitution ¢ in F.

The next three lemmas correspond to Leinma 3.2.1, 3.2.2 and 3.2.3.

Lemma 3.3.1 Let F, be u program and C be a clanse in F;. Let ' be a clause obtained
from € by permuting the atoms in the body of C, and F be (F; — {C}j}U{C'}. Then F is
wight complete if and only if P} is weight complete.

Proof. When ¢ =0, it is proved in the same way as the proof of Lemma 3.2.1. When i > 0,
it is obvious.

This lemma implies that we can arbitrarily rearrange the atoms in the bodies of the
clauses in program P before applying the next trapsformation rule while keeping weight
completeness of Fi.

Lemma 3.3.2 Let Fy be the initial program of a transformation sequence, and T be a
proof tree of atom A0 with answer substitution & by program Fy. Let T' be the labelled tree
obtained [rom T by replacing A# in the left-hand side of the root label with A. Then 17 is
a proof iree of atom 4 by program Py, and w({T} = w(T").

FProof, Obvious.

Lemma 3.3.3 Let Fy be the initial program of a transformation sequence, T be a proof
tree of wtom A with answer substitution o by program [}, and § be a substitution such that

]

¢ and e are unifiable. Let T be the labelled tree obtained from T by replacing A in the
lefi-hand side of the oot label with A#. Then T is a proof tree of atom A# by program Fy,
and w(T') = w(T").

Mraaf, Obvious,
After proving one more lemma, we will start the proof of total correctness.

Lemma 3.3.4 Let F be a program in a transformation sequence starting from imitial
program Py, and € be a clause in £ If € doesn’t satisly folding condition (d}, all the
predicates of atoms in the body of C are old predicates.

Proaf. By the hypothesis, either € remains as it is during the transformation sequence from
Py to P, o1 Cis introduced by folding. For the former case, the lemma holds obviously. For
the latter case, there exists a clause C' in some P; (j < i), and C is the result of folding C".
Then ¢ satisfied folding condition (d). But, as the condition is not affected by folding, C
also satisfies the condition, which contradicts the hypothesis,

Lemma 3.3.5 Let P be 2 program in & transformatlion sequence starting from initial
program Fp. If F; is weight complete, then AM(F) 2 M(Fa).

Proof. The proof is by induction on atom-substitution pairs ordered by the following well-
{founded ordering = : (4,¢) = (B,7) if and only if
(2) w(A, o) > w(B,r), or
(b) w(A,#)=w(B, r)and the predicate of A is 2 new predicate and the predicate of B is
an old predicate.
Let (A,7) be an atom-substitution pair in M({Fy). Then there exists a descent clause C of
A with answer substitution o in P, where C is a clause in P} of the form
.rln Ha A]_....,.."!n
and g is an m.g.u. of 4 and Ap. From the definition of descent clause,
wid. o) > wl((A,. . . 4:0.7)
holds, where the restriction of an m.gu. of 7 and 7 to the variables in 4 is #. Lel F be the
minimum proof forest of 4y,..., A, with answer substitution 7 by Fp and T,,..., T beits

component proof trees of Ay, .., Ay with answer substitutions oy,...,ay. Then
wid, o)z wi(A, Az, ... AR) 7)
= w{F)
= w(T;)
=w(d;, o)
holds. If

wi{d, o) >wi(l4d,,....4.0.7)
holds, (A,a) = (Aj.a;) holds, If

wld.e)=w({4dy,..., 4.0 1)
helds, by condition {c) of descent clause, C doesn’ satisly folding condition (d), hence, bom
Lemma 3.3.4. no new predicate appears in A;,..., 4,. which implies that (A,) = (A4;, 5]
holds. Tence, whichever holds, (A, a) > (A;, o;) holds. Then by induction on >, (4;,;)
igin AR, and there exizts a proof forest of Ay, ..., 4, with answer substifution r by F,.
Thus (A, &) is in M{F).

Lemma 3.3.6 The initial program & of & transformation sequence is weight complete,

10

Proof. Let (A,c¢) be an atom-substitution puir in M{Fg), T be the minimum proof tree of

A wilh answer substitution ¢ by Fo, and C be the clause used at the root of T of the form
AU F .-'11,..-'13, s ..1.-‘1.-,..1

Then, obviously C satisfies conditions (a),(b) of descent clause. In additien, C satisfies

folding condition (d) if and only if the predicate of Cs head is an old predicate. In thal case,

obviously condition (¢} of descent clanse is satisfied. Thus € is a descent clause of A with

answer substitution o,

Lemma 3.3.7 Let P be a program in a transformation scquence starting {rom initial
program Fy. If F; is weight complete, then the next program Fiyy in the sequence 15 also
weight complete,

Pronf. Let (A,e) be an atom-substitution pair in M(Fy). Because P, 15 weight complete,
there exists a descent clause € of A with answer substitution ¢ in P;, where € is a clause of
the form

_-"J,;, e A11A2,-.-,An {Tl- E D}
and A and Ag are unifiable, say by an m.g.u. 5. We will show that there also exist 2 descent
clause of A with answer substitution o in Fj;,.

Case 1: Cisin Fiyq.
" is a descent clause of 4 with answer substitution o in P4

Case 2 ¢ € is unfolded.

From Lemma 3.3.1, without loss of generality, we can assume that A, is unfolded. Since
C is a descent clause, there exists a proof forest of Ay, Az, ..., A, with answer substitution 7
by Py such that the restriction of an m.g.u. of 7 and 7 to the variablesin A is o Let F be ithe
minimum proof forest among such proof forests, and Sa,, Sa;,-... 54, be F's component
{rees with answer substitutions @1, 9,..., &s by Fg. Further, since F; is weight complete,
there exists a descent clause I’ of A, with answer substitution ¢y in F;, where D is a clanse
of the form

By = By,...,Be (m >0}
and A, and By are unifiable, say by an m.g.u. 8. Let C’ be the result of unfolding © vsing
1. Then € is of the form
Aafl == By, .., B0, A8, A0
“Ay = By, Sa..--.0 54,
Py: 5;1,5;,...,531‘3,5',“31. ..,5_,1“5 — ff
Lemma 3.3.3 Spya.. 5B,

Figure 3.3.1 Construction of Proof Forest for Case 2

First, since /7 is a descent clause, there exists a proof forest of By,..., B, with answer
substitution r; by Py such that the restriction of an m.g.u. of # and 7, to the variables in 4,
is 1. Let Fy be the minimum proof {orest among such proof forests, Sg,,..., 55, be F1s
component proof trees, and E), be the union of the label sets of Sp,,..., S5.s 5S4z, -0 54,
and {A = 40,4 = Bo). From Lemma 3.1.1, is the restriction of an m.gu. of E; to the
variables in A.

%ext, from Lemma 3.3.3, there exist proof trees Sg8,..., 56,6 of B1f, ..., Bl by Fo
such that they are identical to 5,,....,5,,. except the left-hand sides of the equations in
the roots labels. Similarly, from Lemma 3.3.3, there exist proof trees of S4.6...., 54,5 of

11

Aol ..., A0 by Py such that they are identical to S4,,..., 54, excepl the lefi-hand sides
e oot labels. Let F' be the proof forest consisting of Spia, .-+ SBa8 Sassi- -1 54,8, and
E' be the union of the label sets of Spp, .-, Spnag.Sasss---0 Jae 2nd {A = Agf#}. Then
E' is identical 1o (B = {A; = Bg})f. From Lemma 3.1.2, o is the restriction of an m.g.u.
of E' to the variables in A, since # dose not substitute for the variables in A. Let ' be an
m.g.u. of A and Agf, and v be an m.g.u. of the label set of F'. Then, F' is a proof forest of
B0, ..., B, Aab, ..., A8 with answer substitution 7" by Fo such that & is the restriction
of an m.g.u. of & and 7' 1o the variables in A.
Last, from Lemma 3.3.3,
w(Sp,) = w(Sp o)

t[I-I:SBm) = w(Sg_s),
w(Sa,) = wcsﬂnﬁ}r

w(Ss.)=w(Sa.e)
helds. Hence
R'f:,-'l, E’}E 'H:"l:l{z'-ﬁi, J'ig, ceay A,.]. T}
w(F)
wi{54,0+ w5,)+---+ W{Sﬂn}
w(d;, o)+ w(Sa,)+ -+ w(Sa,)
w({Biioooy Bm)im) 4 w(Sa,)+ +w(S,,)
w(F) + w(Say) + - +w(Sa,)
w(Sp,)+ +w(Se.) Fw(Sa,) + - +uwl(S,)
w(Sp,0) + -+ W(Spns) + W(Sase) + -+ w(Sa0)
> w((H0,...,Bmb, Asb,. .., Agf), 7).
holds. Further, if the predicate of By is an old prdicate, [} satisfies folding condition (d),
and if not, € does from Lemma 3.3.4. Then, from condition (c) of descent clause, cither
wiAd.e) > w({Ar. .. Ap)T)

nrv i

i

ar
w{As,o1) > w{{F1,..., Bm) 1)
holds, Whichever holds,
w(d, r) > w((Bd,... Bnb, Aub, S) O
halds, Thus, €' is = descent elanse of 4 with answer substitution & in F.q.

Case 3 (is folded,
Let 1) be the folding clause of the form
s - By....,Bn (m:}ﬂ}
and C' be the result of folding. From Lemma 3.3.1, without loss of generality, we can assume
that Ay,...,. 4. are instances of By,...,Bm, say by an instantiation ¢, and from folding
condition (b}, C' is of the form
An. Ha BDE,,AT“+11L-¢1A“¢

/) — SAI-!'"134-“15!..-..;“'--15)!..
S-S Lemma 3.3.2

“Bol = Bo”, Sapmyir--1 54
'}

Pr_:.' ¢

Figure 3.3.2 Construction of Proof Forest for Case 3

12

First, since €' i3 a descent clauze, there exists & proof forest of Ay, ..., 4, with answer
snbstitutions 7 by Py such that the restriction of an m.g.u. of 7 and 7 to the variables in
Ais m. Let F be the minimom proof forest among such proof forests, S4,,...,5,4, be F's
component proofl trees of 4y, ..., A, with answer substitutions e1,...,o, by Fp, and E, be
the union of the label sets of S4,,...,54, and {4 = Ag}. From Lemma 3.1.1, o is the
restriction of an m.g.u. of £y to the variables in A.
Next, from Lemma 3.3.2, there exist proof trees Sg,, ..., 55, of By, ..., By by Fysuch
that they are identical to S4,,..., 54, except the left-hand sides of the root labels, since
B =A,, ..., B0 = A, from folding condition (a). Lel Sp,e be a proof tree obtained by
putting a root node labelled with “By# = By" over 8g,,...,8p,, . F' be the proof forest con-
sisting of Spye, SAwyr---294,, and E' be the union of the label sets of Sge, Sa 40054,
and {A = Ap). Then E; is identical to (E' — {Bof = Bp})jf. From Lemma 3.1.2, ¢ is the
restriction of an m.g.u. of E' to the variables in A, since # does not substituie for the vari-
ables in A. Let 7" be an m.g.u. of the union of the label sets of Spqp,S4,.4,:---:54,. Then,
F'is a proof forest of Bo#, Ane1, ..., A, with answer substitution 7' by Fy such that the
restriction of an m.gu. of # and +' to the variables in A is o,
Last, let op be the answer substitution of 5g,e. Becanse the predicate of Bpf is a new
predicate, the clause nsed at the root of any prool tiee of Bpf by Py is in Py... Further,
by folding condition (¢}, this clanse should be D). Hence, the root label of such a proof tree
is “Bofl = Fo," and immediate subprools of such a proof tree are proof trees Sg,, ..., Sp,
of #y,...,8,,. Since the weight w{Bsf, r4) is the minimum size of such proof trees and the
predicate of By is a new predicate,
w(B, mo) £ w{Sp,)+ -+ w(S5p,,)

holds. In addition, by folding condition (d) and the definition of descent clause,
wlA, o) > w{{Ay, oo Al T)

and from Lemma 3.3.2,
w(Sp,) = w(S4,),

wiSp,) =w{54.)
hold. Hence

wid, o) wi(dy, ..., 4.0, 7)

=sw(Sa,)+ Fw(Sy Vtw(Ss_ 1+ +wlSs)

w(Sg,)+ w(Sp,)+ w(Sa.,)+ Fw(S,,)
'11,"[.5‘.‘_.5. D’Uj - H’(I‘.m+1,ﬂ'm+1] o REE 'IU[-Ani ﬂ'.n]
u‘{[.S.;.H, Am+] fjﬂ_}! Tr}
holds. Thus, €' is « descent clause of A with answer substitution ¢ in P ..

I

Theorem 3.3.8 Preservation of Success Set
The success set of any program in a transformation sequence starting from initial

program Foois identical 1o that of fh.
Proaf. me Lemma 3.3.6 and 3.3.7, F 41 is weight complete, and then from Lemma 3.3.5,
M(Fip) 2 M(Py) for i = 0,1,..., N — 1. Further, from Lemma 3.2.4, M({Piy1) = M(F)
holds fors =0,1,..., N = 1.

The original result by Tamaki and Sato [7] [9] can be derived as a corollary.

Corollary 3.3.9 Preservation of Least Herbrand Model

13

The least Herbrand model of any program in a transformation sequence starting from
initial program Fp is identical to that of Fo.

Proof. Let P be a program, M(P) be the set of all the ground «toms Ao such that atom-
cubstitution pair {4,) is included in M(P). Then M(FP) is the least Herbrand model of P,
and from Theorem 3.3.8, M(P) is preserved. Thus, the least Herbrand model is preserved.

4. Discussion

Preservation of success set widens the safe use of the Prolog programs obtained by Tamaki-
Sate’s transformation, which is nol validated by preservation of least Herbrand model. For
example, consider the ‘setof’ predicate of DEC-10 Prolog. A call *setof(X,F,5)" means “5 is
the set of all instances of X such that P succeeds”. Two programs which are equivalent in
the sense of the least Herbrand model semantics do not necessarily behave in the same way
1o the ‘setof’ call. For example, consider again two programns Py and Py we have shown in
Section 1. Although these iwo programs are equivalent in the sense of the least Herbrand
mode] semantics, to a guery

T setof{ X ,p(X),Y),
P, succeeds with answer substitution <X <= a, Y «=[a]>, while Py fails. However, when the
success sets of programs are identical, they behave in the same way to any ‘setof” call if the
call stops. (Note that the success sets of Py and Fs are not ideniical.) Hence, we can safely
use a predicate as an argnment of ‘setol’ when the program for the predicate is obtained by
Tamaki-Sato’s transformation.

In this paper, we have not mentioned the goal replacement rule, which Tamaki and
Sato adopied as one of the basic transformation rules [8] [9]. We expect that, in application
of the goal replacement rule, slightly stronger conditions than those by Tamaki and Sato
would guaruntee the equivalence-preservation in our sense.

5. Conclusions

We have shown that Tamaki-Sato’s unfold/fold transformation of Prolog programs preserves
equivalence in a stronger sense than that of the usual least Herbrand model semantics, which
Tamaki and Sato originally showed, That is, any program obtained from an initial program
by applying Tamaki-Sato’s transformation returns the same answer substitutions as the initial
program Tor any given top-level goal.

Acknowledgements

This work is based on the result by Temaki and Sato [7] [8] [9]. The anthors would like to ex-
press deep gratitude to Mr. H. Tamaki (Ibaraki University) and Dr. T. Sato (Electrotechnical
Laboratory) for their perspicuous and stimulative works.

This research was done as & part of the Fifth Generation Computer Systems project of
Japan [2] (2] [4]. We would like to thank Dr. K. Fuchi (Director of ICOT) for the opportunity
ol doing this research, and Di. K. Furukawa (Vice Director of ICOT), Dr. R. Hasegawa (Chiel
of ICOT 1st Laboratory) and Dr. H. Ite (Chiefl of ICOT 31d Laboratory) for their advice
and encouragemant.

References

14

[1] Burstall, R.M and J.Darlington, “A Transformation System for Developing Recursive
Programs", JLACM, Vol.24, No.1, pp.44-67, 1377.

12] Kanamroi, T and K.Horiuchi, “Construction of Logic Programs Based on Generalized
Unfold/Fold Rules”, Proc. of 4th Intemnational Conference on Logic Programming,
pp. T44-768, Melbourne, May 1987. Also a preliminary version appeared as ICOT
Technical Report TR-177, 1984,

[3] Kanamroi, T and H.Fujita, “Unfold/Fold Logic Program Transformation with Coun-
ters”, Presented at U.5-Japan Workshop on Logic of Programs, Honolulu, May 1987.
Also & preliminary version appeared as ICOT Technical Report TR-175, 1086.

(1] Kanamroi, 1" and M.Maeji, “Derivation of Logic Programs {rom Dmplicit Definition”,
ICOT Technical Report TR-178, 1986,

[5] Maher, M.]., “Equivalences of Lugic Programs”, T'roc. of 3rd Internatinal Conference
on Logic Programming, London, July 1986,

[6] Manna, Z and R.Waldinger, “Synthesis : Dreams = Programs”, IEEE Trans. on Soft-
ware Engineering, Vol.5, No.4, pp.294-328, 1874, :

7] Tamaki, I and I"Sato, “Unfold /Fold Transformation of Logic Programs™, Proc. of 2nd
International Logic Programming Conference, pp.127-138, Uppsala, July 1984,)

(8] Tamaki, H and T.Sato, “A Generalized Correctness Proof of the Unfold/Fold Logic
Program Transformation”, Department of Information Science TREE-04, Ibaraki Uni-
versity, 1986,

[9] Tamaki, H, “Program Transformation in Logic Programming”, (in Japanese,} in “Pro-
gram Transformation”, eds. K.Fuchi, K.Furukawa and F.Mizoguchi, Kyoritsu Pub. Ca.,
pp.39-62, 1987,

15

