ICOT Technical Report: TR-397

TR-387

Meta-interpreters and Reflective
Operations in GHC

by
J. Tanaka(Fujitsu)

Tune, 198K

CHyss, 1COT

Mita Kokusa: Bldg. 21F (3 436=319] ~ 3

'(:D I 3-28 Mita 1-Chome Telex ICOT J374964

Ainato-ku Tokyve 108 Japan

Institute for New Genérafion Computer Technnluéy_

Meta-interpreters and Reflective Operations in GHC
Jiro Tanaka

International Institute,
Fujitsu Limited,
1-17-25 Shinkamata, Ota-ku, Tokyo 144

Abstract

Starting from the simple self-description of GHC [Ueda 85a], we have derived various kinds of meta-
interpreters by stepwise enhancement. A meta-interpreter which has variable management facility has been
described. As far as | know, this is the first attempt to try to manage variable bindings in logic pro-
gramming languages. Preliminary implementation has been performed with these meta-interpreters and the
execution time has been measured for simple benchmark programs. It is shown that the overhead of variable
management is not too much, comparing merits we can get there.

Various reflective operations in GHC are also described. Implementaition of these operation is shown
using an enhanced meta-interpreter. Examples of the usage of these operations are also shown.

All the programs and examples shown in this paper are running on our GHC system. This paper assume
s basic knowledge of parallel logic languages such as PARLOG [Clark 85), Concurrent Prolog [Shapire 83]
or GHC.

1. Introduction

The criginal notion of self-description seems to come from the description of EVAL in LISE. It tries
to describe its language features by itself. Since both of programs and data structures are expressed as
S-expressions in Lisp, the self-deseription of Lisp was not very difficult.

On the other hand, in Frolog world, the following 4-line program has been known as “Prolog in Prolog”
[Bowen 83].

exec(true):-!.

exec((P.Q)):exec(P) exec(Q).
exec(P)-clause((P:-Body)),exec(Body).
exec(P}-P.

The meaning of this meta-interpreter is fairly simple. The goal which should be solved is given as an
argument of exec. If it is “true,” the execution of the goal succeeds. If it is a sequence, it is decompased and

executed sequentially. In the case of a user-defined goal, predicate “clause” finds the definition of the given

1

goal and it is decomposed to the definition. Otherwise, it is assumed to be system-defined goals and solved
directly. I all of these trials fail, these mean that the execution of the given goal fails. Though this 4-line
program is very simple, it certainly works as as “Prolog in Prolog”.

In this paper, we discuss the self-description of a parallel logic language GHC [Ueda 85a]. The GHC

version of this meta-interpreter can similarly be written as follows:

exec(true)-true | true,

exec((P,Q))-true | exec(P) exec(Q).

exec(P):-not sys(P) | reduce(P,Body) exec(Body).

exec{P)-sys(P} | P
This GHC program is almost the same as the Prolog program. However “I" is replaced by | since every
clause definition includes the “ |™ operator in GHC. The predicate “clause” is also replaced by “reduce,”
which includes the operation of solving guard.

However, compared with Lisp, these 4-line program seems to be too simple since it only simulates the
top-level control flow of the given program. Therefore, we would like to enhance this 4-line program and

would like to obtain more useful information from the program.

2. Meta-interpreter enhancement
How do we extend this meta-interpreter is our next problem. We gained a hint from Kurusawe's paper

[Kurusawe 86]. He assumed a abstract Prolog machine which can execute Prolog programs. He derived

Warren.like code from the given Prolog program by changing the border between the machine and the

program. Staring from the ordinary Prelog program, he makes explicit various hidden operations, such as

unification or memary structure, step by step to get Warren-like cade,

Cur approach is similar to his approach in some sense. However, we are not much interested in trans-
forming the source program. We are interested in the description of “sbstract machine,” which we try Lo
express in the form of meta-interpreter.

In Prolog and parallel logic languages, various extension has already been proposed. They are:

(1) “deme” predicate by Bowen and Kowalski [Bowen 82]. This predicate is used in the form of “demo(Prog.
Goals)" and shows that Goals are provable from “Prog.” This is identical to the “exec,” shown above,
except that program definition is explicit in “demo” predicate.

(2) Fail-safe exec. “exce{GR)" executes the given goal “G” and returns “success” if succeeded, “failure” il
failed. This prevents the program from the failure even if the goal “G” falls. This predicate has been
proposed by Clark in parallel programming language [Clark 84].

(3) Controllable exec. It is used in the form of “exec(G,1,0)," where “I" is the input stream and “O" is the

output stream. This “exec” is very useful if we would like to control the program execution from the

2

outside. We can “suspend,” “resume,” or “abort” the execution of the given goal. This predicate has
also been proposed by Clark in parallel programming language [Clark 84].

{4) “exec(G History)" which is the extension of the fail-safe exec. It returns the execution history instead
of result. This exec is useful to build debuggers. Various works are done at ICOT in Prolog and parallel
logic languages.

These proposals seems to answer the question how we extend our meta-interpreter. That is, we should

extend our meta-interpreter to make explicit what we would like to know or what we would Like to contral.

3. Stepwise meta-interpreter enhancement

We sometimes need to understand the current state of the system. We also need to be able to modify
and return the state to the system. These kinds of “reflective” capabilities, seen in 3-Lisp [Smith 84], seem
to be very useful in writing an operating system. In 3-Lisp, we can easily obtain the current “continuation”™
and “environment” from the program. Smith used meta-circular interpreters as a mechanism to obtain
information from the program.

We extend our meta-interpreter in a similar way to Smith's approach. The extension depends on what
kind of resources we want to control. We try to enhance the 4-line GHC meta-interpreter and try to realize

these “reflective™ capabilities.

3.1 Two argument meta-interpreter
First extension is to get a “fail-safe” meta-interpreter by modifying the original 4-line GHC meta-

interpreter. This maodification is very simple and can be expressed as follows:

exec(true,R):-true | R=success.

exec|false,R):-true | R=failure,

exec{(F,Q).R):-true | exec(P R1).exec(Q . R2) and result{R1 R2R).
exec(P R):-notsys(P) | reduce(P.Body).exec(Body,R).

exec(P R):-sys(P) | sys_exe{PR).

In general, “failure” occurs when there are no unifiable clauses in “reduce.” We assume “Body” is instanciated
to “false” in such case. We should note that the “success” or “failure” of the given goal is handled as a

message to the outside world.

3.2 Three argument meta-interprﬂter
We sometimes want to manage processes dynamically at execution time. Therefore, we introduce a
“scheduling queuwe” explicitly in our meta-interpreter. Program “continuation” was explicit in the meta-

circular interpreter in 3-Lisp. We have thought that the “scheduling queue” acts as a “continuation” in

3

GHC. The meta-interpreter which contains a scheduling queue inside the meta-interpreter becomes the

following three argument “exec”.

exec(T, T,R):-true [R=success.
exec([true | H],R}:-true | exec(H,T,R).
exec([fail | H], T\ R):-true | R=failure.
exec([P | H],T,1d Mem,R):-not_sys{P) |
reduce(P, T ,NT) exec{H.NT R).
exec([P | H)].T,Id Mem.R):-sys(P) |
sys_exe{ P, T NT),exec(H,NT,R).

The first two arguments of “exec”, “H” and “T." express the scheduling queue in Difference list form.
The use of Difference list for expressing scheduling queue was originally invented by Shapiro [Shapiro 83].
We remove a goal from the top of the queue. Then “reduce” or “sys_exe” processes the goal. When the
evaluation of goal suspends, it simply put the original goal to the tail of the scheduling queue again.

We should note that goals are processed “sequentially” because we have introduced a scheduling queue.
However, it does not mean that the whole world is sequential. It simply means that the enqueuning and

dequening processes are just sequential.

3.3 Five argument meta-interpreter

Then we introduce two more arguments, “MaxRC" and “RC," to contral “reduction time.” This kind
of enhancement is motivated by [Foster 87]. We assume that this corresponds to the “computation time” in
conventional systems. “MaxRC" shows the limit of the reduction count allowed in that “exec.” “RC" shows

the current reduction count.

exee(T TR MaxRC RC)-true | R=success| RC).
exec([true | H},T.R,MaxRC,RC}):-true | exec{H,T,R, MaxRC RC).
exec([fail | H}, T.R,MaxRC,RC):-true | R=failure(RC).

exec([P | H, TR MaxRC RC):-not_sys(P),MaxRC=<RC|
reduce(P, T NT RC,RC1),exec{H NT R, MaxRC RC1}.
exee([P | H], T.LR.MaxRC RC):-sys(F), MaxRC=<RC |
sva.exe(P, T,NT,RC.RCL)exec{H.NTR.M axRC RCI).
exec([P | H},T,1,R,MaxRC RC):--MaxRC>RC |

Re=count.over(R).

Notice that “reduce” or “sys.exe” iocrements “RC” by cne when the actual computation takes place. How-

ever, *RC" is not incremented when suspended.

4. Variable manageable meta-interpreter

Varieties of meta-interpreters are described in the previous section. However, compared with Lisp, these
meta-interpreters are incomplete since variables are not managed by themselves. Vanables are shared. Tt
means that the execution of a goal is influenced by the outside environment.

Consider the following example, which is adapted from [Ueda 86].
- exe(X=0R1}exe(X=1R2) X=2

Assume that “exec” is the two argument meta-interpreter, explained before. The shared variable X becomes
0, if the fiest “exec” is executed first. If the second “exec” is executed first, “X"” becomes 1. Both cases,
the whole system fails when X=2 is executed. This example shows that the “fail-safe” meta-interpreter may
cause the unexpected result, in case it has shared variables.

In this section, we consider a meta-interpreter which explicitly handles variables. The toplevel deserip-

tion of variable manageable meta-interpreter is as follows:

m_ghe([FGoal | In],Out):-Lrue |
transfer(FGoal NGoal,1.1d Env),
schedule(NGeal H,T),
exec|H, T Id, Mem, Res),
memory([enter{ Env) | Mem),[]},
print_result(Hes NGeal Outl),
merge{ Outl,Out? Out),
m._ghe(ln,Out2),

m.ghe(|halt | In],Out)-true |
Out=|halted].

The toplevel goal “m-ghe(In.Out)” has two arguments. “In” is the input from the user and “Out” denotes
the output to the user, Every time it accepts the goal “FGoal” from the input, it generates five processes,

LY

e, “transfer,” “schedule,” “exec,” “memery” and “printresult” processes. Among these, “transfer” and
“schedule” processes are relatively short-live processes. The remaining three processes live long until the

goal execution is completed. Figure 1 shows the snapshot how processes are generated accordance with the

nser inpul.

—_— m=-—g hc ——
I n Out
(pdrint_-\]r-i' rprintH-
ol \““-—4——"/
Res Res
e x e & X B C i
B - e =
_Mem Mem
meml:-r;r] mr:m-.’arjl'!

Figure 1 Creation of processes in m_ghe

The “transfer” generates “NGoal” from “FGeal” In “N{3oal" every variable has been replaced by
special identification numbers whick have the format “@number.” The third argument of “transfer” specifies
the starting identification number ef variables. The fourth argument “1d" denotes the identification number
which should bie assigned next. For exampie, when “transfer” allocated numbers from 1 to n, n+1 is assigned
to “Id.” The fifth argument contains the corrsspondence between ihe identification numbers and its value.

In “Env” or “memory,” variables arc contained in the forms of “(@number value).” For example, the

meaning of this format is as follows:

(@1 undf) ... the value of vanable @1 is undefined
(G2 100) .. the value of vanable @2 s 100
{@3 ref{®2}) ... the value of variable ©3 Is the reference

pointer to vanehis Q2

For examnple, when the predicate “transfer” is given FGoal sexam([H | T.H)." it generates NGoal “exam([@1
[E2).&1))." At that time. "Env” pecomes [iG! cndf)(32 undf] and is entered to “memory.”

The “exec” process can be deseribed as follows:

execT. T.Jd, Mern.Res):-true | Res=success Mem=| I
exec(|fail | H],T.1d Men Fes):-true | Hes=(ail. Mem=| 1
exec([true | 1] T.Id Mem. Res)-true | exec{ A T.1d Mem Res).
exec([P | H], T.Jd. M= Res)-notsys(P] |

reduce(. TN T 1 161 Mem Memilene ol H, VTG L Meml Res).

&

exec([P | H), T ,Id,Mem,Res):-sys(P} |
sys.exe{ P, T,NT , Mem Meml), exec(H,NT,Id Mem] Res).

This “exec” is almost the same as before, except it explicitly send messages to “memory” when the value
of a variable is needed in “reduce™ or “sys.exe.” The third argument of “exec” contains the identification
number which should be assigned next in “reduce.” The fourth is the stream to “memory” and the fifth is
the variable which contains the execution result.

The “reduce” predicate can be described as follows:

reduce(P,T,NT,Id,Id1, Mem,NewMem):- true |
clauses(P, FClauses),
resolve(P,FClauses,Body Id Id1, Mem,NewMem),
schedule{Body, T\NT).

resolve(P,[FClause | Cs|,Body,Id, Jd1,Mem ,Mem2}:- true |
transfer{ FClause,Clause,Id, ld Temp,LoEnvy),
try.commit| P,Clause, Body, LoEnv,Res,Mem Meml),
resolvel(Res,P,Cs Body 1d JdTemp,Id1, Mem1, Mem2}).

resolve(P,[| Body,Id Id1,Mem,NewMem):- true |
Bedy=P,
NewMem=Merm,
ldi=Id.

resolvel{success,........ JdTemp,Id1, Memi Mem2):- true|
Idi=1dTemp,
Mem2=Meml.

resolvel{susp,P,Cs Body,I1d,_ ldL.Meml Mem2):- true |
resolve(P.Cs.Body,1d,1d1 Meml,Mem2).

In “reduce,” “clauses” constructs the list of potentially unifiable clauses “FClauses” from the given goal “P."
“reselve” finds ene “FClause” which can be committed. Then the goal “P” is expanded to the body of that
“FClause.” “schedule” puts this “Body” to the tail of the scheduling queue. We should note that “transfer”
is called for sach *FClause” to create a local environment in “resolve.”

Mext, we deseribe “lry_commit” predicate, This predicate performs “head_unification” between the goal
and the head of the candidate clause, solves the guard of the candidate clause, and tries to “commit” this

clause if “head_unification” and “guards” are solved successfully.

7

try commit(Goal,(Head:-G | B),Body,LoEnv,Res,Mem,NewMem):- true |
head unification(Goal Head LoEnv,LoEnv],Resl Mem Meml),
solve_guard|G.LoEnv] LoEnvZ Res2),
and _result{Resl Res2 Resd),
commit(Resd, B,Body,LoEnv2, Res, Mem] NewMem).

commit{success,B Body,LoEnv,Res,Mem,NewMem) - true |
Mem=[enter(LoEnv) | NewMem],
Bedy=B,
Hes—zuccess.

commit(susp,-,.,,Res,Mem NewMem):- true |
NewMem=Mem,

Res=susp.

We should note that “head _unification” does not generate any global bindings in “memory.” It only references
the global bindings. The local environment of a candidate clause becomes global only after it is committed.

The “head.unification” predicate has seven arguments. “Goal” and “Head” are put to the first and the
second arguments. The local environment of the clause is put to the third argument. The fourth argument
stores the new local environment after the “head unification” is completed. The result of “head unification,”
whether it is succeeded or suspended, is put to the fifth argument. The sixth and the seventh is used for
keeping the communication to “memory.”

It can be described as follows:

head unification(Goal, Head, LoEnv, NewLoEnv, Res Mem,NewMem)
true |
Memz=|deref{Goal,GV) | Mem1),
derel] Head LV LoEnv),
hounify(Gv,LV LoEnv. NewLoEav,Res Mem1l, Newhlem).

It dereferences “Goal” and “Head,” respectively. Dereference means to get the contents of variables
by tracing the reference chain. Notice that the dereference of the Goal is realized by sending message to
“memory.” On the other hand, the dereference of “Head" is realized by calling “deref” predicate directly.
The “h_unify” predicate is called after “Goal” and “Head" is dereferenced. The following Table 1 shows how

“hounify” works.

G o a 1
Variable al Atom Compound Ters
H | Variable @2 | 82 < - ref(al) 82 < - atos | 32 <~- Ters
3 { Atom suspend success [/ fail fail
! Coapound Term suspend fail Decompose & unify

Table 1 Head unification table

Here, “@2 <- ref(@1)" means to “replace the value of @2 to the reference pointer to @17
The transformation from the head unification table to the actual code is quite straightforward. The
code shown below is the program fragment of “h.unify.” Only part of “h-unify” is shown here because of

our space limitation.

bunify(G V,LV,LoEnv,NewLoEnv,Res Mem, NewMem):-
variable{G V),
nonvariable{LV) |
Hes=susp,
NewLeEnv=LoEav,
NewMem=Mem.

hounify(GV,LV LoEnv NewLoEnv,Res,Mem, New) em):-
variable{ GV},
variable{LV),
assign(LV,refiGV),LoEnv,NewLoEnv),
Res=success,

NewMem=Mem.

Next, we describe “sys_exe” predicate. This predicate executes the system predicates existing in the

body part of the clause. Here we show the description of unification and addition.

sys_exe{(X=Y), T.NT Mem,NewMem):- true |
Mem=[unify(X,Y Res) | NewMem)|,
sys.exel(Res,(X=Y),TNT).

sys.exe(+(Z.X,Y) T,NT Mem NewlMem):- true |

Mem={deref(X,XV) deref Y,YV) | Memi),
add(Z,XV,YV ,Meml NewMem, Res),
sys_exel(Res,+(Z2,X,Y), T.NT).

add(Z,XV, YV MemNewMem, Res}:-
ready.arg{ XV, YV} |
Ad:=XV4YV,
Mem=[unify(Z,Ad,Res) | Newhem].
add(Z,XV.YV . Mem,Newhem,Res):-
notready.arg(XV,YV) |
Res=susp,

NewMem=Mem.

sys.exel(success, T NT):- true |
NT=T.

sys_exel(susp,G, T NT):- true |
schedule(G, T NT).

Memory part which manages the bindings of global variables can be described as follows:

memary([deref{ Term, Value) | NMem],Db):- true |
deref{ Term, Value Db},
memory(NMem,Db).

memory{[enter(Env) | N\Mem|, Db}~ true |
enter(Db,Env,NDb),
memary{ NMem,NDb).

memaory([unify{ X,Y,Res) | NMem].Db):- true |
unification(X,Y Res, Db, NDb},
memory| N em NDb).

memaory([|,Db):- true | true.

You may notice that this “memory” is very intelligent. Instead of accepting low level primitives, such
as read and write, it receives high level operations, such as “deref,” “enter” and *unify.” The access to this
“memory” happens when (1) goal variables are dereferenced by head unification, (2) a clause is committed
and local environment becomes global by “enter” operation and (3} system predicates at the body part are

executed.

10

The “derel™ and “enter” predicates are described as follows:

deref{ Term, Value, Db):-
variable(Term) |
search.cell{ Term,Cont,Db},
derefl{ Term,Cont,Value,Db).
deref{ Term, Value Db):-
nenvariable{ Term) |

Value=Term.

derefl(_ref(C), Value,Db):-true |
daref(C.\':a.lue.Db}. itemderefl{Cell undf, Value,Db):- true |
Value=Cell.
derefl{_,Cont, Value, Db}:- true |
Contief{),
Contindf |

Yalue=Cont.

enter{Db,Env,NDb):- true |
append[Env,Db,NDb),

The simplest list structure is assumed here for global database. The more complicated and the more efficient
representation of the database are of course possible. Various optimization techniques, such as the use of

Difference list and the optimizations of database update and retrieval are also possible.

The unification is described as follows:

unification] X, ¥ Res, Db NewDh):- true |
deref| X, XV, Db},
deref[Y, YV, Db},
unify{ XV YV Ree Db NewDh).

Two arguments, X and Y, are dereferenced first and the “unify” predicate is called to perform unification.

The following Table 2 shows how “unification” is carried out.

11

Variable @&l | Atom 1 Compound Term
Variabie a? 82 < - ref(al) ! 82 <= atos 2 <— Tern
Atom gl <— atom ! success [fail i fail
Cospound Term | &1 < — Tera ' fail iﬂecnmpusa i unify

Table 2 Unification table

The examples of actual code fragments for “unify” are shown below:

unify(2, Y Hes, Db NewDb):
variable{ X),
nonvariable{y) |

assign{ XY, Db, NewDb),

Res=success.

unify{ .Y Ree Db, NewDb}:-
variable{ X,
variable(Y) |

assign{ X.rel{ Y. Db NewDibj,

Res=success.
unify{ XY ,Res, Db, NewDb}:-

nonvariable{ X,

nonvariable{ Y),

atormic] X],

atomic(Y),

X=Y |

Hes=success,

Newhlem=Mem.

5. Preliminary implementaition sesolis
Preliminary implementaition has Leen catried out to evaluaie the feasibility of our meta-interpreters.
We have used PSI-II Machine [Nakashimu 87) to measure the performance. Since the current version of

PEIL-I1 only understand ESF iCIriJ-.;H_',.‘u;rJ.‘l. 4], we nsed GNIC compiler which compiles GHC program to ESP.

12

Though ESP is a object-oriented dialect of Prolog, we did not use any object-oriented nature of ESF. Our
GHC compiler is slightly modified from Ueda’s Compiler [Ueda 85b], except that various system predicates
are added for reflection support.

We have measured the execution time of the following two goals for for various types of meta-interpreters.

exec(append([a,b.c.d.e.fighij kL mn,0p.q.0800,v,%xy:],[end] 5))

exec(qsort{[4,2,7,1,6,3,5].5))

Here, “append” is the usual append program and “qsort” is the quicksort program. The measured execution

time is shown in Table 3.

Exec__1 Exec_ 2 Exec__3 Exec__4
append 1474 4708 4725 5034
gsort 1443 6741 15986 32635

{unit: msec)

Table 3 The measured execution time

Exec.] denotes the simplest 4-line meta-interpreter. The “reduce” predicate i written in ESP in this case.

Exec 2 also denotes 4-line meta-interpreter. However, “reduce™ is written in GHC. Execd is the three

argument meta-interpreter, shown in Section 3.2, This interpreter include the scheduling queue, Exec.d is

the variable manageable meta_interpreter, shown in Section 4.

Our preliminary conclusion from these measurements are as follows:

(1) Exec.? is currently slower than Exec 1. However, this problem can be solved shortly by implementing
GHC directly by firmware.

{2) In the case of “gsort,” Exec 3 is slower than Exec. We imagine this is invoked by the breadth-first
scheduling algorithm which Exec_3 has been adopted. This problem is also conquered by adopting more
sophisticated scheduling algorithm, such as bounded depth-first algorithm.

{3) Execd is a little bit slower than Execld. However, it seems that variable management is not too much
overhead for the meta-interpreter, comparing with the merits we can get from there. By applying various
optimizaticns, mentioned before, we can expect much speedup to Exec 4.

Though our implementation is naive, the result we have got is not trivial. In sum, this shows the feasibility

of variable manageable meta-interpretera.

13

6. Reflective operations in GHC
Implementing various reflective operations in GHC is not too difficult, once we get the enhanced meta-

interpreter. We use the following seven argument “exec” in this section.
exec(H,T Id Mem,Res,MaxRC,RC)

Here, the first two arguments show the scheduling queue, the third is the starting identification number, the
fourth is the communication channel to “memory,” the fifth is the variable which receives the computation
result, the sixth keeps the maximum reduction count allowed to his “exec”™ and the seventh is the current
reduction count. Though we omit the program for this seven argument “exec,” it can easily be constructed
by combining various meta-inierpreters, explained before.

There is no notion of job priority in this “exec.” We sometimes need to execute goals urgently. Therefore,
we also introduce the “express queue” to execute “express goals” which have the form, “G@exp.” This can
be realized by adding two more arguments, “EH" and “ET", which correspond to the express queue, to the
seven argument “exec”. The following two definitions describe the transition between the seven argument

“exec” and nine argument “exec.”

exec([G@exp | H),T,Id Mem,Res,MaxRC,RC)

- truel

exec([G |ET].ET,H,T,Id, Mem Res,MaxRC,RC).
exec(ET,ET H,T,Id Mem Hes MaxRC RC) -

- true

exec(H T,1d, Mem,Res MaxRC, RC).

If we come across the express goal, we simply call the nine argument “exec.” The nine argument “exec”
executes express goals first, and the reduced goals are also entered to the express queue. If the express queue
becomes empty, we simply return to the seven argument “exec.”

The next thing is to realize the reflective operations. Here, we consider six kinds of reflective operations,
e, “get.q” “put.q” “getre” “putrc,” “get.env” and “put.env.” “get.g” gets the current scheduling
quete of “exec.” “put_q” resets the current scheduling queue to the given argument. Similarly, “getre” and
“put.re” operate on “MaxRC" and “RC," “get_env” and “put_env” to the variable binding environment.

Since we already have got these as an internal state of the enhanced meta-interpreter, the implementa-

tions of these operations are fairly easy.

exec([get q{ NH NT)

EHLET,H,T,Id Mem,Hes MaxRC RC)

= truel

14

RC1 := RC+1,

NH = H,

NT =T,
exec(EH,ET,H,T,ld,Mem,Res MaxRC,RC1).
exec([put_g(NH,NT) | EH},ET H,T,Id,Mem, Res,MaxRC.RC)

- true |

RC1 := RC+1,

exec{ EH,ET,NH,NT,Id Mem Res MaxRC,RC1}.

“getre” and “putrc” can be implemented similarly. In the case of “get_env” and “put_env,” they send the

express message to “memory” and they are processed in “memory.”

6.1 Reflective programming example-1
We show an example which uses these reflective operations. This example shows the program which
checks the current reduction count of “exec” and changes it, if the remaining reduction count is fewer than

100 reductions.

check re - true |
getre{MaxRC,RC},
RestRC ;= MaxRC-RC,
check(MaxRC RestRC).

check(MaxRC, RestRC) :- 100>=RestRC |
get.g(H, T,
input{ AddRC),
NRC := MaxRC+AddRC,
put_re(NRC),
schedule{check re@exp, T.NT),
putg(H.NT).
check({MaxRC,RestRC) - 100<RestRC |
get.g(H,T),
schedule check re@exp, T,IN'T],
putg(HNT).

The expected effect is gained running “checkre@exp” goal together with user goals in “exec”

6.2 Reflective programming example-2

Thus far “exec” has been used to express “user process™ However, it can be considered as a kind of
“virtual processor” since it has a scheduling queue and a channel to *memory.” This view of “exec” opens
the new world. By connecting “exec” and "memory” to the architecture we imagine, we can construct a
“virtual distributed computes.”

Most processor usually has /0. Therefore, it s convenient if “exec” has “input® and “output” in order

to see “exec” asa “virtual processor.™ We use following “exec” in this section.

exec(H, T, Id Mem,ln,Out MaxRC RC)

Here, “In" denctes the input to this “exec” and “Out” denctes the output. We assume that user goals can
be entered from “Input” and the goals which have postfix “@out” are sent out from “Output.”

We define the following ring-connected distributed computer as an example.

m_ghe{In):-true |
exec(H1,T1,{1,1}, Mem1,C1,C2, 0},
exec(H2,T2,(2,1) Mem?2,C2,C3,..0),
exec(H3,T3,(3,1),Mem3,C3,C4,_0),
exec(T4,T4,(4,1}, Mem4,C4,C5,..0),
merge(In,C5,C1),
merged([Meml Mem2 Mem3 Memd4], Mem),

memory{Mem.[]}.

Four processors are connected to the uni-directed ring. Memory is shared by all processors.
It is possible to consider the “lcad balancing” problem on top of these virtual computers using refiective

cperations. Load balaneing ean be programmed as follows:

load balance:-true |
getq(H.T),
length(H, T,IN),
balance{N,H,T).

balance(N H,T):-
N=100,sub{N,100,X) |
throw_out(X H, T NH NT),
load balance@exp@out,

16

putg(NH/NT).
balance(N,H,T):-

N=<100 |

load balance@expltout,

put_g(H,T).

This goal gets the scheduling quene of the processor which is executing this goal and computes the current
length of the queue. I it is longer than 100, the excessive goals and “load balance@exp” goal are thrown
out from the processor. If it is shorter than 100, it simply forward the “load_balance@exp” goal to cutput.
By entering “load_balance@exp” goal from the “Input” of “m.ghc,” this goal automatically circulates among

processors and performs load balancing.

7. Conclusion

Starting from the simple 4-line self-description of GHC, we have made the stepwise enhancement to this
meta-interpreter. A meta-interpreter which has variable management facility is described. As far as | know,
this is the first attempt to try to manage variable bindings in logic programming language.

Though we used parallel logic language GHC in this paper, we imagine that the same kinds of things are
also possible in Prolog. However, we feel that the use of the parallel logic programming language makes the
programming easilier. In our language, we can create processes dynamically and the communication between
processes can be expressed as streams. These language features helped to express the communication between
the execution block and the memory block in a elegant manner.

Various reflective operations in GHC are also described. Implementaition of these operation is shown
using an enhanced meta-interpreter. Examples of the usage of these operations are also shown.

In a sense, these reflective operations are very dangerous because we can easily access and change
the internal state of the system. However, we can say that privileged users must have these capabilities
for advanced system control. Our interest currently exists in examining the possibilities of the reflective
operations in GHC,

We also admit that these reflective operations are defined in a very primitive manner. However, the
more sophisticated handling of reflective operations and security considerations should be the topic which

should be considered later, along with the problem of reflective tower,

8. Acknowledgments

This research has been carried out as a part of the Fifth Generation Computer Project. 1 would like to
express my thanks to Yukiko Ohta and Fumio Matono, Fujitsu Social Science Laberatory, for their useful
comments. [am indebted to them for part of this research. I would alse like to express my thanks to Tashio

Kitagawa, Hajime Enomoto and Koichi Furukawa for their encouragements and giving me the opportunity

17

to pursue this research,

8. References
[Bowen 82] K. Bowen and R. Kowalski, Amalgamating Language and Metalanguage in Logic Programming,
Logic Programming, pp.153-172, Academic Press, London, 1982
[Bowen 83] D.L. Bowen et al., DECsystem-10 Prolog User's Manual, University of Edinburgh, 1983
[Chikayama 84] T. Chikeyama, Unique Features of ESP, in Proc. of the International Conference on Fifth
Generation Computer Systems 1984, pp.202-208, ICOT, 1984
[Clark 84] K. Clark and S. Gregory, Notes on Systems Programming in Parlog, in Proc. of the International
Conference on Fifth Generation Computer Systems 1984, pp.299-308, ICOT, 1584
[Clark 85] K. Clark and S. Gregory, PARLOG, Parallel Programming in Logic, Research Report DOC 84/4,
Dept. of Computing, Imperial College of Science and Technology, Revised 1685
[Foster 87) 1. Foster. Logic Operating Systems, Design lssues, in Proc. of the Fourth International Conference
on Logic Programming, Vel.2, pp.810-926, MIT Press, May 1987
[Kurusawe 86] P. Kurusawe, How to Invent a Prolog Machine, in Proc. of Third International Conference on
Logic Programming, LNCS-225, pp.138-148, Springer-Verlag, 1986
[Nakashima 87] H. Nakashima and K. Nakajima, Hardware Architecture of the Sequential Inference Machine:
PSI-IL, in Proc. of 1987 Symposium on Logic Programming, San Francisco, pp.104-113, 1987
{Shapire 83] E. Shapiro, A Subset of Concurrent Prolog and Its Interpreter, ICOT Technical Report, TR-003,
1983
[Smith 84] B.C. Smith, Reflection and Semantics in Lisp, in Proc. of 11th POPL, Salt Lake City, Utah,
pp.23-35, 1884
[Ueda 85a] K. Ueda, Guarded Horn Clauses, ICOT Technical Report, TR-103, 1985
{Ueda 85b] K. Ueda and T. Chikayama, Concurrent Prolog Compiler on Top of Prolog, in Proc. of 1985
Symposium on Logic Programming, Boston, pp.115-126, 1985
[Ueda 86) K. Ueda, Guarded Horn Clauses, Doctor of Engineering Thesis, Information Engineering Course,
University of Tokvo, 1586

18

