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Abstract

Although the depth of an object is perceived quasi-
guantitatively from a single two-dimensional line
drawing, previcusly published interpretation meth-
ods of a line drawing do not wholly explain this
phenomenon. For exampie, labeling methods inter-
pret & line drawing only qualitatively, model-based
methiods are applicable only for predetermined ob-
jeets, and regularity-based methods are valid only
for regularly-shaped objects.

An inclusive cognitive mode! for depth percep-
tion from a single line drawing is proposed. Unlike
most other approaches, it can explain the guasi-
quantitative interpretation of irregularly-shaped
and unfamiliar objects. It interprets 2 drawing
as the one of meny geomeirizally possible chijects
which is most likely to produce the drawing. The
Lkelihood of producing the drawing depends on
both the likelihood of an object (object likelihood)
and the likelithood of a view of the chject (view
likelihood). The new concept, view likelihond, en-
ables the interpretation of irregularly-shaped ob-
Jects. The [ikelihood of the projected area is pro-
posed as an approximation to view likelihood, and
it enables the interpretation of unfamiliar objects.

This paper also examines line drawings which are
drawn to communicate three-dimensional shapes.
In this situation, the probability that an interpre-
tation based on the view lkeltheod is correct io-
creases,

1 Introduction

This paper deals with line drawinge obtained by
orthegona! projection.  Geometrically, the three-
dimensional shape of an object cannot be decided
guantitatively from a single two-dimensicnal line
d:awing such as Fig. 1. There is an infinite number
of obje;.r.s tnrrespnnr]h',g to & line d;ra\l.'j,“:_-' Some
examples of them are shiown in Fig. 2.

In spite of a diversity of corresponding three-
dimensional objects, man usually perceives one
three-dimensional shape quasi-quantitatively from

Figure 1

Figure 2

& single line drawing. The sim of this paper is
to propose w cognitive model for perception of this
kind.

Farst, section 2 examines previously published in-
terpretation methods of & line drawing and points
put their hmitations.  Section 3 describes an in-
clusive cognitive model for depth perception frem
2 line drawing. Unlike most other approaches, it
can explain the quasi-guantitative Interpretation
of irregulariv-shaped and unfamuiar objocts. See-
tion 4 considers the interpretation of a line draw.
ing which 15 drawn to cormmunicate the three-
dimensionz] shape.



2 HRelated Work

The method of labeling a line drawing was pre-
sented by Huffman [3] and Clowes [1], and extended
by Waltz [9) and others. As shown in Fig. 3, the
method qualitatively, but not quantitatively, inter-
prets lines in an image as convex edges (4, concave
edges (=), or occluding edges (—). Mackworth [6]
proposed an interpretation methed which uses the
gradient space, but it does not produce quantita-
tive interpretation, either. However, man perceives
not only convexity or concavity, but also a quasi-
quantitative three-dimensional shape from a single
drawing. This paper proposes & cognitive mode! for
quasi-quantitative depth percaption.
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Figure 3

Roberts” system [§] interpreted a line drawing
quantitatively on two assymptions:

1. The objects in the picture can be deseribed by
transformations of known models:
2. All objects are supported by other objects or

by the ground plane.
A model is a representation of each possible type of
object in a three-dimensional! coordinate system.

Many models are needed for interpretating vari-
ous kinds of chjects, and ps the number of models
inereases, the possibility that manv models match
a picture increases; therefore, the appropriate one
must be selected from the matclied objects, because
man usually perceives one of them but does not per-
cetve the others. Roberts did net handle thie prob-
lem. The main interest in this paper lies in which of
an infinite number of geometrically matchable ob-
jects is perceived,

The PICAX system [3] handles drawings in which
three projected axes are specified. It quantitatively
interprets drawings on the assumption that a line
parallel to one of the projected axes represents » line
realiv parallel to one of the real axes. 17t cannot
idecide the three-dimensional coordinate of some of
the vertizes, it asks the user {or construction lines
for the unknown verlices. A coenstroction line 3
parallel to the projecied z axis. For example, the
user must designate a construction line for the top
vertex of o pyramid (Fig. 4).
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Figure 4

Hirotani et al.’s system [2] also handles the draw-
inzs in which three projected axes are gpecified. It
guantitatively interprets drawings on two assump-
tions, One is that a line paraliel te one of the pro-
Jected axes repressnts & line really parallel to one
of the real axes. The other is that objects are set
on the xv plane {Fiz. 5). However, the interpre-
tation of a prramid or an oblique prism cannet be
determined from only these assumptions.

z

Figure 2

Kanade [4] proposed two regularitv-bazed heuris-
tics for the quaniitative interpretation of line draw-
ings: the parallel-line heuristic and the skewed
symmetry heuristic,

o The parallel-line heuristic s

“if two lines are parallel in the picture, they
depict parallel lines in the scens™.

# The skewed-symmetry heuristic is

“skewed svmmetry depicts a real symmetry
"i';ﬂ'l'r'ﬂ'l:l FTDI'I_] Sone |:I.i.n.|:{ll'll.'}'-'r'l.'|.} ‘I.'i‘E"'-‘r' dirﬁﬂtiﬂﬂ.".

The coneepl of shewed symmetry ts a class of two-
dimensional shapes in which the symmetry is found
zlong lines not necessarily perpendicular to the
svimelry axis,

With these heuristics, regularly-shaped objects
cen be interpreted gquantitatively, but irregularly-
shaped objects connot. For example, & drawing
such as Fig. 6{a) can be interproted guantitativelv
as a reciangular prism, but a drawing such as Tig
Gib) eannot be interpreted quantitatively. The only
definite staternent that can be made abont Fig. Gk}
is that i1 cannet be a right-angled block,
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Figure G

As shown above, previously published interpreta-
tion methods ef 2 line drawing do not wholly explain
the characteristics of man's depth perception. Tt
15 commeon {or man to pereeive a three-dimensional
shape without additional information such as a eon-
struction line even when the object includes no sym-
metirical shape, such as Fig. 1 or Fig. 6(b). The
new cognitive model proposed in Lhis paper explains
the percepiion of this kind inclusively,

3 The Likelihood Model

Well-known objects and regularly-shaped objects
can be interpreted utilizing strong constraints such
as the object being similar to & predetermined ob-
Ject or the ebject including symmetrical shapes,
However, inan perceives the depth of an object even
when there 15 no strong constraint such as thess;
thereflore, we assume that man also ulilizes some
other weak constraints for depth perception. -

The likelihood model proposed here inclusively
explains the depth perception of various kinds of
oblests us follows:

1. Well-known DD] ks,

2. Regularlv-shaped ohjects,

(=]

Oilier kinds of objects.

The mode! represents strong constraints and weak
constraints in asingle framewark, that 5, the kel
hood of an object preducing the drawing. The basic
1dea of the made] 15 to Interpret a draw ing acr.n;rlin;;
Liv the Hielihaod, That is, man nermally interprets
a drawing as the ohject which 15 most likely to pro-
duce the drawing, and it is difhcult to perceive an
vhjecl with & low likelihood aithough it can be per.
ceived intemonally. This wpe of ides iz known as
maximur ikelihood estimation in statistics.
The Hkelihood is defined as follows:

IR
= LpiInO V) x Lol = Lol 0,
wheare the laf side =F ;s an observed tern, and the

rrghl side of ; s the estimated terms. | denctes con-
ditivnal probability. Li denotes the total likeliliood

which is the Jikelihood of object & with view 17 en
given drawing 0. The simple expression, likelihood,
means the total likelihood. Lt 15 the product of Ly,
Lﬂ, and Lt.'. which are exp]ah]l:d helow, f..g' denotes
the Eeometric,al likelihood which is the likelthood
of geometrical correspondence, that is, the projec-
tive relation between given drawing I and object
O with view V. Lo denotes the object likelbood
which is the likelihood of ohject O's existence. Lo
denotes the view likelihood which is the likelihood
of view V of object O on condition that object O
is selected. Putting it another way, Lg selects the
geometrically possible objects, and one of them is
perceived according to the strong constraint, Le,
and the weak constraint, Luv.

For example, suppose that drawing I} can be in-
terpreted geometrically as object 01 with view V1
or as chject OF with view 172 such that

Le({D:01,V1) = La( D, 02, V2.
If
Lo[01) = Lo{02),
Le(V1]|01) > Le(V2] 02)
hold, then
LD 01 V1Y = Li(D:02,V2)
holds, This means that chject 01 5 normally per-
Eﬂi\-’ﬂd rl'ﬂm H'EE lﬂrim-‘irtg.

It seems that humans learn how to reconstruct
three-dimensional shapes from two-dimensional im-
eges from many examples of image-solid pairs. The
likelihood model seems to be a natural result of this
type of learning. That ie, the object likelibood and
the view likelihood depend on personal visual ex-
perience and expectation of a geene, Consenquently,
according to the mode!, a drawing tends to be per-
ceived as & well-known ohjest with a well-known
view,

Against probabilistic models like this, there may
be a criticism that man can interpret a drawing of
an object which he has never seen. However, it does
not deny the validity of the model, becavse even
when he has never seen the object, he has certainly
seen similar objects, and human jud zment about ge-
ometrical matching is not very strict. In the model,
rough matching can be represented using the geo-
metrical likelihood, and another representation of
rough matching is the lkelibood of the projected
ATEL S AR prruxinmrj{::‘l to view lkehhood, whieh
15 described in 2 later section.

3.1 Geometrical Likelihood (Lg)

Since haman judamenl about geometrical matching
15 not very strict, the value of the geometrical like-
liood is at & maximum &t strictly possible objects
and decreases continuousty around the moximum.

Altheugh the likelihood model can handle am-
biguities in pesmelrical matshing of human visien
by setting the geainetrical Likelibood as described
abaove, it 15 not the main aim of this paper o treat



such ambiguities. Therefore, for simplicity, this pa-
per regards geommnetrical likelihood as a two-valued
function such that

k{const) i object O
with view v
LoD G V)= exactly matches
drawing [
b otherwise.

The paper does not refer to the mechanism for judg-
ing peometrical matching, The problem treated in
this paper is how to choose one of the infinite kinds
of prametrically possible ohjects,

3.2 Object Likelihood (Lo)

Object likelihood is the likelihood of 2n object's ex-
tstence. This likelihood seems to be basically simi-
lar among humans, but varies, reflecting the mter-
preter’s individoal visual experience and expecta-
tions. That is, it depends on what he has seen and
what he expects to see. This variation naturally
corresponds to variations in interpretation among
humans and variations in context,

In previous work, drawings have been interpreted
assuming that objecis are similar to the koown
model [3], or that objects have a symmetrical shape
[4], or that objects have parallel lines [4]. These as-
sumptions correspond to restrictions by the simpli-
fied object likelihood funetion. That is, in previous

waork, the object likelihood is & Lwo-valued funetion

such that
k{eonst.) i O is an
LolO) = assumed object
a0 atherwise,

By these methods, eomplste interpretation is possi-
ble il and only if exactly ene object is zeometrieally
possible among essumed cbjects, Hence, the num-
ber of drawings which can be interpreted by these
methods is strictly limited.

For the interpretation of general drawings, &
rmany-valued object likeliliood function is necessary
as well as the view likelihood function. Examples
of this case are shown in a later section.

3.3 View Likelihood (Lv)

View likelihood is the lLikelihood af a view of an
object en condition thet the object is selected. If
one is familiar with a view of an objecl, the view
of that object has a high likelihood. For example,
we are used to seeing cars on roads from the height
of our eyes. so those views have a high likelihood.
A similar bias arises for the ordinary objects on a
desk. The sssumption that objects are supported
!51;, and [E] can be regarded as ane particular case
of bins in view likelihood.

Some ether researches can also be regarded as
related to view likebihood. The parallel-line heuris-
tic [51, [2], and [4] is based on the low likelihood

of the special view at which nonparallel lines hap-
pen to be seen in parallel. Kanade [4] states that
the least slanted planes are the most reasonable se-
lection among the surface orientations which sat-
isfy the skewed-symmetry heuristic if no ether con-
straints are available. This can be regarded as an-
other specific example of utibizing view likelihood.
That iz, view likelihood has been considered only in
patticular cases or anly for a plane.

We consider general cases which have no particu-
lar bias such as those described above. Il an object
looks the same from many views, those views of the
ebject have a high likelihood, and human judgment
about geometrical matching is not very strict; there-
fore, if an object looks similar from many views,
those views of the object have a high likelihood,
too.

For example, each view of an 1sotropic object
has a high likelihood, because, roughly speaking,
it looks similar from many views (Fig. 7), and the
change of figure when the view shifts i= slow. The
extreme case of isotropic objects is a sphere. The
view likelitheods of flat ohjects are lower than those
ol soiropic obiects, because flat objects look dif-
ferent from different views (Fig. 8). Ameong views
of a flat object, the views nearly perpendicular to
the flat extent of the object {Fig. &(a)) have &
higher likelihood than the views nearly parallel to
the flat extent (Fig. &(c)), because around the for-
mer views, the change of figure when the view shifts
is slow, but eround the latter views, it is quick. The
extreme case of flat objects is a plane. Similacly, the
view likelihoods of long and narrow objects (Fig. 9)
are lower than those of sotrepic objects, and among
views of a long and narrow object, the views nearly
perpendicular to the long axis {(Fig. 9(a)) have
higher likelihood then the views nearly parallel to
the axis (Fig. 8{c)). The extreme case of long and
narrow objects 15 & line.

(a) (b) {c)
>
f
/
(2)

Figure i
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Figure &
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Figure 9

Here, we introduce an approximation to view like-
liloed a0 that it can be determined by calculation.
1t is the likelihood of & projected area, that is, the
possibility that the projected area from an arbitrary
view is nearly equal to the view's projected area
Alihough the projected area is insufficient to rep-
resent a view in detail and the view likelihood can
alze be affected by coniext or individual experience,
the projected area likelihood is a good approdima-
tion because it reflects the total figure and can be
caleulated easily, The approximation can also be
rezarded as representing rough matching in human
visual perception.

Moreover, we consider the relation between the
projected area likelihood and the projected area it-
sell The larger the projected area, the larger its
likelihood, and the projected area likelihood is at a
maximum at the view angle et the maximum pro-
jected mrea, becauses around the view of maximum
projected area, the projecied area changes slowly as
the view shifts. This can be understood intuitively
if vou think of 2 line or a plane as the extreme case
of an object. (See for example, Fig. & and Fig. 8.}
Ceonsequentiy, we cen say that the view likelihood
and the projected area of the view are pesitively
correlated. Here, we also point cut that in a reel-
angular paralielepiped, eblique views such as Fig.
10(a) have larger projected areas than front views

such as Tig. 1000},

(b)

Figure 10
Here, we propose a new heuristic which reiates
to the view likelilood. It i3 called & projected-
area heurissic. This heuristic can be applied Lo any
kind of ghizct and is especially uselul for unfami-
iar ebjecte which include no symmeiricsl shape. As
shoawn in # laler section, the probability that an
interpretation based on the view likelihood is cor-

rect increases for comununication-oriented drawings.
Thus, the probability that an interpretation based
on this heuristic is correct also inereases in that sit-
uation.

» The projected-ares heuristic is to

“interpret a drawing assuming that it is pro-
jected from the angle from which the projected
area becomes maximum”,

Two examples of the application of this heuristic
are shown below,

Fig. 11 shows a general triangular pyramic. The
prnja:ted-nrea heuristic states that this is 2 view of
{he maximum projected area. From Lhe assumption
of & local maximum, it can be shown that

2(4) = 2(C),

#(B) = (D)
where the projection direction is paraliel to the 2
axis, and z{A) represents the z coordinates of apex
A,

From the assumption of the total maximum, it

can be shown thal

z;_A] - z{B) |< limit
where hmta‘. is 2 value which can be calculated from
the drawing.

D

Figure 11

Suppose that Fig. 12 shows a parallelepiped. Ac-
cording to the projected-area heuristic, it can slmni-
larly be shown that

HA)=:2C)=¢
DB =zF)==
| 2{4) - =(B) |£ i

C

Figure 12

This paper has shown what can be determined by
the projacted.ares heuriscic, There remains scme
ambizuity in interprelation. A full interpretation



can be obtzined using both object likelihood and
view likeliood, as shown in the following section.

3.4 Total Function of the Likelihood
Model

The previous sections described the function of ob
ject likelihood and view likelihood separately. This
section explains the total function of the likelihood
medel.

F:rsl, the relation between Lhe uhjf:cl'. likelihood
and the view likelihoad is clarified. If there is one
object with an outstandingly high object likelihood
among geometrically possible objects corresponding
to a drawing, that drawing is interpreted as that ob-
Ject, regardless of the view likelibhood, because the
variation of the view likelihood s generally not very
large. Otherwise, the view likelihood is impertant.
The product of object likelihood and view likelihood
determines Lhe inte:pretati—nn.

The former case eatresponds te the interpreta-
tion of well-known or regulariv-ghaped objects, and
previous work mostly handles the former case. Ex-
ample 1 is an example of the former case. Exam-
ples 2 and 3 are examples of the latter case. These
two exomples cannot be interpreted by conventionel
methods, because they do not consider the view
likelihood.

Example 1: Rectangular parallelepiped

Geometrically, the object shown in Fig. 13 can
be various hexahedrons. However, the object like-
lihoods of rectanzular parallelepipeds are zencrally
much higler than these of other hexahedrons, and
there is one geomeincally possible rectangular par-
allelepiped. Thus, the view likelihood does not af-
fect the interpretation and the rectangular paral-
lelepiped is pereeived.

//

Figure 13

Example 2: Skewed parallelepiped

Geometrically, the okject ghown in Fiz. 14 can
be various hexaliedrons other than rectangcular par-
alelepipeds. The object likelihoods of skewed par-
alielepipeds are much higher than those of other
possible hexahedrons. However, there are many
poesible skewed parallelepipeds, each of which has
only a slightl_‘r different abject likelihood. The view
hkeliood does not vary very much, either, Thus,

both the object likelihood and the view likelihood
aflect the maximurm total likelihood, and the skewed
parallelepiped with the maximum tolal likelihood is
pereeived,

In general, the relations among the view likeli-
hood of various cbjeets with various views are as
follows:

Lvlany view|isotropic object)
>  Lu(view with large projected areal
nonisotropic object)
> Ly(view with small projected areal
nonisotropic object).

Therefare, if we assume that the change in the ob-
ject likelilood can be ignored, the most isotropic ob-
jeet of those supported by the projected-area heuris-
tie, that is, the object with the maximum depth,
tends Lo be perceived.

,,.--"""FHHH_‘

Tigure 14

Example 3: Triangular pyramid

In Fiz. 15, the ohject likelihood of possible ob-
jects does not vary greatly. Thus, in the same way
as Example 2, both the obiect likelihood and the
view likelihood affect the maximum tetal likelihood,
and the pyramid with the maximum total likelihood
is perceived. If we assume that the change in the ob-
ject likelihood can be ignored, the mest isotropic ob-
ject of those supported by the projected-area heurie-
tic, that is, the ohject with the maximum depth,
tends to be perceived.

Figure 15

4 Line Drawings for Commu-
nication

The ;BLPEpTetﬂl.inlL which :iepeuds on the view like-
lihood does not always agree with the scene which



produces the drawing. However, this is also the case
for human vision. The model proposed in this pa-
per should be evaluated with accuracy in simulaling
human perception, not with accuracy in recovering
the eriginal scene.

If érawings are hmited to those which are drawn
to communicate the three-dimensional shape of an
object, the accuracy of interpretation by the likel-
hood model increases greatly. This is also true in
hurnan vision. This is becavse drawings are made to
communicate the three-dimensional shape as accu-
rutely as possible taking inte account usual human
interpretation. That is, a drawing for cammunica-
ticn i3 usualiy made as fallows:

1. 1t is drawn from & familiar view, that is, a view
with a high likelibood. We de net choose the
view from which the object can be perceived
accidentally os a reguleriv-shaped object.

We choose the view which can communicate a
large amount of information, that is, the view
with a large projected area and small depth.

It &5 interesting that views with a high kikelihood
correspond Lo views which communicate a great
deal of information. This is easy Lo understand if
the projected area is regarded as a measure of the
amount of information. That is, views with 2 high
likelihood have o large projected area, and therelare
have a large amount ef information,

5 Conclusion

This paper proposed a new cognitive model which
gves oounified explanztisn of the interpretation of
various chissis based on object likelihood and view
likelihood. Consideration of the view likelihood en-
ables interpretation ef objects which have no sym-
metrical shape. The projected area likelihood was
proposed @5 @ good approximation to view likeli-
hood, It was shewn that the probability that an
interpretation based on view hkelihood i= corres
inereases if drawings are limited to those which are
drawn for communication.

This Lkelihood model can be applied to inter-
pretetion fer input of CAD syvstems or animation
systeme. The present condition is that wsers of
those gyvsterms must desiznate the full information
of shapes nezurately even when the accurate shape
s unnecessary for their purposs, because there is
no way o colmumunicate an outline. The likelinood
maodel is suitabie for approximate recovery of shapes
feem line c‘i:’::'.';i.qgs_

tis platned to carry cut peychelogical experi-
ments 1o coterming tle jikelibasd funszticns and to
impiement ithe mode] from tie results of the ex-
periments. Anotier direction of Tulure research is
to generate the Gikelihood model autamatically by
lznrning from examples.
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