ICOT Technical Report: TR-390

TR-380

A New External Reference Management
and Distributed Untification for KLI

by
N. Ichiyoshi and K. Rokusawa

June, 1958

G988, 1COT

Mita Kokusai Didg, 21F (31 a56-3151 -5

]GDT 4-28 Mita 1-Chome Telex ICOT]32864

AMmato-ku Tokwvo 1B lapan

Institute for ﬁew Genefation Computer Technology

A New External Reference Management and

Distributed Unification for KL1

N. Ichivoshi and K. Rokusawa

ICOT
21F. Mita kokusai bidg., 4-28, Mita 1, Minato-ku,

Taokyo 102, Japan

Abstract

This paper describes a new external reference management scheme for
KL1, a committed choice logic programming language based on GHC. The
significance of the new scheme is that it realizes incremental inter-processor
parbage collection.

Committed choice languages are designed to exploit AND-parallelism and
are suitable for expressing interacting processes. Several parallel implemen-
lations have been developed.

Through the study of parallel KL1 implementation, we have come Lo rec-
ognize that garbage collection can he a deciding factor in the performance of
individual processing elements in ANT)-parallel language implementations.
Several solutions have been proposed for non-distributed medels of imple-
mentation, but previous distributed implementations did not address this
problem seriously.

The new external reference scheme described here realizes incremental
inter-processor garbage collection by the Weighted Fxport Counting (WEC).
Il is the first attempt to use the weighted reference counting technique in logic
programuning language implementation, and is also new in that it has intro-
duced export and import tables for reducing the number of inter-processor
read requests, '

The problem of exhaustion of reference counts is discussed. In particular,
the problems with indirect exportation are pointed out. The binding order
rule adopted in previous parallel implementations for avoiding creation of
reference loops is insufficient because of the existence of indirect exportation.
A new binding order rule is introduced to fix this problem. We prove that
avoidance of reference loops is guaranteed and also prove that the unification
algorithin always terminates for non-circular structures.

1 Introduction

GHC |Ueda86), like Concurrent Prolog [Shapiro83] and Parlog [Clark8G). is a logic
programming language designed to exploit AND-parallelism in logic programs. The
reason why we pursue AND-parallelism in favor of OR-paralielism or restricted
AND-parallelism (RAP) is that AND-parallelism captures the notion of interacting
processes. Interacting processes arise naturally in the real world: problem solving by
multiple agents and open systems, such as operating systems, that intcract with the
outside world. KL1 is based on GIIC, but is extended with melaprogramming and
load distribution capabilities, to make it a suitable language for writing operating
systems and for conducting research in load balancing.

We are developing the Parallel Inference Machine (PIM) [Goto87] and the Multi-
PST [Taki86] to run large KL1 programs for Al and other applications. The IM
is made up of loosely-coupled systems (called clusters) consisting of multiprocessars
sharing local memory. The Multi-PSI is made up of up to 64 loosely-coupled proces-
sors (CPUs of Personal Sequential Inference Machines (PSIs)) with separate local
Memory.

The study of KL1 implementation has led us 1o recognize the importance of
garbage collection in AND parallel language implementations: Garbage collection
can take up a significant processing time, thus degrading the overall performance
of the system. The major reasons are: {1 an AND-parallel language does not have
destructive assignment of variables (as in Fortran), (2) it does not allow stack-based
reclamation of control frames {as in Lisp), and (3) it does not have antomatic garbage
reclamation on backirack {(as in Prolog). We have found out that conventional
garbage collection schemes could slash the effective performance of the svstem by half
or more depending on how much memory cells are active. Some solutions have been
proposed of late (MRB [Chikayama87], LRC [Goto#s], Piling GC [Nakajima88)) for
non-distributed models of implementation.

Previous distributed implementations of AND-parallel languages [TaylorsT,
Ichiyoshis7. Foster83], Lowever. did not address garbage collection issues seriously.

This paper describes a new external reference scheme that has a builtin incre-
mental inter-processor garbage collection mechanism, called the Weighted Export

Counting (WEC). It is a generalization of standard reference counting. By assigning

weighted reference counts to pointers (references) as well as to referenced data, it
has solved the racing problem in a distributed environment. Though the technique
has been used in functional language implernentations ([Bevan8T, Watson&7]) on
multiprocessors, our external reference management scheme is the first attempt to
use the technique for logic programming. It differs from [Bevan87] and [Watson87] in
that it has introduced the export tables for making independent local garbage collec-
tion possible, and the import table for reducing the number of inter-processor read
requests. The problem of exhaustion of reference counts is more fully discussed.
In particular, the problems with indirect exportation — exportation of imported
reference — are pointed out. (Indirect exportation corresponds to the insertion of
indirection cells in [Bevan87] and [Watson87].)

Distributed unification is a vital feature in a distributed implementation of logic
programming languages. It turns out that, under the new external reference man-
agement scheme, the binding order rule in |Ichiyoshi8T] and [Fusi;ersﬂ] can no longer
prevent reference loops to be created, because of the existence of indirect expor-
tation. We propose a new binding order rule to fix this problem, and prove that
creation of reference loops is in fact avoided. We also prove thal the unification
algorithm always terminates for non-circular structures.

A strategy for allocating and dividing reference counts is briefly mentioned. Un-
der the strategy, the exhaustions of reference counts are expected to be sufficiently
rare so that the extra overhead caused by exhaustions will not affect the overall

performance of the external reference mechanisim.

2 KL1 Language Overview

In this section, we give a sketch of the KL1 language specification.

KL1. which stands for Kernel Language version 1, is a concurrent logic pro-
gramming language. Tt is Flat GHC augmented with metaprogramming and load
distribution capabilities 1. Unlike GHC which is a theoretical langnage, KL1 is de-

signed as a practical language to wnite an operating system and application programs

1 Actually, KL1 is a hierarchical family of languages comprising the ahstract machine language
KL1-B{base), the concurrent logic language KI-C{core), the pragma extension KL1-P(pragmal,

and a collection of user languages KL1-U{user). Here we are talking ahout KL1-C and KL1-F.

to exerute on multiprocessors.
A collection of Guarded Horn Clauses makes up a KL1 program. They are of
the form:
H:=Greo G| By By im >0, 7 > 0)
. gu;d A he::'dy ’

where H, GG, are atomic formulas, and B; are atomic formulas. H is called the head,

(; the guard goals, B, the bedy goals. The vertical bar (|) is called the commitment
aperator,

The logical reading of the clauses is the same as GHC [Ueda86]. KL1 is fiat in
that onlv the predefined set of builtin predicates are allowed as guard goals and thus
goals cannot nest in the guards.

The metaprogramming capability of KL1 is realized by the shoen (pronounced
‘sho-en'} facility, While goals exccuted tail-recursively {processes) define small-grain
threads of control, a shoen defines a larger-grain computational unit, It deals with
exception handling and resource management. A shoen is created by a call Lo the

huiltin predicate execute/7:
execute(Min,Max,Mask,Code, Argv,Control ,Report)

Min and Max are minimum and maximum possible priorities allowed in the shoen.
Mask is a bit pattern for determining which exceptions to handle in this shoen. Code
and Argv specify the initial goal (the predicate code and its arguments) to execute in
the shoen. Contrel and Repert are the control and the report streams. Exceptions
that have occurred in the shoen or are delegated from one ol the child shoens are
reported to the report stream if the logical AND of the 32 bit exception tag and the
12 bit exception mask of the shoen is not zero. The control stream is to start, stop
or abort the shoen from ontside.

An exception is reported as a message to the report stream, and the monitoring
process is to substitute a new goal for the goal that has given rise to the exception.
An important thing to note is that there is no failure in a shoen. Any kind of failure
15 treated as an exception.

Currently. load distribution is realized by means of pragmas [Shapiro84] of
the form Oprocessor(Iroc). attached fo body goals as postfixes. A body goal

Piiprocessor(P} s thrown to proacessar P F when the clause containing the goal is

committed to. The semantics of programs with pragmas is the same as that with the
pragmas removed. In the future, we plan to implement a dynamic load balaucing
mechaniz=m.

K11 also has a different form of pragmas (@priority(P}) to specify the priority

of execution.

3 Machine Architecture and Distributed Imple-
mentation

In this section, the assumptions about the underlying multiprocessor are given, and
a distributed KL1 implementation is sketched. Distribution of data necessitales an

external reference mechanism.

3.1 Machine architecture

The machine we assume in the paper is a loosely-coupled multiprocessor. More

specifically,

|. The machine consists of a finite number of processors identified by scrial iden-

Lifieation numbers (0,1....)

2. The constitnent processors have local memory separate from others.

3. The processors are interconnected by an network so that a processor can com-

municate with any processor by message passing.

The Multi-PS] is one such multiprocessor. The PIM's clusters correspond to
processors in the above model, The fact that local memory is shared by several
processors in a cluster does not affect the external reference scheme.

We assume that inter-processor communication is expensive. A message sending
and receiving overhead is assumed to be roughly 100 times that of simple access to
the local memory. We also assume that inter-processor communication is rare com
pared to local memory accesses. These assumptions justify the rather complicated

external reference scheme we adopted.

The network of the Multi-PSI version 2 guarantees that the communication chan-
nel between any two processors is first-in-first-out (FIFO). The PIM may not support

FIF0 communication,

3.2 Distributed implementation

Tn the distributed implementation of KL1 on a loosely-coupled multiprocessor, each
processing element (PE) executes the reduction cycle independently. That is, each
PE has its own scheduling queue of goals and, it picks up a goal of the highest
priority and tries to reduce it into body goals. The reduction may fail (and cause
failure exceplion), suspend, or succeed. In the last case, the body goals are put te
the scheduling queue or thrown out to ather PEs according to the pragmas.
Throwing of a goal is done by means of the throw message in which are encoded
the code of the predicate of the goal, the arguments of the goal, the shoen to which
the goal belongs plus other bookkeeping information. The encoding and decoding

of arguments (or any KL1 data) are respectively called exportation and importation.

4 External References

Tn this section. we introduce exporting and importing of data and describes how
external references are maintained by export and import tables. Remote access
protocols are brieflly described for completeness.

We assume without loss of generality that the data types in KLl arc: ATOM
(atomic term represented by a one-word cell), and VECT (vector of terms represenied
Ly & cell whose tag is VECT and whose value field consists of a subfield containing
the length {n) of the vector and another subfield pointing to a consecutive sequence
of nocells). A cell can either hold a concrete value as above, point to another cell (in
case of a REF cell}, represent an unbound variable (UNDEF cell) *, or be either one of

the external reference cells {EXREF and EXVAL cells) defined below,

IThere are several types of unbound variables: hook variables, multiple hook variables, ele in
the actual KL1 implementation. The distinetion is mainly for optimizativns and s notl essential

for the discussions in this paper.

4.1 Representation of external references

In the distributed implementation, a reference can be erfernal as well as iniernal
An external reference is a reference to a non-local data. (When we talk of a data,
it means a physical representation of a logical term.) The referenced is identified
by the pair < pe, ent >, where pe is the PE number in which the referenced data
resides. and ent is the unigue identification number of location of the data in that
PE.

We did not choose to take the memory location directly as the unigue identifi-
cation number. This is because that would make local garbage collection (garbage
collection within one PE) very difficult. If the locations of data move as the result
of the local garbage collection, it must be announced to all PEs that mav have Lhe
reference to the data. Instead, each PE maintains an export table to register all loca-
tions that are referenced from outside. Each externally referenced cell is pointed to
by an entry in the table, and the entry number is used as the unique identification
number. When the externally referenced cells arc moved as the result of a local
garbage collection, the pointers from the export table entries are updated to reflect
the moves.

A hash table is attached to the export table so that in case a cell is exported
more than onee the same export table entry may be retrieved from the cell address
and used in the second and later exportation.

Also, each PE maintains an import fable io register all imported external ref-
erences, All references in a PE to the same external reference are represented by
internal references to the same erternal reference cell. The external reference cell
and the import table entry point to each other. (The reason for separating the
cell and the entry is explained in Section 4.4.) There is a hashing mechanism for
retrieving an imporl Lable eniry from an external reference, so that even if a PE
imports the same external reference more than once, only one external reference cell
is allocated. Export and import tables are shown in Fig. 1.

The introduction of export and import table helps reduce the number of inter-
PE read requests for the following reasons: Suppose F[, exports the same data
X twice to PE, as an argument Lo goals F and (). Since X is exported with the

same external reference in the two exportations (by export table mechanism). PFE,

PE I'E,

! Import Table Export Table

EX cell exported data

EX - < i, 6 > J

Figure 1: Export Table and Import Table

allocates only one exiernal reference cell X' (by import table mechanism]. Even if
both P and () attempt to read X'. only one read request message is sent to FPE..
because the first read attempt is remembered by X' and the second attempt only
waits for the return of the value, This mechanism also prevents PEs from making
duplicate copies of the same cxternal data.

An external reference cell is either an EXREF cell or an EXVAL cell. The data
referenced by an EXVAL cell is known to have a concrete value. In the rest of the
paper, where it does not matter whether the referenced data has a concrete value or
not. we refer to an external reference cell as an EX cell. TFor an external reference E,
we denote the EX cell by from(E), the referenced data (after internal dereference]
by tol L), Also for any (physical) data X, the PE in which it resides is denoted by

processor(N

4.2 Exportation of data

This section describes how internal data are encoded in exportation. Several terms
are defired 1o distinguish different ways and purposes of encoding.

In general, a term s born or constructed in one PE and then crporfed to other
PLs by messages. The PEs that receive the messages import the dala and, as the
result. have the internal representations of the same logical term as the original one.

Exportation of a lerin is dune by encoding it in an inter-PE message and sending

the message to the targeied PE. There are three wavs of encading:

encoding by value (iu case of a concrete value] Te encode the term into a byte

sequence representing the value,

encoding by location (in case of non-atomic term) To encode the ternn by fiest

registering the location of the term in the export 1able to obtain the eulry enf

arn« encoding it as < pe,ent >, where pe is the PE number of the exporting

PE.

encoding by reference (in case of an EX cell with external reference pair <

pe.ent =) To encode the cell as < pe,ent >,

A vector can he either encoded by value (by the sequence of VECT tag, vector
length, and the elements that are encoded recursively, in either one of the three
ways), or encoded by location. Sinee vectors can be nested, the encoding process
can also nest. It is desirable to predetermine a certain fixed level that the encoding
process can nest, because the entire structure is not always needed in the inporting
PE and, more importantly, becanse there can be circular structures. When an
encoding algorithm stops at level n, it is called a level n encoding. The substructures
at that level are encoded by location (exeept for atoms). Encoding by location can
be considered to be level 0 encoding.

An EX cell can be either encoded by reference or by location. In normal situa-
tions, the encoding by reference is used. The latter is called an indirect ezportation.
Indirect exportation was not present in the previous distributed implementations
([Ichiyoshi87, Foster88]).

Encoding can also be categorized by purpose as follows:

encoding to pass To encode a term so that the PE that imports it may have an

internal representation of the same logical term.

encoding to access o encode an external reference to access it, l.e. to read it
or to write on it (unify with some term). To encode an external reference to
access, it must be encoded by reference. The target TE of this encading is

always the I'E that has exported the external reference.

encoding to return value To encode a concrete value in reply to & resd request.

To encode a term to return value, it must be encoded by value.

The resulis of encoding a2 term X in a message are denoted by pass(X),

access(X) and value(X), respectively, for the three types of encading,

4.3 Importation of data

This section describes how encoded data are decoded into internal representations.

When a 'E imports an encoded term, it decodes it mto an internal representation
in the following way. (1) If the term is encoded by value, it is translated into the
suitable concrete term. (2) If the term is encoded by location or by reference , there

are two cases.

self-importation If the referenced PE is the same as the current PE (importing
PE}, the export table entry is retrieved from the entry number, and the data

it points to is the internal representation.

nonself-importation If the referenced PE is not the same as the current PE, the
import table is looked up with < pe,ent > as the key. If there is already
a corresponding entry, the EX cell it points to is the internal representation.
Otherwise, a new entry and a new EX cell are allocated., and the EX cell becames

the internal representation.

Self importation arises when a PE (say, PE.) exports a data to another PE (=ay,
PE,) using the encoding by location, and then PE; exports it back to PE; using

the encoding by reference.

4.4 Access protocols

In KL1. unification in the guard and in the body are respectively called passive
unification and active unification. The former is a pattein maiching without binding
any variables, whereas the latter is a pattern matching with possible hinding of
variables as by-product.

Tn passive unification. the two terms to be unified are read and compared. To
read an EX cell X, a read request is made by sending a Uread message (shown below)

to the referenced PE.

Yread(access(X) ,Returniddress)

Returniddress is an external reference to the EX cell. 4

3Since the EX cell can be referenced by only one such Returnaddzess, a simpler exlernal refer-

ence mechansm is used.
“The %read and Fonswer.value messages correspond 1o the Trad value and Freturnovalue

messages in [[chiyoshia?].

If the referenced cell has a concrete value V, it is returned by the Hanswer_value

message:
Yanswer_value(ReturnAddress,value(V))

If the referenced cell is an unbound variable, returning of value is suspended. If
it is an EX cell, a Hread message is passed to the PE it references.

When the %answer_value message returns, the EX cell identified by
ReturnAddress is overwritten by the value, and the import table entry correspond-
ing to the EX cell can be freed. This is why the cell and the entry are separate.

Remote writing is realized by the unify protocol. Writing a variable that is
external to the PE is realized by sending a %unify message to the referenced PE.
Specifically, to unify an EX cell X with a term Y,

Junify(access(X),pass(Y))

is sent. It is a request to unify the data referenced by X with a term Y. The PE
that receives the above message does the active unification after translating the two
terms into internal representations. The active unification algorithm is defined in

terms of a unification table in Appendix A.

5 Inter-PE Garbage Collection by Weighted Ex-
port Counting (WEC)

In this section, we give a motivation for Weighted Export Counting (WEC) scheme,
state its principle, and describe how WEC is maintained at exportation and impor-

tation of data. Lastly, the problem of unsplitiable WEC is discussed.

5.1 The WEC principle

Since export table entries cannot be freed by a local garbage collection, there must be
some inter-PE garbage collection mechanizm to free those entries that have become
garbage.

One way of realizing inter-PE garbage collection is by a global garbage collection
{GGC). We are designing a parallel meriand-collect type GGC. A serious problemn

with GGC is that it is expected to tan & vory long time.

Another is an incremental inter-PE garbage collection. A merit of such garbage
collection scheme is that it keeps intact the locality of data access in the program.
A naive implementation of the standard reference counting scheme, however, does
not work correctly in a distributed environment.

Suppose we introduced two messages for incrementing and decrementing refer-
cnce counts, namely %inerement and Fdecrement messages. When a PE discards
an external reference, it sends a #deerement message to the referenced export table
entry. When a PE duplicates an external reference to give it to another PF, it sends
an Fincrement message to the entry. The problem here is that before the Fincre-
ment message arrives at the entry, the following sequence of events may take place:
The duplicated reference arrives at a PE and is discarded there and the resulting
%decrement message is received by the entry, causing the entry to be freed. (The
reference count of the entry changes from 1 to 0, and not from 1 to 2 to 1 as ex-
pected.) This is a typical racing situation. Note that the FIFO assumption applies
only to dircct communication between two processors. It does not say that indirect
communication takes more time than direct cormmumnication.

Unlike the standard reference counting which assigns reference counts to only
referenced data, the Weighted Export Counting (WEC) scheme, assigns reference
counts, or weighted export counts (WEC), to references {pointers) as well as to
referenced data. More precisely, positive values are assigned to external references
(import table entries and references encoded in messages), and non-negative values
arc assigned to export table entries, so that the following invariant is true for every
export table entry E (Fig. 2):

(weight of E) = 3 (weight of x)

rireference fo B
It follows from the above equalily thal the following two propositions are equiv-

alent.
1. The weight of E 15 zero.
2. There iz no reference to F.

This technique of using weighted reference counts has been employed in func-
tional laugua,gt:& 1111p1¢|‘11ent.at]'|;|ns (WHRC in [JJE'\'H.'E‘IST] and [H-"a.t.mnﬂ?]}, Our exter-

nal reference management scheme is the first attempt tonse it for logic programming

11

PE;

3

WEC =50
PE,
MESSALE\ W B = 30 WEC = 120
PE, i

T e e

WEC =40

Figure 2+ WEC Invariant

langnage implementation. The problem peculiar to logic programming language is
treated in Section 6. The differences between WRC and our WEC are summarized
in Appendix B.

In retrospect, the problem with the reference counting GC was that the assumed
invariant that the reference count of the export table entry was equal to the number
of references was not actually an invariant relation, as was shown in the racing
example. This problem can he overcome by always acknowledging the Fincrement
message. L'he overhead of sending back an acknowledge message and suspending
reference duplication until the message arrives is clearly bigger than the overhead

of maintaining WEC,

5.2 WEC operations

The operations on WEC al exportation are as follows:

encoding by location Add a certain positive weight w to the WEC of the export
table entry (if it is newly created, the WEC is initialized to w), and assign w

to the encoded result.

encoding by reference Subtract a certain positive weight w from the WEC of

the import table entry, and assign w to the encoded result.

There are three kinds of transition of the state of external references, caused by

exportation and internal operations of a PE.

duplication The external reference is duplicated: the EX cell is encoded hy refer-

ence and is retained. The WEC is split in two positive weights,
12

discard The external reference is discarded: the EX cell and the corresponding
import table entry are [reed and the associated WEC is returned back to the
referenced export table entry by a Hrelease message. An EX cell is freed by

the MRB mechanism or by other form of local garbage collection.

transfer The external reference 1s transferred to another PE: when the number
of internal references to the EX cell becomes zero afler the encoding, the EX
cell and the corresponding import table entry are freed and the associated
WEC is given to the encoded result. This situation can be detected if the im-
plementation supports the MRB mechanism or other local reference counting

scheme,

Example 1 Here are eramples of (1) reference duplication, (2] discard and [3)
transfer. We assume that when the goal a(X) is erecuted on PE 12, X is the last

indernal reference to an EX cell referencing a data DX in PE 3.

(1) a(¥) :- true | b{X), c{X)@procassor(55).
(2) a(X) :- true | true.

(3) a(X) :- true | c(X)@processor(78).

In (1), the referenee to DX is duplicated: one reference 15 retained in PE 12 and
another is exported (by reference) lo PE 56. In (2), the reference to DX is discarded.
A %release message is sent lo PE 34, and the EX cell together with the import table
entry is freed, In (3). the reference to DX is transferved to PE 78, All WEC 15
encoded into the throw goal message. The EX cell fogether with the import table enfry

is freed.

When a 'E imparts an external reference with encoded WEC of w. the following

WFEC operation is carries out according o the kind of importation.

self-importation Subtract w from the WEC of the export table entrv. If it be

comes zero as the resull, the entry is {reed.

nonself-importation Add w to the WEC of the import table entry {if it is newly

created, the WEC 15 initialized Lo w).

L3

5.3 Unsplittable WEC and indirect exportation

WEC is implemented as integer on real machines because the invariant must be an
exacl relation. Since an imported external reference can be duplicated arbitrarily
many times, the situation where the associated WEC can no longer be split (i.e.

WEC becomes 1) mayv be reached. There are two ways to cope with this situation.

WEC supply The duplication is suspended and a Frequest. WEC message is sent
to the exporting PE. When the message is received, a Fsupply. WEC message
carrying @ WEC to supply is sent back to the referencing PE. The reference

duplication resumes when the %supply. WEC message arrives. °

indirect exportation The EX cell is not encoded by reference hut by location (ie.
it is indirectly exported). This involves no suspension of reference duplication,
but makes the external reference chain longer. [Bevan87] and [Watson87] take

this approach.

The second method is easier to implement and works fine in the case of encoding
to pass, but it cannot be used in the case of encoding to access, since encoding by
reference is the only way to access an exported data. If the network has a FIFO
property, this problem can be solved as follows.

To encode to access an external reference with WEC = 1, encode it by reference
with WEC = (.

We call such encoding and access zero encoding, and zero access, respectively.
Since the %release message that might follow will not take over the zero access
message (FIFO property), the referenced export table entry is guaranteed to exist
when the zero access message arrives.

One inconvenience with the introduction of zero access is that reference transfer
cannot be done after sending a zero access message. This is because the transferred
reference can be discarded and the resulting %release message can arrive before the
ZETO ACCESS MMESSage arrives.

Therefore the fact that a zero access message has been sent must be remembered

to prevent a reference transfer. The import table entry has a zero flag for this

5 Actually, a PE may import the same external reference (which always has an assigned WEC)

before the Hsupply. WEC message. and that can resume the duplication.

14

purpose. When the zero flag is ON, the external reference must not be transferred
but must be indirectly exported. ©

In a FIFO network the second approach is expected to be more efficient, since
suspension of message sending is not needed. If communication channel is not 'IFQ,
the second approach must be modified so that a zero access message is always
acknowledged, or the first approach must be taken. But in either case, the WECU

exhanstion handling involves extra processing overhead.

6 Distributed Unification

The purpose of this section is to prove the two basic necessary property of our
distributed unification algorithm, namely avoidance of reference loop creation and
termination of unification. Since the previous binding order rule is insufficient when

there is indirect exporiation, a new binding order rule is introduced.

6.1 Avoidance of reference loop creation

A reference loop is a closed chain of references (internal and/or external). In tmple-
mentations of logic programming language, the dereferenced result of & cell must be
cither a concrete value or an unbound variable. 1f there were a reference loop, the
cells on the loop would not have dereferenced results, and they could not be unified
with any concrete value,

In a sequential implementation, creation of reference loops can be avoided by
fully dereferencing both reference chains before unifying them. In a distributed
implementation, however, two chains cannot always be fully dereferenced at once
because the dereferenced results may be two unbound variables in separate PEs.
An unrestricted unification algorithm can create reference loops as in the following

example.

Example 2 PFE, has an EXBEF cell Y tha! references an wnbound cell Y in FL;,
and PE; has an EXREF cell X7 that references an unbound cell X in PL;. If active

EThis ts when the WEC is still 1. When the PE imports the same external reference, the WEC
increases, and it can be splil in two., When a nonezero access message 15 sent, the zero fiag of the

import table entry can be reset

15

PE, PE,
Y’ Y
B) i
| I

X!

A [EUNDEF | [EXRER

Figure 3: Heference Loop

unification between X and Y' in PE; causes X to be bound to Y', and active uni-

fication between Y and X' in PE; causes Y to be bound to X', a reference loop is

crealed. (Fig. 3)

In [Ichiyoshi8T] and [Foster88], it is solved by imposing the binding order rule:
a binding of an unbound variable to an EX cell by active unification is permitted
only when the current PE number is smaller than the referenced PE number. But
the introduction of indirect exportation has made this binding order rule no longer
sufficient, as cshown in the following example. Suppose i < j. FE; exports its
unbound variable X to PE; (resulting in an EX cell X'} and PE; indirectly X' back
to PE; (resulting in an EX cell X"). Since 1 < 3, P'E; is allowed to bind the variable
X to X", creating a reference loop.

We have introduced the notion of safe and unsafe external references and modi-

fied the binding order rule to fix this problem.

Definition 1 An exlernal reference E is unsafe, o
(1) processor(from(E)) < processor(to(E)} 7, or
{2) to{ E) iz an unsafe exlernal reference,

An external reference L s safe if of 15 nol an unsafe reference.

Since the second disjunct of unsafeness definition cannot be checked locally, an
unsafeness flag iz introduced. so that the criteria of unsafeness is as follows: An
external reference K is unsafe iff (1) processor(from(E)) < processor(tolEY), or

{2) the unsafeness flag of E i1s ON.

“I'he order is the reverse of that in [Ichiyoshif7] and [FosterfRl. The reason is to make the

argument vahd for a machine eonsisting of infimtely many processors.

16

When a term is encoded by location, the unsafeness flag of the encoded form
s set to ON if the term is an unsafe EX cell, OFF otherwise. When an EX cell is

encoded by reference, the statc of the unsafeness flag is inherited.

The binding order rule An exported unbound variable cannot be bound to an

unsafe EXREF cell.

To prove the reference loop avoidance, we add a couple of natural assumptions.
(1) There is no reference loop at start-up time.

(2) It is guaranteed that reference loops made up of only internal references are not

created,

We show below that reference loops will never be created by reductio ad absur-
dum.
Let L be a reference loop. By dereferencing internal references, we can safely

assumne that it consists of external references alone. There can be three cases:
case 1 L is made up of safe references alone.

case 2 [is made up of unsafe references alone.

case 3 [is made up of hoth safe and unsale references.

Case 1 is impossible because every safe reference is from a PE with a larger
number to one with & smaller number. Since exporting of cells alone does not
make a reference loop, there must have been a hinding of a variable Lo an external
reference. By the binding order rule, case 2 is ruled out. If case 3 holds, there must
exist a safe reference whose referenced data is an unsafe EX cell — a contradiction

to the definition of a sefe external reference.

6.2 Termination of unification

We prove here that distributed unification between two non-circular terms fermi-
nates. Actually. what we claim is relative correciness — the distributed unification
algorithm terminates if the local unification algorithim terminates. (I'he unification

table in the Appendix A iz given that way.) We hiave only to show that every active

17

unification is eventually reduced to local unification: a binding of a variable or uni-
fication between two concrete local data. That is, it does nol keep on just passing
Yhunify messages between PEs forever.

First, we show that dereferencing process -— internal dereferencing by tracking
REF chain and external dereferencing by passing %unify messages — always termi-
nates. Suppose some dereferencing never terminates, it must be that the derefer-
enced result which is an unbound variable becomes bound to a reference (internal
or external) to another unbound variable which in turn becomes bound, and so on,
during dereferencing, so that the final dereferenced result will never be reached. Let
T,,T3,... be such a “descending sequence” of cells, that is, every z; is oniginally an
unbound variable which is then bound to the reference to z,44. (The lemporal order
in which the bindings occur is not relevant.) The sequence of PE numbers of the
PEs in which those cells reside constitute a non-increasing sequence by the binding
order rule. Any such sequence of natural numbers has a minimum element. After
that minimum PE is reached, no external references appear. The problem is thus
reduced to termination of internal dereferencing. This can always be guarantecd for
a uniprocessor model (such as Multi-PSI), or can be guaranteed by introducing a
local binding order rule for a shared memory multi-processor model (such as PIM).

Suppose an active unification hetween two terms X and Y is tried. Each of
the derclerenced results of X and Y, namely DX and DY, is either an unbound
variable or a concrete value. Let the PEs where DX and DY reside be PE, and
PE,, respectively. We assume for simplicity that no binding occurs on DX ar DY
during the unification process. The unification algorithm first dereferences the first
argument X till DX is obtained. The second argument is then dereferenced. If PF;
and PE, are the same, no Sunify message is sent, and internal unification is simply
done. Otherwise, Funify messages are sent along the external reference chain till
Y is reached. During this dereferencing, DX is exported (encoded to passj. 1§ DX
is encoded by value (in case DX is a conerete value) and unification is done between
the value and DY on PE,. If DX is encoded by location (in case DX is an unbound
variable, or it is @ vector), the final result of exporting DX is an external reference

chain of length 1. ® If DY is & concrete value, Sfuntfy message is sent to PE, and

5No matter how many PEs $unify messages are passed along, the WEC assigned to the encoded

form of XX ean always he passcd to the next encoded form, so that no indirect exportation cccurs.

18

unification is done there. Suppose DY is an unbound variable. If DY is not exported
or the reference from FE, to DX is a safe (i.e. PE, < FE,), DY is bound to the
external reference. Otherwise, a %unify message is sent to PE;. This time, DX is
bound 1o a safe external reference to DY.

In general, the unbound variable DX (DY) which is the dereferenced result of
X (Y) may become bound to some value during unification. But the number of
such bindings can be only finite, as is shown in the argument for dereferencing
termination. After the last binding is made, unification termination is guaranteed

az above,

7 WEC Allocation Strategy

As far as the WEC mainlenance operations observe the WEC invariant, they are
free to choose any values for WEC. If exhaustions of WEC at reference duplication
happen very often because of a bad WEC allocation strategy, the performance is
affected. Here we give the simple strategy we employ in the KL1 implementation
on the Multi-PSIL

The WEC of an export table entry is represented by a 64 bit unsigned integer.
while the WEC of anv external reference (import table entry and encoded reference)
is represented by a 32 bit unsigned integer. We do not have Lo worry about overflow
of the WEC of an export table entry, because it is impossible hardware-wise that
there exist more than 2% references to a single export table entry in the system (PIM
or Multi-PS1) simultaneously. When the WEC of an mmport table entry overflows,
WEC_UNIT (= 2%} is left and the excess is returned to the export table entry by
a Yrelease message.

The WEC to assign in encoding bv location is always WEC.UNIT. At reference
duphiecation, the WEC of the import table iz divided in hall. 1t follows that an exter-
nal reference which is encoded by location can be duplicated at least 24 times until
the WEC becomes 1. Since relatively few data are exported and then duplicated
more than 24 times, the rate of WEC exhanstion in all reference duplications is
expected to be rare enough.

The WEC 1o assign in encoding to access is 1 when the WEC of the export table

entry is greater than 1, and 0 otherwise (zero encoding).

14

8 Related Works and Discussion

The external data management and unification algorithm used in the KL1 imple-
mentation on the Multi-PST version 1 [Ichiyoshi87] are a simpler version of the one
given in this paper. It did not have inter-PE garbage collection mechanism.

The distributed unification in the parallel implementation of Flat Concurrent
Prolog (FCP) [Taylor87] involving variable migration is a very complicated proce-
dure. This is becanse the unification in FCP at commitment has to be an atomic
operation. Since unification is done locally, reference loop aveidance and termination
of unification is easier to assure, assuming variable migration procedure is correct.

[Foster88] gives a distributed unification algorithm similar to ours, though
garbage collection is not addressed. The same binding order rule as in [Ichiyoshi&7)
1s used to avoid creation of reference loops. Whereas symmetric protocol (s_read)
is used for termination detection in [Foster88], we devised a termination detection
mechanism [Rokusawa88] that does not require message acknowledgement.

The weighted reference counting technique is presented in [Bevan&7] and
[Watson87]. Theirs is used in functional language implementations, while our WEC
scheme is used for logic programming langnage implementations. The COImparison
of the two is summarized in Appendix B.

One problem with the WEC scheme is that circular structures extending over PEs
cannot be reclaimed. This is true with any reference counting garbage collection.
Circular structures arise in AND-parallel languages when (1) the program explicitly
creates circular data or, (2) two or more processes communicate with each other
through shared variables (the goal records and the shared variables constitute the
circular structure). A circular structure of the second kind gets untangled when the
constituent processes terminate successfully, but remains as garbage if the processes
are aborted or go into a deadlock state. We do not know vet how serious this
problem of non-reclaimable garbage is. Eventually, we might need to implement
global garbage collection.

The new external reference mechanism and the unification algorithm are adopted
in the KL1 implementation on the Multi-PST version 2 {instead of the old PSI CPUs
used in the Multi-PSI version 1, it uses the CPUs of PSI-IT machines [Nakashima87}).

When the implementation is completed (scheduled to be later this vear), we will be

20

able to run large-scale benchmarks to evaluate the new scheme.

Acknowledgements

We would like to thank the members of the KL1 implementation group in ICOT for
stimulating discussions. We are also indebted to Dr. S. Uchida, the director of the
4th Research Laboratory, and Dr. K. Fuchi, the director of ICOT, for giving us the

opportunity of research in this arca.

References

[Bevan87] D. I Bevan. Distributed garbage collection using reference counting.
In Proceedings of Parallel Architectures and Languages Europe, pages
176-187, June 1987.

[Chikayama87] T. Chikayama and Y. Kimura. Multiple Heference Management in
Flat GHC. Technical Report TR-248, ICOT, 1987. Also in Proceedings

of the Fourth International Conference on Logic Programming, 1987.

[Clarks6) K.L. Clark and S. Gregory. PARLOG: parallel programming in logic.
ACM Transactions en Programming Languages and Systerns. 8{1):1-

49, 1986.

[Foster88] 1. Foster. Parlog as a System Programming Language. PhD thesis,

Imperial College of Science and Technology, March 1985,

Goto87) A. Goto. Parallel inference machine research in FGCS project. In
Proceedings of US-Japan Al Symposium &7. pages 21-36, November
1987.

[GotosS] A. Goto et al. Lazy Reference Counting -~ An Incremenial Garbage
Collection Method for Parallel Tnference Machines. Technical Report
TR-338. ICOT, 1988, Also to appear in Proceedings of the Joint
Fifth International Legic P'rogramming Conference and Fifth Logic

Programming Symposium, 1988

[Ichiyoshi®7] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed Implementation

of Flat GHC on the Multi-PS]. Technical Report TR-230, ICOT, 1987.
Also in Procecdings of the Fourth International Conference on Logic

Programming, 1987,

[Nakajima88] K. Nakajima. Piling GC - Efficient Garbage Collection for Al Lan-

guages. Technical Report TR-334, ICOT, 1988. Also to appear in
Proceeding of the [FIP WG 10.3 Working Conference on Parallel Pro-

cessing, 1988.

[Nakashima87] H. Nakashima and K. Nakajima. Hardware architecture of the se-

quential inference machine : PSI-IL. In Proceedings of 1987 Symposium

on Logic Programming, pages 104-113, September 1987.

[Rokusawa88] K. Rokusawa, N. Ichiyoshi, T. Chikayama and H. Nakashima. An Ff-

[Shapiro84]

[Shapiro83]

[Taki86)

[Taylors7]

;"[..':f-d aﬁﬂ]

ficient Termination Detection and Abortion Algorithm for Distributed
Processing Systemns. Technical Report TR-341, ICOT, 1988, Also to
appear in Processings of International Conference on Parallel Process-

ing, 1988,

E. Shapiro. Systolic programming: a paradigm of parallel program-
ming. In Proceedings of The International Conference on New Gener-

ation Computer Systems 1984, pages 458-470, 1984,

E. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. Tech-
nical Report TR-003, 1COT, 19583.

K. Taki. The paralle] software research and development tool: Multi-
PSI1 system. In Proceedings of France-Japan Artificial Intelligence and
Computer Science Symposium 1986, pages 365-381, 1986.

S. Tavlor, S. Safra, and E. Shapire. A parallel implementation of Flat
Concurrent Prolog. [International Journal of Parallel Programming,

15(3):245-273, 1987,

K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Lan-
guage with the Concept of a Guard. Technical Report TR-208, ICOT,
108G,

[Watson87] P. Watson and 1. Watson. An efficient garbage collection scheme for

parallel computer architectures. In Proccedings of Parallel Architec-

tures and Languages Europe, pages 4132-443, June 1987,

Appendix

A Unification Table

Unification between two terms X and Y is done according to the following table.

(The order of X and Y is significant.)

XA\Y UNDEF EUNDEF sEXREF | uEXREF | EXVAL concrete
UDEF | X = rel(Y) | Xomref(Y) | Xi=Y |X:=Y |X:=Y [X:=Y
EUNDEF | Y := ref(X) | X = ref(Y) | X =Y | %u(Y,X} | X:=Y [X:=Y
SEXREF |Y := X Y =X FoulX,Y) | %u(X,Y) | Hu(X,Y) | Fu(X,Y)
uEXREF | Y =X P Pl XY Fu(X.Y) | %u(X,Y) | %u(X,Y) | %on(X.Y)
EXVAL | Y :=X Yo=X | %u(XY) | %u(X.Y) | %u(X.Y) | Bu(X)Y)
cuncrete]'f = X Y =X Gu(Y.X) | %u(Y,X) | %u(Y,X) | X=Y

e UNDEF and EUNDEF denote non-cxported and exported unbound variables.

(They are distingnished by the tag in the KL1 implementation.)

sEXREF and uEXREF denote safe and unsafe EXREF cells.

s Yu(X.,Y) means sending Funify(access(X),pass(Y]) to PE referenced by X.

e X := Y means binding an unbound cell X to Y; X := ref(Y) means binding

an unbound cell X 1o the reference ta Y.

e X=Y means doing local unification between two concrete terms. II they are

two veclors of the same length, element-wisc unification is tried.

B The Comparison between WRC and WEC

We briefly compare our WEC scheme with the WRC scheme in [Bevan87| and

[Watson8T)|.

1. WEC has export and import table to reduce the number of inter-processor read

requests. The export table also makes independent local garbage collection

fr.u:ii!':] o,

L

The addition of WEC at importation does not have its counterparl in WRC,

3. The WEC supply protocel and zero encoding do not have their counterpart in

WRC.

4. The notion of safe and unsafe external references i= not neesded in WRC. since

WROC s not applied to logic programming languages.

Of course, all these extra features in WEC have overhead associated. In par-
ticular, log encoding optimization adopted in WRC is impossible in WECU, because
WEC can be added at importation. The trade-oll depends on the language as well

as the ratio between intra- and inter-processor communication throughput.

