ICOT Technical Report: TR-383

TR-381

An Indexing Scheme for Terms Using
Structural Superimposed Code Words

by
Y. Morita, A. Nakase(Toshiba) and H. ltoh

May, 1988

CI1988. 1COT

Mita hokusai Bldg. 21F 3 456-3191-5

II :D ! 4-78 Mita 1-Chome Telex 1COT J32064
Minato-ku Tokyo 108 JTapan

Institute for New Generation Computer Technology

An Indexing Scheme for Terms using

Structural Superimposed Code Words.

Yukihiro Morita, Akihiko Nakase! and Hidenori Itch

ICOT Research Center,
21F, Mita Kokusai Building,
1-4-28, Mita, Minato-ku, Tokyo, 108, JAPAN

May 1988

Abstract

This paper describes an indexing scheme for terms and rules. It proposes a sfruc-
tural supernaposed code word { SSCW) scheme, and discusses several characteristics
of the scheme.

In knowledge information processing systems with a large amount of knowledge,
a technique for fast knowledge retrieval iz very important. There are some efficient
technigues to retrieve simple data (atomic values). However, knowledge should be
represented by a more complex data structure. One such basic data structure is a
term. A term is a logical structure with variables. Fast retrieval is very important
for a term which is unifiable to a specific term (query) from a set of terms.

This paper describes an indexing scheme for terms. This scheme is an application
of the superimposed code word (SCW) method of data retrieval. This paper also

describes the code design for the scheme.

*Toshiba C-:rrp oration

1 Introduction

Fast knowledge retrieval is essential for the knowledge information procese-
ing systems with large amounts of knowledge. There are some efficient tech-
niques to retrieve simple data (atemic values). However, knowledge should be
represented by 2 more complex data structure. One such basic data structure
is a term. A lerm is 2 very powerful data structure in svmn olic processing.
We are developing & knowledge base machine in which the basic element is
a term [MMISSSE]. For conditions of term retrieval. we need unifiable re-
lations more than eguality relatiens. Techniques to retrieve a set of terms
unifiable with specific terms is very important.

We proposed an indexing scheme for terms, called the structural super-
imposed code word (SSCW) method [MWISE][MMNS87]. This method is an
application of the superimposed cade ward { SO W) method for partial match
data retrieval [Ros79] to fast term retrievel. The SSCW method is & very
efficient way of retrieving an object that has unifizble iexms with specific
{query) terms.

This paper describes an indexing scheme for term retmeval bagsed on the

SOW method end discusses some nropertios of the method.

2 Structuvra! Superimposed Code Words

We proposed an indexing schuine vsing superimposed code wards, called
the structural superimpored code word scheme. This section describes this
scheme, first looking at the superimposed code word method for dela retricval

Mo T
(Ros7d).

2.1 SOW AMethed for Data Metrieval

The SCW method is o method for retmeving » daia or record that has

several key words specified as & query. In tne SOV rsiliad, ench record] R

L2

has several key words, K4,... K., and one code word, 5;, for it. Each key
word, K ;, is mapped by the hashing function te a binary coae word (BOW),
b;;. {This binary code word 1s sometimes called a deseripior.) A binary code
word is a fixed length bil string. For the i-th record, a superimposed code
word, 5, is computed by logical OR (superimpaose) of all BOWs of the record’s
key words. That is,

5= Vb)
Here, V means a bitwise logical OR U];:{:ral:ur. To retrieve a record for several
key word, first, we make a code word (called a guery mask), @, by superim-
posing each BCW for key words. For example, for the query that retrieves
the record with key word key; and keys, the query mask is a logical OR of
a BOCW of key; and key; (bew(keyy) V bew(key:), where bew is a hashing
function).

If the {-th record satisfies the query, then the folicwing ecuation holds:
Q = Q M5 {:2)

Here, A means a bitwise logical AND operator. Of course, there are some
records that satisfy equation (2}, but do net satisiv che cuery. Such mis-
selections are called false drops [Ros79]. However, checking equation (2) can
reduce the search space for records. Since checking equation (2) performs a
very simple operation, logical AND, the SCW method can retrieve a set of

records that satisfy the query effectively, especialiy for partial meich retrieval,

2.2 55CW Method for Term Retrieval

We extend this method to apply to term metzieval, which -esrisves possibly
unifiable terms to the query term from the set of terms. A rorma iz = dats

structure with variable, and is defined as foilows,

Definition 1 Let VAR be a set of variables and FUN,; be a sob of i-place

functors. FUNo means a sct of constants. Thern, terms ave jefines recursively

8]

as follows:

1. X € VAR (variable) is a term
2. fe FUNgis a term

3. f(Xy,...,Xn) is a term, if f € FUN, and X(1 = 1,...,n) are terms

To apply the SCW method of data retrieval to term retrieval, we extend

the SCW method the in following two points:

e Use a different hashing function between the code word (descriptor) and

query mask {use special mapping for variables)

e Encode all functors and variables in a term to a partial BCW, and superim-

pose them according to the term’s structure

To encode a term structure, we introduce a pariial BCW,

Definition 2 A partial binery code word on a set of integer, X, is a BCW
in which the 7-th bit position is 0, if i & X. Here, X C {1,...,1} and [is the
width of the BCW. '

The hashing function from FUN U VAR to a set of partial BCWs on X is
denoted Hx(f), where f is a member of FUN U VAR. X is called the hash
bit field (HBF) of the hashing function.

Then we define two hashing functions for terms, one is to make index
(deseripter) HTs, and the other is to make query mask Q1.

Let HFy(f) be an arbitrary hashing function on X for the functor and

Bitx(h) (b= 10o0r 1) be a bit string which the bit at the i-th position is

boifieX
0 frgX
That is, Bityx(0) means a code word in which all bits are 0 for any X.

Let subrange(X,f,n,i) be a mapping to a set of integers, where X is a

4

set of integers, f € FUN, and n and i are integers, 1 < ¢ <= n and
subrange(X, f,n,i) € X. Then the hashing function of the superimposed
code word method is defined as follows:

Definition 3 A hashing function on X of the SSCW descriptor, HTx (T3,
and query mask, QTx(T), for term T, are defined as follows:

M v ais variable: HTx{v) = Bitx(1), @Tx(v) = Bitx(C)
. If f is a constant (0-place functor): HTx(f) = QTx(f) = HFx(f)

I f is an n-place functor, where X; = subrange(X, fin, i) (X; € X)doralid
andn >1
HTx(f(ty, .y ta)) = HFx(f) v \/ HTx,(t:)

=1

HOx (f(tss- - 1)) = HFx(f) V |/ OTx, (%)

i=1
Example 1 Let term T be f(g(a),Y); here, f € FUN3, g € FUNy, a €
FUNy and ¥ € VAR. Let the width of the code word be 16 bits, and
Xo=1{1,...,16}.

To compute HTx,(f(g(a),Y)) and QTx,(f{g(a),Y}), we mus: compule
the hashing function, H Fx,(f), HTx,(g(a)), QTx,(¢(a}), HTx,(Y") and QTx,(Y).
Here, X, and X; must be a subset of Xo.

In this example, let X; be {5,...,10} and X; be {11,...,16}.

Since HTy,(9(a)) = HFx,(g)VHFy,(a)and X3 C X, let X; be {7,8,9,10}.

Then we assume the hashing values are:

HFyx (f) = ‘0010010000010101
HFx,(g)= ‘0000100010000000’
HFy,(a) = ‘0000001000000000

Where the underline indicates the hash bit field of each function.

HTy, (V) ='0000000000111111" and QTy, (¥} ='0000000000000007", then
the SSCW for term HTx,(f(g{e),Y); is:

HFx,(f) = “0010010000010101°

HFy,(g) = ‘0000100010000000°
HTy,(Y) = {0000000000111111
HFy,(a) = {0000001090000000°

HTx,(f(g(a),Y)) = ‘0010111010111111°
The query mask for term QTx(f(g(a), Y')) is:

HFx(f) = 0010010000010101°
HFx,(g) = ‘0000100010000000°
QTx,(Y) = “0000000000000000"
HFy,(a) = ‘0000001000000000°

QTx,(f(g(a),¥)) = ‘0010111010010101°

Proposition 1 Let Ty and T; be terms, and let HTx and @QHx be instonces
of the hashing function defined as Definition § for some set of integers, X.
Then, if Ty and Ty are unifisble, the following equation holds:

HTx(Ty) A QTx(T2) = QTx(T2) (3)

Of course, there are some terms that satisfy equation (3), but are not unifi-
able with the query term {T:). Such mis-selection are called false drops. In
the following section, the performance of the SSCW is measured by counting

the false drops.

Example 2 Let term T3 be f(g(V),b}; here, f e FUN,, g € FUN, , b E
FUNy and V € VAR Let Xo, X, X3 and X3 be the same values of
example 1.

Then we assume the hashing value is HFy,(b) = ‘0000000000100100".
Then the SSCW and the query mask for T are:

HFy(f) = 10010010000610101’

HFy, (g) = “0000100010600000°
HFyx,(b) = ‘0000000000100100°
HTx,(V) = ‘000000111 1000000°

HTyx,(f(g(V),6)) = ‘0010111111111010’

HFx(f) = ‘0010010000010161°
HFx (g) = “0000100010000000°
HFy,(b) = “0000000000100100°

QTx, (V) = «0000000000000000"
QTx,(f(g(V), b)) = 0010110010110101°
T, of example 1 and T, are unifiable. HTy (T} A QTx,(T2) = QTx, (T2},

and also HTx,(T2) A QTx,(T1) = QTx,(T1). That is,
HTx (flg(V), b)) = ‘0010111111110101°

QTx(fla(a),¥Y))= ‘0010111010010101°
QTx,(f(g(a),¥)) = *00101110100101017

HTx,(f(gla),¥)) = ‘0010111010111111°
QTx, (f(g(V), b)) = “0010110010110107°
QT (f(g(V),0)) = *0010110010110101°

We can extend a query that specifies several query terms to retrieve a
unifiable term with query terms. That is, the SSCW method can be applied
to the query of searching for a term unifiable with term 1 1 and fz. In this
case, we can use h{T}) V h{tz) as & query mask lor the guery; Zere, his a
query hashing function. In the following section, we discuss cnly single terms

for queries.

3 Code Design for SSCWs

When we design a hashing function for S5CWs, we can sslect the functions,

subrange{ X, f,n,?) and HFy.

-1

An important factor for the hashing function for functor H Fy is the weight
of a code word, that is, the bit positions with binary value 1. In this paper,
the ratio of the bit positions with binary value 1 to the cardinality of X
(] X |) is called the bit setting ratio (BSR).

A binary code word for the functor {without a 0-place functor) can be
divide into two fields; one is a set of bit positions in the hash bit field of
the hashing function of its argument, another is a set of bit positions that
does not use any arguments. The former field is called the superimposed field
(SF) of the hash bit field of the functor, and the latter field is called the
non-superimposed field (NSF) of the hash bit field of the functor. The ratio
of the superimposed field to the hach bit field is called thesuperimposed ratio.

For the function, subrange(X, f,n.1), the following function is used in the

following section to observe an effect of the superimposed ratio:
subrange(X, f,n,1) = divide(X, wy,n,1) (4)

Here, we regard X as an arbitrary ordered set, and divide(X, wy,n,1) means
a set of integers that contains from the j-th element of X such that

[_1 L] -.-II [
— xwx | X< ~xwmx | X|
mn

n
w, is a positive rational number where 0 < w; < 1. w; is the superimposed

ratio.

3.1 Bit Setting Ratio

[Ros73) gives a code design of SCWs for data retrieval. This section also
discusses a code design of SSCWs for term retrieval. However our design is
too complicated to analysis in the same way as [Ros78], because we assume
terms and unification operation, and we use partial BCW, Therefore, we give
a simple analysis.

Let p; be the probability that binary value 1 occurs in the i-th bit of the

descriptor and g; be the probability that binary value 1 occurs in the j-th

bit of query mask. The width of the SSCW is denoied b. We assume that p;
and p;, and ¢; and g; are independent of each other for approximation. The
probability of that equation (3) holds is:
b

[I{pigi + (1 -) (5)

=1
Let 3; be the probability of the ¢-th bit in the hash bit field corresponding to
a variable, and let «; be g;. Then p; = (1 — f;)a; + 5;, and:

b
T1((8 - 1)af = {8 = Da + 1) (6)
=1
When a; = 1/2 (for all 7}, {6) is minimal and the minimal value is:
L
H(E + &) f.?_]
=1

This means that in the best hashing function, binary values 0 and 1 oc-
cur with equal probability in each position of the query mask (or descriptor
without a variable).

The optimal values of the bit setting ratic depend on the set of {erms to
be retrieved. Sinece there are too complicated to be analyzed mathematically,
we have done some experiments using small sample data.

To evaluate the SSCW performance, we used several term sets, each with
randomly generated 100 terms. These 100 terms are used both as 100 data
terms and as 100 query terms. That is, we use the unification join [MYNIS6]
for the evaluation that can be regarded as 100 queries to a set of 100 terms.

To select the bit setting ratio of hashing function HFx for functors, we
note that each hash bit field is divided into two: & superimposed field (S5F)
and a non-superimposed feld (NSF). Therefore, we can divide the hash bit
field of & functor inte the SF and NSF, and use a different bit setting ratio to
reduce a false drop ratio. This hashing function is called field separated hash
(F5H). The bit setting ratio of the superimposed field is denoted BSHgp, and
the non-supenmposed field 15 denated BSR ygr. The hashing funciion of &

functor without dividing any field is called wniformiy distributed hash (UDID

FDR(%)

70 ~
60 |- e ’ SSCW uniformly
#a _'. distributed hash
50 :
40 |- .- ey
o SSCW fiehd separated
30 .-' hagh
' L]
20 - A
: . * \E 2 B =
0 b A ! ' ! I Ratioof

iables(%
0 10 20 30 40 50 60 % es(%)

Figure 1 Field separated hash and Uniformly distributed hash

10

FDR (%)

15 ~ BSRgF
ol ..+
10| = —
20| —
0 ! 1 L |
40 45 50 55 BSRygr (%)

Figure 2 SSCW Bit Setting Ratios

Figure 1 shows the effect of the field separated hash. This figure shows the
relationship between the variables in a term and false drop ratio of two hasing
method for the sample data. The uniformly distributed hash method is weak
in terms with many variable because of the effect of variable in data terms.
Suppose the descriptor for an SSCW of f(V, W) whose superimposed ratio is
70%, 70% of the hashed value of the functor f is masked by the hashed value of
V and W. (Hashed value of variable for descriptor has bit 1 at all bit position
in its hash bit field.) In uniformly distributed hash, the information about
f 1s distributed umiformly in the superimposed field and non-superimposed
field. However, in field separated hash, most of the information on [is
concentrated in the non-superimposed field. Thus even for terms with many
variable, information on a functor in the S5CW is not masked signigicantly.

Therefore, we use the field separated hash in the following section.

11

FDR{%)
50 -

40 +

30

20

10 =

0 . I 1 I I |
40 50 60 70 80 S0 100

SR(%)

Figure 3 SSCW Superimposed Ratio

Figure 2 shows the relationship between the bit setting ratio and false drop
ratio for the sample data. In the test data of this experiment, the average
depth of terms is 2 to 3, and 1.5 to 2.5 hashed values of the functor (without
variables} are superimposed in average. It seems that & BSEgr of 50% in the
non-superimposed field and a BSRsr of 10 in the superimposed field is good

for this sample data.

3.2 Superimposed Ratio

Figure 3 shows the relationship between the superimposed ratio and the
false drop ratio. In this data, the average number of arguments of a functor
js 2 or 3. Hence, when the superimposed ratio is about 70% (2/3 to 3/4), the
performance of the SSCW is good. When the superimposed ratio becomes
too large, the false drop ratio becomes very large. Because there are some
terms in which arguments are variable, such as f(V, W), the false drop ratio

becomes large. Too small a superimposed ratio also generates a bad false

12

[Aaf) [x@) | ha) [A(Y) |
FEW for f(g(a),Y)

A ~--000- -
Lh{g)] - --000:-- |
OR E h(Y) |
- (7 (9(a), Y)) N

SSCW of BSRsr = 0 for f(g(a),Y)

Figure 4 Example of the FEW and S5CW when BSRsp = 00

drop ratio, because of the lack of information for arguments.

4 Indexing Schema for Terms and Structures

Several indexing scheme for terms and rules have been proposed. This
section describes these schema.,

Wise and Powers proposed the field encoded word (FEW) in [WP87] for
Prolog's clause index. Tn this methad, the code word is divided into several
fields for each hashed value of symbols in a term, as illustrated in Figure 4.
The hashed value of variables is all binary values 1 in the bit field for descrip-
tors and all (for query masks, the same as for SSCWs. The FEW retrieval
method is also 5; A @ = Q, where 5; is a descriptor for the i-th term and Q
is a query mask for a query.

The FEW method can be regarded as a special case of the SSCW method.
(See Figure 4.} The FEW hashing function can be regarded as a kind of field
separated hash where the bit setting ratio of the superimposed field is 0.

Since no hashed value of the symbol in a term is superimposed in FEW,

13

the optimal value of the bit setting ratio of the hashing function of functors is
1/2. Since some parts of the hash bit field of each symbol are superimposed,
the SSCW of section 3 has a wider hash bit field than that of the FEW,
However, this causes some interference between overlapped hash bit fields
for S5CWs of section 3. Then, if there are many variables in a term to be

retrieved, this interference increase the number of false drops.

Figure § shows the performance of the SSCW method and FEW method.
In this figure, the sample data is divide into two groups; Figure 5 (a) shows
a r::itua.t.ion where there are many variables in terms to be retrieved, and few
variables in query terms. Figure 5 (b} shows a situation where there are few
variables in terms to be retrieved and many variables in a query terms. In
(a) the SSCW of section 3 has a small false drop ratio, because of the wider
hash bit field. In (b) the FEW method shows good performance, because
there is no interference.

Because the FEW can be regarded as one of the SSCW methods, we can
tune up (select) the hashing function for each application using the bit setling
ratio of the fleld separated hash and subrange.

Other indexing scheme using a superimposed code word scheme have
been proposed. Ramamohanarao and Shepherd [RS87] proposed an index-
ing scheme using a superimposed code word scheme. In this scheme, the
descriptor is divided into two. One part is 2 code word that is computed by
superimposing the hashed values of all functors in a terms. There is no infor-
mation about the position of each functor in a term. The other part is used
to indicate whether each position of a template term is a variable or functor
{or mil). To retrieve a term, every descriptor is checked to see whether each
functor of the query term occurs in the term or a variable occurs in the term
in the same position as the functor.

There is another schema that concatenates each hashed value instead of

superimnposing them. Ohmori [QOT88] has proposed an indexing scheme called

14

FDR(%)

FEW
SS5CW

Datal Data?2 Datad Datad

(a) Few variables in query terms

FDR(%)

Data5 Dataé Data7 Data8

(b) Many variables in query terms

n S5CWs and FEWs

1

Figure 5 Effect of varizbles

15

FDR (%)

25
. SOW | o—
. FEW| ——
20 b - HV| v-c=
15 - -
10 - -
2 —"_"“—-—-—-"_::"""*a-_
0 L | ' . width of
3 40 50 g0 the wor
20 0 (hit)

Figure 6 Code width and false drop ratio

the hash veetor method. In this scheme, terms to be indexed are expanded

rst, according to a provided template term, and the hashed values of each
functor and variable are concatenated. Henschen and Naqvi [HN81] have
proposed an indexing scheme of terms for a theorem prover. Berra [Bea87]
also described an indexing scheme.

Advantages of the above methods are efficient resolution capability of an
index, and no interference of the hashed values of variables in the hashed
values of functors.

There are two disadvantages. One is that their retrieval is rather compli-
cated, that is, they need a logical operation with the same number of nodes
23 the template term The other is that the false drop ratio of such indexing
methods 15 dependent on the figure of the template term, that is, if a functor

is out of the template, the functor information is ignored.

16

An advantage of SSCWs and FEWSs is simple retrieval. In an 55CW,
a unifiable pair of terms can be checked by one logical operation which Is
provided in almost all micro-processors.

The SSCWs and FEWs can also flexibly determine the hash bit field of all
nodes in the term, preventing nodes in a term set from being ignored as much
as possible. Figure 3 shows the relationship between the code width and the
false drop ratio of the hash vector (HV), FEWs and SSCWs for a sample case.
In this case, there are many figures of a term that do not suit one template.
Since code words are used efficiently in the FEW and the SSCW methods,

the false drop ratio is not very large when the code width is small.

5 Summary

This paper described the SSCW method. This scheme provides fast term
retrieval that retrieves an object (knowledge) which has a term unifiable with
a specific query term. In this method, each term is encoded to code word
efficiently and the object to be retrieved is pre-checked using its code word
(descriptor) with a very simple uperafinn.

This paper also briefly described the design of the code word, and proposed
field separated hash to reduce the false drop ratio.

In future, we will use the SSCW method in an experimental knowledge

base machine [MMISS88], and measure the performance of the index to terms.

Acknowledgments

We wigh to thank Mr. N. Miyazaki and Mr. M. Wada of Oki Electric
Industry Co., Ltd., and Mr. H. Sakai and Mr. S. Shibayama of Toshiba
Corporation for many useful discussions. We also extend our thanks to the

members of the KBM working group at ICOT for their helpful suggestions.

17

References

{Beal87]

[HN81]

[MMISS88]

(MMNS87]

[MYNIS6]

IMWI86]

(0Ts8]

P.B. Berra et al., Computer architecture for a surrogate file to

very large data/knowledge bases, JEEE COMPUTER, pp.25-32,
March 1987

L. Henschen and 5. Naqvi,

A fast literal indexing scheme, in Proceedings of the Sewventh
International Conference on Artificial Intelligence, pp.528-520,

Vancouver, British Columbia, August 1981.

Monei., H. et al, Parallel Control Technique and Performance
of An MPPM Knowledge Base Machine, in The Proceedings of
the Fourth Internetional Conference on Data Engineering, Los

Angeles, CA, pp.210-217, February 1-5, 1088

Y. Morita, H. Monoi, A. Nakase, and S. Shibayama, A knowl-
edge base machine with an MPPM (3) - an indexing scheme for
terms —, in Proceedings of 85th IPSJ Conference, 2C-7, 1987 (in

Japanese)

Y. Morita, H. Yokota, K. Nishida and H. Itoh, Retrieval-By-
Unification Operations on a Relational Knowledge Base, in The
Proceedings of the Twelfth International Conference on Very Large
Data Bases, Kyoto, Japan, pp.52-59, August 1986.

Y. Morita, M. Wada, and H. Itoh, Structure retrieval via the
method of superimposed codes, in Proceedings of 33th IPSJ Con-
ference, 6L-8, pp.1277-1278, 1986. (in Japanese)

T. Ohmor and H. Tanaka, An Algebraic Deductive Database
Managing a Mass of Rule Clauses, pp.6860-673, Dafabase Ma-

18

[RS8T]

[Ros79]

[WPS87]

chines and Knowledge Base Machines, Kluwer Acdemic Publish-

ers, 1988

K. Ramamohanarao and J. Shepherd, Answering Queries in De-
ductive Database Systems, pp.1014-1033, Volume 2 of Logic Pro-
gramming, The MIT Press, 1987

C. S. Roberts, Partial-Match Retrieval via the Method of Su-
perimposed Codes, in Proceedings of the IEEE, Vol. 67 No. 12,
pp.1624-1642, December 1970.

M. J. Wise and D. M. W. Powers, Indexing Prolog clauses via su-
perimposed code words and field encoded words, in Proceedings
of the IEEE Conference on Logic Programming, pp.203-210, Jan-
uary 1987

19

