ICOT Technical Report: TR-382

TR-382

A Parallel Algorithm lor Inheritance
Hierarchies with Constraints

by
S. Menju. H. Itoh and Y. Morita

May, 1988

©1988, 1COT

Mitg Kokusai Bldg, 21F (3 456-3181-5

“ C] I 4-2% Mg 1=Chorne Telex ICOT 1732564

Afinato=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A. Parallel Algorithm for Inheritance Hierarchies
with Constraints

Satoshi Menju, Hidenori Itoh and Yukihiro Morita

ICOT Research Center
Institute for New Generation Computer Technology
21F, Mita Kokusai Bldg.,
1-4-28, Mita, Minato-ku, Tokyo, 108, Japan

May 1988

Abstract

This paper introduces & knowledge representation language
for a multiple inheritance network with constrainls and a parallel
algorithm for it. Processing efficiency and other properties are
discussed. Its algorithm is written in a parallel logic programming
language, Guarded Horn Clauses (GHC).

1. Introduction

Algorithms to process multiple inheritance with exceptions have been
discussed in [1,2,3,4]. In these algorithms, the property inheritance between
two objects is represented statically by a link. This paper introduces the
idea of constraint attachment to properties in the representation of more
complex imultiple inheritance problems. The idea of constraints has been
argued in logic programming languages [5,0] to solve more complex logical

problems. This also seems to be a kind of knowledge representation lan-

guage using constraints. From the point of view of constraints and their
processing in parallel, the parallel processing algorithm presented in this
paper is more powerful than the previous ones. It is expec ted to make a new
paradigm of knowledge representation or knowledge management language.

In this research, not only representation power but also processing ef-
ficiency are important. This paper first explains the inheritance network
model whose link contains added constraint information, and gives eliicient
parallel algorithms to process it. These algorithms are written in Guarded
Horn Clauses (GHC) [7], a parallel logic programming language defined as

the kernel language of the Fifth Generation Computer System.

2. Inheritance Network

This section lists some basic preparations for the following discussion.
First, a multiple inheritance network is defined. An inhentance network is
composed of a set of individuals and predicates and & set of links.

< p,+q > and < p,—¢ > are reasoning links {or, more simply, links),
where p is an individual or a predicate and ¢ 1s a predicate. < p,+g > is
called &n fs-¢ link and < p, —g > is called an is-net-a link. The < p,+¢ >
link exists in an inheritance network iff p is reasoned to be ¢, and the
< p,—g > link exists iff p is reasoned to be not g. When a link exists from
pto g, it is said that p is a parent of ¢ and ¢ is 2 child of p.

Graphically, an individual is denoted by a white node, a predicate 1s

denated hy a black nade, an is-¢ link is denoted by an arrow and an s-not-

a link is denoted by a crosshatched arrow.

A reasoning path, P(p,p.), from node p; to node p, is composed of
links < p;,opiy; >, where 1 £ ¢ < n—1 and ais + or —. The logical
lengih of path P(p,,p.)isn — 1.

An 1s-¢ link is a positive path, and an is-not-a link is a negative path.
If a positive path, P(z;,z,), and an is-a link, < z,,+y >, exist, then
path P(z,,y) is 2 positive path. If a positive path, P(z,,z,), and an is-
not-a link, < z,,—y >, exist, then path P(z,,y) is a negative path. All
paths which do not fulfil these conditions are called meaningless paths. For

example, a path, (< a,+b >, < b,—c >, < ¢, +d >), is a meaningless path.

Now we assume a few restrictions on our model as follows.

(1) Every pair of nodes has at most one link, and

(2) no paths make a loop.

Here, a positive node set, a negative node set and a non-conclusion node
set ave defined. A positive node set of the starting node, s, is a set of nodes
which can be reached through the positive path from s. A negative node
set of 5 is a set of nodes which can be reached through the negative path
from s. If a node has both positive and negative paths from s, then the
node should be decided by the path length and starting node priority rules,
which are given in section 4, showing whether it belongs to the positive or

negative node set. A non-conclusion node set of s is a set of nodes which

can be reached through a meaningless path from s.

A triplet of these sets is a resolution of the inheritance network. There
are two ways of finding the resolutions. One is credulous reasoning, and
the other is sceptical reasoning. whose definitions are given in [1,2].

Credulous reasoning gathers all nodes which can be drawn through pos-
itive andfor negative paths in an inheritance network. Sceptical reasoning
does not gather nodes which can be drawn through both positive and neg-
ative paths in an inheritance network. It gathers only nodes which can be
drawn exclusively through positive or negative paths.

We have already shown a parallel reasoning algonithmn to find one of
the resolutions using credulous reasoning [1], and have also shown that the
processing time of erder O(n) is C % n, that is, linearly, where n 15 the

length of the longest path in the multiple inheritance network [4].

The following sections expand the parallel reasoning algorithm for the

inheritance networl whose link has constraints,

3. Inheritance Network with Constraints

This section discusses an inheritance network with constraints.

A link with an added constraint is defined as follows.

< p,aq,C > is a link with an added constraint, C, where a is + or
—. If & is 4, then it is called an ss-a link with constraint C, and if a

is —, then it is ealled an 1s-not-a link with constraint €. When C fulfils

all conditions, p can be reasoned ag, and when C does not fulfil at least
one of them, p cannot be reasoned ag. C' is a set of conditions, that is,
C = {as(z;)|1 <1 < n}. Each node, z;, has a condition as.

Now, constraint C = {as(z)} and link < p,ag > are given, where link
< p,aq > is connected by a positive constraint link (denoted — — — =) from
node z, «s is +s, and condition +s is true iff C acts on link < p,ag > asa
positive constraint. Moreover, constraint C = {as(z)} and link < p,aq >
are given, where link < p, g > is connected by a negative constraint link
(denoted + + + >) from node z, as is —s, and condition —s is true iff
acts on link < p,ag > as a negative constraint. In these two cases only,
constraint C' is said to fulfil the conditions.

A condition, as, at node r is given from outside initially or is an inter-
mediate result of its reasoning.

Briefly, a link, < p, agq >, with constraint C exists, C fulfils the positive
or negative condition and link < p,eq > is connected hy the positive or

negative constraint link iff p is reasoned to be ag under C.
Here, a simple example is shown.

< August, +Summer, + Northernhemisphere> means that it is summer
i1 August in the northern hemisphere, and < August, + Winter, + Southern-
hemisphere> means that it is winter in August in the southern hemisphere.
In this example, + Northernhemisphere and +Southernhemisphere are the

constraints of cach link. Fig. 1 shows this.

a:August b: Summer c: Winter
d:Japan e : Northernhemisphere
f : Australia g : Southernhemisphere

Figure 1 Simple example

Next, more examples are given.

(1) Prionty
A link, < a,+¢,—b{b) =, where constraint —&(b) is predicate b is not
true at node b, means that if e is reasoned not to be b, then a is reasoned

to be ¢, This is shown in Fig. 2.
(2 Exclusive
< a,+b,—clc) > and < a, +e, —b{b) > mean that @ can be reasoned +b

or a can be reasoned +c¢ exclusively, This is also shown in Fig. 3.

(3] Default (Etherington and Heiter [3]}

Figure 2 Priority

C
N
¥ X

Figure 3 Exclusive

Shell-bearer

' Y
o
Molluse 1‘_‘* 2 ¢
A
x x
Cephalopod . +
-f.
}
'
Nautilus

Figure 4 Default

The example of Etherington and Reiter [3] is written in the following

links with added constraints (Fig. 4).

< a,+d, >, <a, +b >, <b+ec, >,

< b, —d,—ela} >, < ¢, +d, —bb) >

4. Parallel Algorithm

This section shows a parallel algorithm to find one of the resclutions by
credulous reasoning. Before showing it, we impose the following restriction
on the inheritance network.

No cycle of the reasoning paths through the constraint links may exist

in an inheritance network. The example in Fig. 3 has a cycle of reasoning

paths through constraint links. Our parallel algorithm treats only acyclic
inheritance networks.

Definitions are given.

n is 2 node and s is a starting node in an inheritance network. A
triplet, (mark(s),i(s),p(s)), on n is defined as follows. mark(s) is tm
(truth mark), fm (false mark) or mm (meaningless mark). One of these
marks is propagated from starting node s. (s) is the logical path length
from s to n. p(s) is the priority of starting node s.

Next, the mark propagation rule is defined as follows. Node b is assumed
to have a triplet, (tm(s),i(s),p(s)), and node ¢ is connected with & by a
reasoning link. If a constraint, €', of link < b,+¢ > [/ < b, —¢ > fulfils the
conditions, node ¢ receives the (tm(s), 14 1(s),p(s)) / (fm(s),i+1(s), p(s))
triplet from node b, and if a constraint, C, of link < b, ac > does not fulfil
the conditions, node ¢ receives the (mm(s), oo, 00} triplet from node b.

Here, a constraint, C, from node z fulfils the conditions iff node = has a
tm and link < b, ac > is connected by a positive constraint link from node
z (Fig. 5 (a)), or node z has fm or mm and link < b,ac > is connected by
a negative constraint link from node z (Fig. 5 (#)). C does not fulfil the
conditions in any other case.

Node ¢ always receives the (mm(s), 00, 00) triplet from node b, whose
mark is fm or mm. In this way, these triplets are propagated to every child
of node b in parallel. Note that if a triplet has an mm, then both the logical
length and the priority are co.

Next, if node ¢ receives many triplets, (mark, L, P), from parent nodes,

tm o fmimm
————P <++++H9
X X
b b
(a) (b)

Figure 5 Satisfiability of constraints

then one triplet of node ¢ from them must be defined by using the logical
path length, L, from the starting node and the priority, I, of the starting
node,

If (mark(sy),1(s:). pls:) s are received triplets at node ¢, I < k <1 and
! is the number of parents of node ¢, then triplet (M, L, P) of node ¢ is

defined as follows,

P = p'(s;), where p'(s;) is a minimum value among every priority, p(s:).
L = i'(sy), where i'(&;) is 2 maximum value of i(s;) whose priority is p(sx)-

M = mark (s:), where the {(mark(sy), i"(sc), p'(se)) triplet exists, and
i"(8x) is a minimum value of i(s;} whose priority is p'(s:). merk({sg)

is propagated along the path of the shortest logical path length.

Note that M cannot decide the tm or fm definitely. In credulous rea-

soning, both tm and fm are resolutions. However, for the simplicity of the

10—

algorithm and processing efficiency, the user decides at the beginning of
processing which mark, tm or fm, is to be used, according to the property
of the given problem. Then our parallel algorithm is defined for one of the
resolutions in credulous reasoning.

Because our inheritance network is restricted to be acyclic and the num-
ber of nodes is finite, the termination and soundness of this parallel algo-
rithm are clear. This parallel algorithm stops at a time in the linear order
of n, where n is the maximum length of the reasoning paths connected by
constraint links which do not form any eycle.

Initially, a question node, a, is assigned and some constraint nodes, (1),
of a are chosen, then these nodes work as the starting nodes under the
above parallel algorithm. Generally, the highest priority is assigned to a
question node a, that is to say, p(a) = 0.

When this algorithm stops, then the attached nodes, tm(a), are collected
as the answers of the question to the inheritance network with constraints.

The simple example explained in section 3 is shown in Fig. 6 again.
Here, we waﬁt to find an answer to the following question. Is it summer in
August in Japan? In this example, August is assigned as a question node
and Japan is assigned as a constraint node. Initially, the August node has a
triplet, (tm{August),0,0), and Japan has also a triplet, (tm(Japan),0,1).
Using the parallel algorithm, we can find the answer node, Summer, with

tm{ August) attached.

bitmia), 1,00

——
- S

S
emmial®,=) 7 etmd11) S glfmd),11)
rd et

@ ; @ Y

altm{a),0,0) ditm{d},0,1) fimm(),= =)

a:August b : Summer ¢ : Winter
d:Japan e : Northernhemisphere
f : Australia g : Southernhemisphere

Figure 6 Example of a parallel algorithm

5. Programs in Parallel Lozic Programming Language GHC

This section shows programs in parallel logic programming language
Guarded Horn Clanses {GHC) [7] to find the resolution of a given inheri-
tance network with constraints according to the parallel algorithm given in
the previous section.

The logical structure of Fig. 1 is written as shown in Fig. 7 (b) in GHC.
For comparison, a program without both constraints and priorities for the
structure is shown in Fig. 7 (a). It cannat find a correct solution in this
case. gen and node are processes defined in GHC. Ms is the input of the gen
process, end N = [[N-node, P-node)|node= a, b, e, d, ¢, f, ¢] is the output of

the gen process. Here, Ms is a list of the triplets and { N-node, P-node) is

__]E_

gen(Ms,N) :- true |
node(a,Ms,Na, [] ,TMa, _),
node(b,Ms, b, [TMa] S I

node(c,Ms,Nc, [THa] D
node(d,Ms,Nd, [] ,TMd ,FMd),
node(e,Ms, e, (TMd,FMf],_ ,_),
node(f,Ms,Nf,[] ,THME ,FME),

node(g,Ms,Ng, [TM£,FMd],_ ,_),
K=[Na,Nb,Nc,Nd,Ne,Nf Ng].

(a) Program for Fig. 1 without constraints

gen(Ms,N) :- true |
node(a,Ms,Na,Pa, [] yTMa, _),
node(b,Ms,¥b,Pb, [(TMa, [{+,8¢)1)] ,_ ,_),
node(c,Ms,Nc,Pc, [(THa, [(+,8)1)] ,_ ,_ 1,

node(d,Ms,Nd,Pd, [] ,THd ,FMd) ,
node(e,Ms,Ne,Pe, [(TM4, [1),(FME, (1)), ,_),
node{f ,Ms,Nf,P£,[] ,TMf ,FM£) ,

node(g,Ms,Ng,Pg, [(TME, (1), (FM4, D], ..).
N=[(¥a,Pa), (Nb,Pb), (Nc,Pc), (Kd,Pd), (Ne,Pe), (Nf,Pf), (Ng,Pg)].

(b) Program for Fig. 1

Figure 7 Sample program in GHC

— 13 —

a pair of the mark and priority of each node.

The first argument of the node process is the name of the node in Fig. 1.
The second argument is an input list of the gen process. The third argument
1s the mark given at the node. The fourth argument is the priority given
at the node. The fifth argument is marks and constraints at the node.
The sixth argument is a ccmmon variable defined in GHC, and it is used
for the communication with the nodes connected by the is-¢ link from its
node. The seventh argument is also a common variable and it is used for
communication with the nodes connected by the is-nof-a link from its node.

Fach process node receives Ms from the process node connected with the
common variable, calculates the mark, the logical length and the priority
of its node. and then sends them through the common variable in the sixth
and the seventh arguments.

The appendix gives the whole program in GHC.

6. Conclusion

This paper iniroduced the idea of inheritance network with constraints
and a method of representation. This method of representation is expected
to become & nseful knowledge representation language, because, in many
cases, the relations among chjects represent constraints.

A perallel algorithm for inheritance networks with constraints is also
shown. This algorithm seems to be an expansion of Touretzky's algorithm

for static multiple inheritance without constraints.

This algorithm terminates at time O(n) in linear order where n is the
maximum length of the reasoning paths connected by constraint links, be-
cause our inheritance network has no cycle of reasoning paths through the
constraint links.

The discussions in this paper dealt with the model and approaches to
parallel processing, co-operative problem solving and logic programming
with constraints. The feasibility and flexibility of the parallel algorithm

must be verified by applying it to the larger real applications.

References

[1] Touretzky, D. S., The Mathematics of Inherilance Systems, Morgan
Kaufmann Publishers, Los Altos, CA, 1986,

(2] Horty, J. F., Thomason, R. H. and Touretzky, D. 5., A Skeptical The-
ary of Inheritance in Nonmonotonic Semantic Networks, Proceedings of
AAAI-87, 1987, pp.358-363.

[3] Etherington, D. W. and Reiter, R., On Inheritance Hierarchies With
Exceptions, Proceedings of AAAI-88, 1983, pp-104-108.

[4] Menju, S., Morita, Y. and Itoh, H., A Parallel Algorithm for Inheritance
Network with Exceptions, Proceedings of 36ith IPSJ Conference 6P-8,
1988, pp.1491-1492 (in Japanese).

{5] Colmerauer, A., Opening the Prolog III Universe: A New Generation

of Prolog Promises Some Powerful Capabilities, BYTE, August 1987,

pp.177-182.
[6] Jaffar, J. and Lassez, J. L., Constraint Logic Programming, Proceedings
of 4th IEEE Symposium on Legic Programming, 1987.
[Tl Ueda, K., Guarded Horn Clauses, Proceedings of Logic Programming
‘85, Lecture Notes in Computer Science 221, Springer-Verlag, Berlin

Heidelberg, 1986, pp.165-178.

APPENDICES
A. GHC Program

The CEC program of our algorithm is represented below, The initial
goal of the program is go{ Ms), where Ms is a stream variable of lists of
triplets, { NodeName, Mark, Priority). In this program, the priority of the

mm 13 0 for convenience.

A SEHEHE*H} represents the structure of a network.
% ¥s is the input, a list of triplets, (Nodelame, Matk, Prierityl.
% N is the eutput, a list of pairs, (Mark, Prierity), of each node.

gen(Ms,N) - true |
nodefa,Ms,Na,Pa, [J JTHa,_ 7,
node (5, ¥s Wb, Pb, [{TH2, [{+,Kel1)] .
node{s Ms Ne, Pc, [{Tra, [{+,8g)1)] . T
node(d M= Kd, P4, [0 LTMd Fud),
node{e Ms Ne Pe [{TMd, (13, (FEf (]33, .. 3,
node(f Mz, NE,Pf, 0 ,THE FME),
node(g,Ms Ng Pg, [{TME, [1),(FN4, (10T, ,_ 3,

H=[{Ka,Pa) ,(Nb,Fb),(Nec Fc), (Nd Fd}, (Ke Pe), (NI, PL), (Kg.Pgl].

— 6 -

% gol(Ms) is the initial goal of the program.
% Ms is the input, a stream of liste of triplets, (NodeName, Mark, Prierity).

go{Ms) :- true | gol{Ms,Os} , ocutstream(Os).

gel([M1|¥s],08) i~ tree | gen(M1,N) , Ds=[nl,srise{(M1},nl ,write(N),nil0s1],
goliMs,0s1).

gerl O ,08) = tree | Os=[write(’'terminated.’'},nl].

node{Name M=, K,P ks, TH,FH) computes a mark, N, and a prierity, P, of a
nede corresponding to MName, and marks propagated from the nede, using
input Ms, which is a list of triplets, (NodeName, Mark, Priority), amd

Iz, which i= & list of links to the mode. TM (FM) is a mark to be
propagated through is-a links (is-not-a links, respectively) from the node.

E

node{Name, [{N1,_,_) |cs] ,N,P X5, TH FH) :- Ni\=Kame | node(Name,Cs,N,P,Xs,TH,FN).

nede{Name ,[] ,8,P,Xs,TH,FH) :- true |
searchimm,0,1,1,X= N P MaxC) , prop(N,TH1,FHi} , C:=MaxC+i , TH=(TH1,F,C},
FH=(FM1,P,CJ.

node{Name , [{Rame M, F}|_],¥,P1,%e,TK,FN) :- true | sesrch(M,P,0,0,Xs NP1,),
prop{N,TH1,F1) , TM=(TM1,Pi,0) , FM=(FK1,F1,0).

% prep(M,TH,FE} chooses the types of marks which a node with mark M
W Propagates.

prepicm, TH,FM) :- true
propid ,TH,FE] - M\=tm

| TM=tm , Fl=im,
i THemm , FH=mn.

% search(THM,TP,TMax,THin,X=,K,F,C) computes & mark, N, & prierity, P,

% and & logical path length, C. TM, TP, TMax and TMin are a temporary

% mark, a temporary priority, a temporary maximum logical path length, and
% a temporary minimum logical path length, respectively. Xs is a list of

% ((mark, prierity, legical path length),constraint).

search(TM,TP, TMax , TMin, [({mm,_,_J,_31Xs),R,P,C) :=- true |
gearch{TH,TP,THax ,TMin X5, H,.P.C).

gearchlmm,_ ,_ ,_ ,[{(M3,P1,C1),Cons}|Xe],¥,P,C) = true | conl(Cons,CM),
check{CM,mm M1, ,N¥,C1,C1,_,C1,C1,_,P1,P1,_} , search(NM,P1,01,C1,%,0,P,C).

search{TH,TP,THax , THin, [({_ ,Pi,_),Cons)iXs] N,P,C} := TM=mm,K TP<PFi |
search(TH, TP, THax ,TMin,Xs ¥ ,F,C).

search{TK, TP, THax, THin, [{(M1,P1,C1),Cons} | Xs] ,H,P,C) - M1l'=mm,P1<TF |
con{Cons ,CK) , check(CM,TH, M1 ,NM, THMin,C1,KMin, TMax, C1 KMax ,TF,P1,NP},
search(NM NP EMax NMin Xs ¥,P,C).

gearch(TH, TP, THax, TMin, [{(¥1,P1,C1),Cons) |Xs],K,P,C) := THM\=mm,P1=TP,TMin=<C1 |
max(THax,C1,KMax) , search({TH, TP NMax, THin,Xs N,F,C).

search(TH, TP, THax, TMin, [{{M1,P1,C1),Cona) | 2] K, P,C) := Mi\=mm P1=TP,THin>C1 |
con(Cons,CH} |, check(CM, TH, M1 N, TMin,C1,NMin, TMax,C1,_,TF,P1,_),
search(NM,TF,TMax WMin X5, K,P.C).

search(TN, TP, TMax,_,[1,¥,F,C) := true | C=TMax , K=TM , P=TF.

pax(X,V,2) - X>=Y
max(X,Y,Z) = X<¥

¥ con(Cons,CM) checks whether the constraint, Cons, is satisfied.

conf [] LCMY = true | CH=tm.
conl([(+,N)|%s] ,CM) :- Netm | con(¥s, CM).
con{[(- ,H)1%s] CM) := K=tm | con(Xs, CM]).
con{[(+ 8} %] CH) := Wi=tm | CH=fm.
con([{—,H)I1%s] ,CH) :- N=tm | CM=fm.

]

“ check(CH,...) chooses a temporary mark, a temporary minimum logical path
% length, & temporary maximum logical path length and a temporary priority.

check(tm,_ ,M2,M3,_ Min2,Min€s,_ ,MaxC2,MaxC3,_ ,P2,P3) :- true |
M3=M2 |, MinC3=MinC2 , MaxT3=MaxC2 , P3=P2.
check(fm M1,_ ,M3,MinCt,_ ,MinC3,MaxC1,_ ,MaxC2,P1,_ ,P2) := true |

M3=M1 , HinC3=MinC1 , HaxC3=HaxC1l , F3=F1.

B. Example

Suppose that we want to know, first, whether Angust is suminer or win-
ter in Japan, and second, whether it is summer or winter in Australia. For
the first question, we sel a mark, {m, with priority 0 on node a, corre-
sponding to August, a mark, tm, with priority 1 on node d, corresponding
to Japan. Fer the second question, we set a mark, tm, with priority 0 on
node a, a mark, tm, with priority 1 on node f, corresponding to Australia,
Then our program runs as follows. Note that the two questions are also

processed in parallel.

| 7= ghe ge{[[(a,tm,0),{d,tm,1)],[{a,tm,0),(f,tm,1}]1]).

[{a,tm,0),{d,tm,13]
[(em,0), (tm,0), (mm, 00, Ctm, 13, Cem, 10, {mm, 0), (fm, 1]

[(a,tm,0),(f,tm,1]}]
[(tm,0), (mm,0), (tm,0),(mm,0}, (fm,1), (tm, 1], {tm,1)]

terminated.

yes
| 7-

Since, in the first solution list, the second pair is (im,0) and the second
node, b, means summer, August is summer in Japan. Similarly, since, in the
second solution list, the third pair is (¢m,0) and the third node, ¢, means

winter, August is winter in Australia.

