ICOT Technical Report: TR-381

TR-381

Integration of Relational Knowledge Bases
and Logic Programming Languages

by
. Monol, Y. Morita, H. Itoh, T. Takewaki.
H. Sakai and S. Shihavama(Toshiba)

Muy. [988

Coess. jcoT

Mita Kolusai Bldg, 21F {13) 456-3191 -5

IGDT 4-2% Mita 1-Chome Telex 1COT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Integration of Relational Knowledge Bases

and Logic Programming Languages

Hidetoshs MONQI, Yukihiro MORITA, Hidenor: ITOH
ICOT Research Center®
Toshiaks TAKREWAKI, Hirosht SAKAI Shigeki SHIBAYAMA
Toshiba R & D Center’

May 1988

Abstraet

Relaticnal database systems are very useful and widely accepted as the systems
that handie large amounts of data efficiently. liowever, the expressive power of the
data model is limited becsuse of the restriction of the first normal form. This lmita-
tion prevents storage of knowledge representing data wilh a complicaled slruclure Lo
a traditional database system and prevents the realization of applications nsing lazge
amounts of kuowledge. The relational knowledge base (RKB) model was introduced
to remove such limitations on the logic programming language. The REKB cuables
Prolog terms to be stored and manipulated within the framework of the relational
model,

This paper introduces a manipulation language for scts of terms stored to the
EKE. This manipulation language is embedded in the logical programming language
and enables the logic programming language to manipulate large amonnts of knowl-
edge represented by terms. Hecanse our manipulation language can manipulate
terms using the unilication operation, we can manipulate terms stored in the RKD

without cperational gaps from the unification based logic programming fangnage.

*Institute for Wew (Generation Computer Technology, 4-28. Mits 1-Chome. Minato-ku.
Tokyo, 108, Japan

Y1, Wommukai-Toshibo-cho, Soiwsi-ku. Kawssaki, 210, Japan

1 Introduction

As knowledge information processing technology advances, many
knowledge-based systems, such as expert systems, will be made for practical
use. The amount of knowledge and the degree of complexity of knowledge
representing data used in such systems will increased according to the degree
of maturation. Such knowledge will be required to be shared by knowledge-
based systems on the analogy of traditional database systems.

In recent years, logic programming languages have become very popular in
the design and implementation of knowledge-based systems. However, these
systems are established with the premise that all knowledge is included as
part of the systems in spite of the fact that they must handle a large amount
of knowledge or that thev have a knowledge base management system for
private use. ln such situations, it is necessary to establish a dedicated system
which can efficiently manage and store a large amount of knowledge, that
is, knowledge representing data with a complex structure, shared by several
knowledge information processing systems. We call this dedicated system a
Enowledge base system.

Database systems are very useful and widely accepted as systems to ma-
nipulate and share large amounts of data. However, the expressive power
of the data model is limited because of the restriction of the first normal
form. This limitation prevents the use of traditional database systems as the
back end of logic programming languages which use structured terms as the
basic data structure. Recenily, much research has been conducted towards
extending the traditional data model and adding more useful semantics to it
[8][10][14]. Especially, for the rclational data model, many extensions have
been made because of its formally definable semantics.

We are researching a knowledge base system which can be accessed from

knowledge information processing systems based ou the logic programming

language in Japan’s Fifth Generation Computer Project. A logic program-
ming language can be regarded as a programming language which mamuipu-
lates terms as basic data structures. It can manipulate terms with complex
structure using a unification operation. Therefore, we intend to establish
knowledge base systems that can be store and manipulate large amount of
terms efficiently.

We have proposed a relationsl knowledge base (RKB) model as an ex-
tended relational data model which can store a set of terms to a table {rela-
tion) and manipulate terms by a unification operation [0]|13]. The collection
of these relatious is called the RKB. We have also proposed a set of operations
on the RKB, which 15 a natural extension of relational algebra and can be
used to perform inference on stored rules. The operations are called. collec-
tively, retrieval by unification (IRBU) operations. Introducing the unification
operation as a basic operation of the RKB, the manipulation langunage for
the RIXB is naturally embedded in a logic programming lunguage.

The major contribution of this paper is to show how to integrate 11 Ds
and logic programming languages. This integration will provide a very cou-
venient environment for Jogic programming language when a large amount of
knowledge is required. This paper introduces query language in the form of
predicates of the logic programming langunge, which can define the retrieval
and updating of sets of terms.

The remainder of this paper overviews the relational knowledge base
medel and onr manipulation language embedded in the logic ProOgramming
language. Section 2 describes the relational knowledge base model, Section 3
delines queries for the relational knowledge buse. Section 4 describes our ma-
nipulation language for term relations. Section 5 is a discussion and Section

G 15 a swnmary of this paper.

A

2 Overview of the Relational Knowledge Base Model

This section overviews the relational knowledge base model. This model
enables us to define terms as attribute values of the relational scheme and
to manipulate these terms by unification operations. Because items stored
to each relation are terms. instances of the relational scheme are called term
relations.

A relational knowledge base is composed of a collection of term relations.
An n-attribute term relation is defined as a relation whose domain of each

attribute iz a set of terins. Here, we define terms as:
1. A variable 15 a term.
2. A constant is & term.

3. If fis an n-ary function symbol and £, ta, ..., 1, are terms, then (i, 12, ..., 8]

15 & term.

This definition of terms is the same as logic programming languages such as
Prolog. Expressing a set of terms, Ky, an n-attribute term relation is defined
as a subset of the Cartesian product of sets of terms, I{;, s, ... K. Assnming

that T is an n-attribute term relation, T is defined as:
Tol, xNKy= . o» K,

In the process of extending the relational data model to the relational
knowledge base madel, operations of conventional relaiional algebra, such as
join, projection, and restriction, are extended to operations based on uni-
fication. We call these extended operations retrieval by unification (HBU)
operations. The extension was made by enhancing the equality check be-
tween constants to unification vperation between terms. The unification-join

and unification-restriction operations are defined as RBU operations [6}(13].

Let us consider a simple knowledge base which will be used to illustrate
the relational knowledge base model. In the following, we express a tuple of

an n-attribute term relation, r, as:

T[Ty, T2, .00y Tn)

where each &; stands for a termm defined above. Each tuple with the same
relation name and the same number of attributes is stored to the relation
with its relation name. Moreover, we assume the conventions of DEC-10
Prolog, such that any word starting with either a capital letter or '’ denotes
variables, and other words denote constants.

Allowing terms as attribute values, many expressions are possible. The
following is a simple bicyele rolation which expresses a module-submodule
relation among modules constructing bicycles. Although there are multiple
submodules for one module, we can express that relation in just one tuple

using a list structure.
Example 2.1 Simple module-submodule relation af bieyeles
assembly(bike, [frame,wheell).

assembly(frame, [front_fork,diamond_frame]).

assembly(vwheel, [tire,rim,spokes hubl).

For example, the first tuple describes that the bike module has wheel and
frame as submodules.

Using n-ary functors, we can add more attributes to each item. For exam-
ple. we can distinguish colors among modules by introducing a color attribute

for each 1bom.
Example 2.2 More comples crpressions using functors

assembly(bike(red), [frame(red) ,wheell).

asaembly(bika{yellnw),[frame{yallaw},ﬂheel]).

assambly[frama(red},[front_furk{red},diamcnd_frame(red]]}.

assembly (frame(yellow),
[frunt_furk[yellow},diamﬂnd_frama{yallﬂw]]}.

assembly(wheel, [tire,rim, spokes,hub]) .

This shows, for example, that a red bike has a red frame and a red frame is
composed from a red front_fork and a red diamend frame.

By introducing variables, we can express the property inheritance between
a module and its submodule. For example, the following tuple expresses that

Tront fork and diamond_frame have the same color as frame.
Example 2.3 Ezpression of property inheritance using variables

assembly(bike(red), [frame (red),wheell),
assembly(bike(yellow), [frame (yellew),wheell),
assembly(frame(X), [front_fork(X) ;diamond _frame(X)]).

assembly(wheel, [t ire,rim, spokes, hub]).

As stated above, relational algebraic operations are extended to RBIJ
operations. The RBU operations allow unification operation to be used be-
tween ierms as conditions of relational algebraic operations. © denotes the
unification operation as a condition, and many symbols defined in [12] de.
note relational algebraic operations, i.e., o, ™, and = for restriction, join, and
projection, respectively.

Using the unification-restriction operation, we can restrict tuples whose
first attribute can be unified with bike(X) from the assembly relation of
Example 2.3. Suppose that the results of this restriction are stored into the

new two-attribute relation, resultl{Xy, Xo), this restriction operation can he

expressed as the following equation.

resultl = o4 obikex)assembly(Ay, Az}
Exampie 2.4 is the resnlt of thiz operation
Example 2.4 Result of the unification-restriciion operation.

resultl(bike(red), [frame(red) ,wheell).

resultl(bike(yellow}, [frame(yellow) ,vheel]).

We can make a list of parts that are necessary for making bike(red)
and bike(yellow) from assembly of Example 2.3 and the resulti relation.
First, to extract submodules one by one from the second atiribute of the

assembly relation, we must introduce unique tuple relation, template, such

€15]

template(X, V. X |Y]:|1

and make the following unification-join operation between the template re-

lation and aszembly relation.
temp = w4, a(template(d;, 49, Anga gﬁz_assamhiy{ﬂl s Ba))
We can obtain the temp relation below as a temporary result.

temp(frame(red), (wheell).
temp(frame(yellow), [wheell).
temp({front_fork(X),[diamond frame(X)]).

temp(tire, [Tim,spokes, hub]).

Making the unification-join between the temp relation and the assembly re-

lation, we can obtain the relation of Example 2.5.

resuli2 = mp, po(templ 4, Ag‘.lmzmasaemﬁfyiﬁl,ng)

frame(X) in the first attribute of the assembly relation is unified with
frame(red) and frame(yellow)} in the first attribute of the temp relation
and the binding to vanable X 15 propagated to terms in the remaining at-

tribute,
Example 2.5 EResuli of the unificaiion-join operation

result?{frame(red), [front_fork(red) ,diamend_frame(red)}]).
result2(frame(yellow),

[front_fork(yellow),diamond_frame(yellow)]).

Although othier relational algebraic operations, such as aggregate func-
tions, are not described ahove, the relational knowledge base model includes
them with the same operational semantics defined in the relational data

model.

3 Queries to the Relational Knowledge Base

This zsection considers how to aceess term relations from a logie program-
ming langnage. A logic programming language can be regarded as a pro-
gramming lunguage that manpulates lerms as a basic data structure. The
RIKD enables direct storage and manipulation of terms. These functions are
cffective in maneging and storing a large amounts of knowledge represented
by terms.

Term relations are manipulated by the relational algebraic operations in
the previcus section. Those relational algebraic operations are procedural
Dp(:L'ELlimlS. BL"CJ;'&'I.IEL' il].U:l:.'.']L-]'.J.i'li}j-_'.‘:l'i'.']lIlIIliIJ.g ltlllguugli: il‘i l'i'LL].':L"I dL’ﬁlilrEltiTﬂ, it
1s necessary to make a manipulation language declarative so that it can be

embedded in the logic programming language without operational gaps.

Bl

3.1 Relational Calculus for the Relational Knowledge Base

For the relational data model, we already have a declarative manipulation
language, called relational calculus. Relational calculus is based on predicate
calculus. Because predicate calculus is also a logic programming language
base, it is desirable to establish manipulation language for the RKB based
on relational calculus.

This section gives an informal definition of the manipulation language for
the RKB. based on relational calculus. It can be considered as an imple-
mentation of domain relational caleulus for term relations. Referencing the
definition of domain relational caleulus in [12], we extend it for the term re-
lations. The extension is made by extending the domain of each caleulus to
the set of terms and operations defined between constants to the unification
operation befwesn terme.

Expressions in domain relational ealenlus for the term relations are of the
form

{{ tq.1t=, "'1tk > IT.':JE;'J{].,KE,...1'!E]}}.'

where eacht, {1 <7 < k)and z; (1 <7 < [} is a term and 1 is a formula buil
from terms and atomic formulas defined below. Each ¢; can include the same
variables used in each r; so that, when variables in each z; are instantiated in
the evaluation of ¢, bindiugs are propagated to the corresponding variables

in each t;. Atomic formulas forming 1 are defined as follows.

r(x1,xz....,%) : where r 15 the rclation name of a Fattribute term relation

and every x; is a term.

xfy + where r and y are terms and # 12 an operator defined hetween terms.

Tn the definition of domain relational caleulus for the relational data
model, each x; must be a constant or a variable and r{xy, 12, ..., ;] merely as-

serts that the value of each 7, variable must be selected so that 225,21 15 in

relation r. However, we must extend this definition so that it can manipulate
sets of terms.

The first type of atomic formula asserts the following. Suppose that <
Y1, ¥2s -, > denotes an arbitrary tuple of relation 7, the value of each T;
(1 <7 <) must be @ such that (@3, Ty, ..., 21} is the result of umfication
between r{xy, &g, ..., 7)) and ™{¥1. Y2, -, w1). That is, there js a most general

unifier, 3, between vz, 1 T2y es 1) and vy, ya. . 1) such that
Mo Ty 2l) = 121, 22,y)8 = (51, s),

For example, suppose X and Y are variables, we can select al] tuples from
the assembly relation of Exanple 2.3 using the formula of assembly (X,V).
Using the assembly(bike(X),V) formala, we can sclect the same tuples as
Example 2.4,

The second type of atomic formula, 78y, asserts that » and y must be
terms thai make 28y true. § is also extended from an arithmetic relational
operator to the operator defined between terins. The next section introdyces
varivus kinds of relational operators between terms,

Atomic formulas may be combined by mcans of lugical operators such as

Vi Ay and - We define formula ¢ recursively as follows.

1. Every atomic formulz is formula.

2 If ¢y and o are formulas, then WV s, Uy A Yz, and =y are formmnlas,
These formulas assert respectively that “y, or ¥, or both are true”, “u, and

ta are Loth truc”, and %y is not trye”

3.2 Relational Operations between Terms

For the relational data model, arithmetic relational operators are suf-
ficient to tompare constants. However, these arithmetic operators cannot

treat structured data fypes such as terms. Therefore, it js necessury to add

]

other relational operators which are defined between terms for the RKB.
This section introduces several relational operations between terms. These
operations are based on unification, unifiability, arithmetic comparison, and
generality between terms.

In the following, it is assumed that x and y stand for terms. Each operator

is defined as follows:

LUinification :

Unification is enc of the mest necessary operation primitives fo manipu-
late terms. We have defined three kinds of operators relating to unification.

They are the operations wo clieck whether two terms are unifiable or not.

When we want to unify two terms or extract substructures from terms,
we can do it using the unification operation, which is shown by =. z =y
asserts that it is true when two terms are unifinble and x s wnified with y.
For example, when the following formulas are used for the assenbly relation
of Example 2.3,

assembly(X, Y) A X = bike(h)

we can select the first two tuples, whose first atinbute’s value is bike(A),

of the assenbly relation and obiain {red,yellow} as a set of bindings to

variable A,

Sometimes, it is necessary only to test whether two terms can be unified or
not without applying their substitutions. We call this a unify-check operation
and assign the <=> symbol 1o it. For example, when the above formula is as
follows,

assenbly(X.Y¥) A X ==> bike(4)

it merely selects the first twa tuples, and cannot obtain any bindings for the

variahle A,
Crenerality

11

When we wanl to know if several terms have the same structure or if
several terms may have the same meaning in our semantic definition for
terms, neither the unification nor the unify cheek operation can be used. To
enable this, the generality of terms should be compared. The generality of

terms is defined as follows.

Generality: Between terms t and u, t is defined as more general

than u if and only if there is a substitution, &, such that t3 = .

According to the above definition, £{X,Y) is more general than £(3,2).

Thas is shown using the »>> syibol:
£(X,¥Y)>>£(3,2).

When one term is more general than the other and vice versa, the generality
of these terms is regarded as equal. For example, £{X,Y) and £{4,B) is such

s case, This is denoted <<>> . as follows.
SN, ¥y eeseE(A B).

According to the above defimition, if the generality of two terms is equal,
they can be made literally identical by appropristely renaming the variables
of one term. Note that there are many cases when the generality order is not
applicable, For example, we cannot decide the generality between £(X,3)

and £{4,Y).

Equality :

This is nzed when we want to test whether the two terms currently in-
stantiating cach icrm are llerelly equal Espedally, variables in equivalent
positions in the two terms must be literally equal. Literally equal 15 denoted
== For example, although £(X,Y) and £{4,B) are equal in generality, they
are not equal in the case of literally equal when each variable, X, ¥, &, and B,

1= not instantiated, However, if =4 and Y=2Z. then £0X,¥)==£{4,8).

12

3.3 Query Expressions in the Form of Caleculus

As stated in the preceding two sections, queries for the RKB are expressed
as a combination of two kinds of atomic formulas. This section gives some
query expressions using atomic formulas defined in the preceding sections by
examples. Suppose that each t; and z; is a term, and a caleulus expression

is an expression of the form
{< ty g,y b > 0(2y, 20, .. 2))
The unification-join between relations r(X,¥) and t(Z,W) is expressed as
{< XYW > (X, Y) A £(Y,W)]).

Attributes used to join are designated by the same variable name. In this
case, r and t are joined on the second attribute of r and the first attribute of
t. The bindings to each variable of one predicate are propagated to variables
with the same variable name in other predicates, the same as the execution
of Prolog clauses. We can rewrite this formula using the unification operator,
= as follows,

{< XYW > [r(X,Y)A{ZW)AY =2}

Moreover, equijoin can be asserted by the literally-equal operator, ==, as
follows.

{< LYW (L Y)ALZW)AY ==12}

A restriction operation which obtains tuples in resulti of Example 2.4

from assembly of Example 2.3 iz expressed as
{< bike(X),Y > |assembly(bike(X),Y)]

Lastly, unification-join and projection between resultl and assembly to

obtain result? of Example 2.5 is expressed as follows.
{<Y,Z > |resulti(X, [Y|_.]} A assembly(Y,2))

13

4 Manipulation Language for the Relational Knowledge Base

We have established a manipulation Janguage for the RKB. This ma-
nipulation language is embedded in ESP[3], which is a logic programming
language with object oriented features. ESP has been developed in ICOT
and used to establish the SIMPOS, the operating system of the Al personal
work station, 'S

As described I the previous section, queries for the term relations can
he bhuilt based on the unification operation defined among terms. Because
the unification operation can be regarded as a basic operation of logic pro-
gramming langnages. 1t 15 possible to mtegrate the manipulation language
for the RIKB into o logic programming language without operational gaps.
That is, we can establish a manipulation language with the same operational
semnantics as a Jogic programming language.

We have embedded the manipulation langnmage for the RKB by providing
speeial predicates whiel: manipulate term relations. They are used to create
term relations, to insert tuples into term relations, or to retrieve tuples from
terin relutions.

The special predicates for accessing the RKB are deseribed below.
Data Retrieval

format :

retrieve(Relation,Query)
retrieve(sort(Relntion, Attrlist Eqlplist),fuery)
retrieve(unigue(Relaticon ,Eaqlp),Query)

retrievaigroup{Relation Attrlist,EqDplist),Query)

mesning

The retrieve predicate 1= always executed successfully and creates resul-

tant relations within the knowledge base svstem as the side eifvel.

14

retrieve(Relation,Query) is the simplest predicate for retrieving
tuples from term relations in the RKB. In this predicate, Query de-
notes the condition used to retrieve tuples. For example, in specifying
assembly(frame(X},Y) as this Query for Example 2.2, tuples that have
the unary functor, frame, in the first attribute are retrieved. Relatioen
denotes the specification for the resultant relation of this retrieval opera-
tion. For example, retrieve(coler(X),assembly(frame(X),_)) creates a
one-attribute relation, celer, thal consists of two tuples, color(red) and
celer(yellow). If the relation specified by Relation does not exist in the

REDB, it is created before execution of the retrieval operation.

The remaining three predicates are retrieval operations being added ag-
gregate functions. Each predicate corresponds to sorting, to making unique,
and to grouping tuples of the resultant relation. AttrList specifies attribute
variables nsed in Relation in the form of a list. Sorting and grouping are
performed according lo the values of attributes designated in this list. Eq0p
and EqOpList denote relational operations which are used to compare values

to execute each aggregate function.
Tuple reference

format :
get{Tuple)

getisList(List, Number,Tuple)

meaning :

As stated above, the retrieve predicate returns no binding values for the
tuples in the resultunt relation. Therefore, we need a predicate to reference
values of each tuple in the term relation. We have two kind of predicates to
refer values of each tuple. One refers tuples one by oue, and the other refers

all tuples of the designaled termn relation at once.

15

get(Tuple) predicate is the first kind of predicate. Tuple speci-
fies the relation name and its attribute. For example, we can specify
assembly (frame(X),Y) as Tuple for Example 2.2. Tuple is nnified with
one of the tuples in the designated relation and bindings that are the result
of this unification will be returned. We can access all tuples in the term
relation designated by Tuple using backtracking. That is, in redoing get, an

alternate tuple is unified to Tuple.

The getislist(List, Number,Tuple) predicate returns the number of
tuples specified by Number of the relation specified by Tuple to List in the

form of a Prolog list.

For example, we can use get(assembly(X,Y)) for tuple-wise refurence
or petAslist(List,5,2ssembliy(X,Y)) for reference of all tuples for the

assembly rclation of Example 2.2
Tuple insertion

[ormat :
put(Tuple’
putlist(List, Tuple)

e
meanmng :

In the same way as tuple reference, we have two kinds of predicate for
tuple insertion into the term relations. They are put (Tuple) for tuple-wise
insertion and putlist(List,Tuple) for inscrtion of a set of tuples. Each
argument viays the same role as the get and gethsList predicates. However,

Tuple and List must he hound before these predicates are exceuted.

Suppose that we write put(assembly(bike(X), [wheel frame(X}1)?
and that variable X is bound to blue before execution of the put predicate.
The assembly(bike(X), [wheel,frame(X)]) tuple will then be inserted in

the assembly relation of Example 2.2,

We realize notf by the difference operation between term relations, that
is we express the negation of a relatidn in & relative complement expression.
Therefore, we provide a meta-level predicate, such as dif(A,B,#) where A
and B are relations with the same attribute number and # is a relational
operator, as a Query of the retrieve predicate. dif(A,B,8) asserts that if &
and B have the same number of attributes, the set of tuples a in A such that,

for arbitrary tuple b in B, afb is not true. § must be ==, <<>>, or <=>.

5 Discussion

This paper introduced a manipulation language for the RKB. The RKB
is an extension of a relational database, which ean store and manipulate sets
of terms directly. The manipulation language introduced in this paper can
provide functions to access large amounts of knowledge stored in the RKB
from a logic programming language such as Prolog.

There are meny approaches to integrate database systems and logic pro-
gramming languages, such as deductive database systems[4] and complex
object data models[l]. Deductive database systemns were discussed on the
premise that large numbers of facts are stored in the relational database sys-
tems. Complex objects are data models to obtain fuller expressive power,
which is sufficient to represent knowledge with a complex structure. Since
our approach follows the approach in traditional database systems, we can
establish knowledge base systems using many kinds of technologies from the
traditional database systems.

As described in [11], the impedance mismatch between the relational
query and a logic programming language must be taken into consideration
when the method of integrating them is considered. This mismatch originates
in the fact that, although the relational queries are based on set-at-a-time sc-
mantics, a logic programming language 1s bascd on tuple-at-a-time semantics,

LDL[11] intends to resolve such problems by extending a logic programining

17

language to be based on set-at-a-time semantics. We provide two special
predicates get and getAsList. These predicates enable a logic programming
language to access not only one tuple at a time but also one set at a time.
Compared to LDL, our attempt does not resolve the mismatch completely.
However, our manipulation language enables a traditional logic Programming
language to access the RKB without any semantic change.

Our manipulation language cannot express recursive queries for the
present. Recursive queries are one of the most unportant features for realiz-
ing deduction on a knowledge base. Because there arc many research reports
about efficient recursive query processing in deductive database systems(2],
it is possible to take their methods in our manipulation language as a future

topic of research.

6 Conclusion

Our manipulation langnage for the RIXB can manipulate sets of terms
by unification operation. To manipulate terms declaratively, we propose for-
mulas defined on the set of terms and relational operators between terms
referencing the definition of domain relational caleulus.

The RIB is implemented on an experimental hardware system named
Mu-X. Mu-Xis w multiprocessor system with a multiport page-memory [31[7].
We connected a PSI to this system as the host system. The manipulation
language introduced in this paper is cubedded in the PSI and is used as an

interface language hetween the PS1 and Mu-X[9].

Acknowledgment

We wish to extend our thanks to members of the VLKBM meeting for

many useful discussions.

18

References

(1] Bancilhon, F., et al., “A Calculua for Complex Objects”, in Proc. ACM
Int. Symp. Principles of Database Systems, March 1986, pp. 53-59

[2] Bancilhon, F., et al., “An Amateuer’s Introduction to Recursive Query

Processing Strategies”, in Proc. ACM SIGMOD ‘86, pp. 16-52 (1986)

3] Chikayama, T., “Unique Feature of ESP™. in Proc. Int. Conf Fifth

Generation Computer Sysiems, 1984

[4] Gallaire, 1., et al.,, “Logic and Data Bases : A Deductive Approach™,
ACM Comput. Surv., Vol. 16, No. 2, pp. 153-185 (1954)

[5] Monei, H., et al., “Parallel Control Technique and Performance of an
MPPM Knowledge Base Machine Architecture”, in Proe. 4th Ini. Conf.
Date Enginecring, February 1988, pp. 210-217

[6] Morita, Y., et al., “Retrieval-By-Unification Operation on & Relational
Kuowledge Base”, in Proc. 12th Int. Conf. Very Large Database, August
1986, pp.02-59

[7] Sakai, H., et al., “A simulation Studay of u Knowledge Base Machine Ar-
chitecture”, in Dulabase Machines and Knowledge base Machines, Kluwer

Academic Publishers, pp. 585-508 (1988)

i8] Scholl, M. H. and Scheck, H. J. (ed.), Proc. International Workshop on
Theory end Applications of Nested Relations and Complez Objects, April
1987

[9] Shibayama, 5., et al,, "Mu-X: An Experimental Knowledge Base Machine
with Unification-Dased Retrieval Capability”, in Proc. France-Japan Ar-
tificial Intelligence and Computer Science Symgposium §7, Novemnber 1087,

pp. 343 357

[10] Stonebraker, M., “Object Management in POSTGRES Using Proce-
dures", Proc. 1986 International Workshop on Object-Oriented Database
Systems, Sept. 1986

[11] Tsur, S., et al., “LDL: A Logic-Based Data-Language”, in Proc. 12th
Int. Conf. Very Large Data Bases, August 1986, pp.33-41

[12] Ullman, D.J., “Principles of Database Systems”, Computer Science
Press, Maryland, USA, 1982

[13] Yokota, H., et al., “A model and an Architecture for a Relational Knowl-
edge Base”, in Proc. 18th Annual Int. Sump. Computer Architecture,
June 1986, pp.2-9

[14] Zaniolo, C., “The Database Language GEM”, Proc. ACM-SIGMOD
Conference on Management of Date, San Jose, Ca., May 1983

20

