ICOT Technical Report: TR-380

TR-380
Knowledge Retrieval and Updating
for Parallel Problem Solving

by
H. Yokota. H. Kitakami
and A. Hattori{ Fujitsu)

June, 1988

988, 1COT

Mita kokusai Hide 21F (A 30-3151 -~

I COT =28 Mita 1-Chome Telex ICOT .T.:.'_'_L'ni;

Minate-ku Tokve 108 Japan

Institute for New Generation Computer Technology

Knowledge Retrieval and Updating
for Parallel Problem Solving

Haruo Yokera T
Hajime Kitakami®®
Akira Haroritt?

FUNTSU LIMITED

Kawasaki, Japan

ABSTRACT

Parallel problem solving sysiems capable of updating and retrieving
information from a knowledge base are being studied as applications of the
Fifth Generation Cemputer Systems project in Japan. This paper describes
one such production system that traverses a search tree in parallel. We
propose a new search strategy called the "Berter First Search.”
Communications among processes to conirol execution priority is localized
by the search strategy, with a tree structure used for the process
configuration. We use the Guarded Horn Clauses (GHC) parallel logic
programming language and the Retrieval By Unpification (REBU) knowledge
base handling system to implement this system. Each node of the process
tree is impiemented as a perpetsal GHC process. Elements of knowledge are
stored in knowledge bases as sets of RBU terms, GHC and RBU are tightly
coupled 1o minimize communication overhead. Indexing wusing hashing
and a trie structure is used to retrieve terms from the knowledge base using
unification and backtracking. The retrieval and update speeds of a
prototype implemented using this method are compared with those of a

Prolog svstem.

g-mail address:
t hyokoBmotoko.stars. [lab. fujitsu.junew@uuner, UUNET
' kami%motoke.stars.fla b.fujitsu. junet@uounet. JU.NET
Tt hattorifoayumi.stars. fab. fujitsu. juneu@uunet. VUNET

1. Introduction

Parallel problem solving systems show promise in applications of the
Fifth Generation Computer Systems (FGCS) project in Japan. The goal of the
EGCS project is to build a knowledge information processing syslem using
logic programming paradigms [Fuchi 84L Parallel logic programming
languages are used 1o develop applications in the FGCS project. Knowledae
bases must be used ecfficiently, which is difficult in a parallel logic
programming language. Combining a parallel logic programming
language and a dedicated system for operating a knowiedge base seems 10 be
one possible solution to implement 2 logic programming language based

parallel problem solving system with reasonable efficieacy [Itoh E7].

Guarded Hom Clauses (GHC) [Ueda 85], a parallel logic programming
language with commitied choice semantics, is the kerncl language of the
FGCS project. [t handles parallel processes and streams for communicating
among processes efficiently, but is inadegquate in searching for altemale
knowledge clements used in problem solving, since a variable of GHC can
only be assigned once, GHC slso has trouble handling global information
such as that in knowledge bases. GHC has no appropriate mecans of

guarantecing the consistency of knowiedge bases during parallel updaiing.

(Yokota 86] proposed a sysiem called by Retrieval By Unification
(RBU) in which the knowledge elemeni is a term, a well defined siructure

capable of handling varables. A set of terms is stored as a table and called a

term relation. A term relation is ueed 1o control consistency in parallel
operations. This system retrieves lerms from term relations using
unification and backtracking and updates each eclement. RBU commands

for retrieving and updating term relations are issued from a parallel

problem solving system written in GHC.

Operations for retrieving and updating knowledge elements are very
influential in determining the speed of cach problem solving step. The data
structures for storing knowledge elements, the mechanisms for retrieving
and updating these elements, and the associated indexing methods are
therefare important issues and deserve careful consideration in the design

of this type of system.

Traversing a search tree is a commoniy used method for selving
Artificial Intelligence {Al) problems. Since the search space for a probicm
can grow quickly, several strategies have been proposed 1o solve actual
preblems [Barr 81]). These strategies are for use in sequential problem
solving sysiems, howecver, and new strategies are needed for parallel

problem solving.

In Section 2 of this paper. we first outline a parallel problem solving
sysiem using a ncw scarch swratcgy called the Better First Search. We use a
tree structure as the process configuration. Secuon 3 discusses the stream
oriented use of RBU by GHC processes and communication between RBU and
GHC. Knowledge bases and intermediate process states are manipulated by
RBU. Section 4 presents a prototype system of RBU with a new indexing
method. Scarch and update speeds are compared with those of a Prolog

sysiem.

2. Overview of a parallel problem- salving system

Production (rule-based) systems are used as toois for problem solving.
The basic concept involves applving state transition production rules from
an initial state 1o reach a goal state that satisfies termination conditions,
Several states can be generated from a single state by applying the
producticn rules and the state transitions make a search tree (Figure 1)
Each node of the tree is a tramsitive state and the root node is the initial
state. The goal of a production system is to derive a path from the initial

state o a gozl state by traversing the search tres.

Initial
state

s

Figure 1. Traversing a search tree

2.1 Search strategy for parallel production systems

Parallel processing is wiewed as a way of reducing the large amounts
of tume consumed by production systems [Gupta §7]. One implementation i3
the parallel traversal of a search tree in which naecw states are generated
from different states in parallel, Limits on memory and the number of
processors require the use of special search strategies. The best first
search [Barr 81] is one such strategy. [t seleeis a state from a search iree
using state evaluation of the current state to generate ncw slates. The state

selected has the best evaluation value in the tree at a given time.

The centralized control of this strategy makes f[inding the best value a

battleneck, however. Control must be localized for efficient parallel
processing, We propose a new search sirategy cailed the Beuer First
Search. The strategy looks for a state having the best evaluation value

only in a subtree of the search tree. Although this value is good, it may not

he the best in the entire tree; therefore we call it a “beuer” value.

2.3 Process configuration
We use a tree structure as the process configuration to implement the
Better First Search in parallel. The tree configuration is not directly

related 1o the search tree traversed by the production system. The three
types of nodes (processes) in the process tree are the root node, leal nopdes,
and other branch nodes. Froductions are performed at the Ileal nodes.
Production priorities are controlled at the branch nodes based on their
evaluation wvalues. System control such as that of the user interface s
performed at the root node. Figure 2 shows the process configuration and a

search (ree,

Process tree

Figure 2. Process configurution and a scarch tree

2.3 Process tree nodes

A process tree having four leaf nodes is constructed in GHC as follows:

four_leaf tree - true |
roorfBluBld},
branch(Bld.B2u B3u.f].[].BluB2d B3d},
branchiB2d.L1u L2u f] [].B2u Lid L2d).
branchiBid Lin L4u[].[] . BIu L3d.L4d),
leaffLid. Liu},
leaffL2d.L2u},
leaffL3d.L3ul},
leaffL4d.Liu),

Nodes in the process tree are implemented using perpetual processes
generated from recursively called GHC clauses. Process behavior is
contrailed by streams bound to variables in arguments in the clauses. The
streams are treated as messages for the process. A leal node is a perpemal

process generaicd by the following two clauses:

leaf{|stare(ES}I].01} - rrue |
productionfstare(E.5),01,02),
02 = [request/ O3],
leaf(1,03).

leaff{ | .Q) - wrue |
o=/l

The first argument is used as a recciver of messages and the second as
a sender. Where the top element of the first argument is a state indicator,
the leaf node reccives a state from another node, The leaf node then
invokes a production process for the state. The results and a request
message for the next production are sent using the sccond argument. The
second clause indicates that the leaf node rewums a nil when it receives a

nil.

Branch node behavior is also determined by node staus. Two nodes

receiving the same message execute different operations based on whether

they are holding states. or waiting for states. A branch node that has no
states and rcceives & request message must keep the message in a queue (o
indicate that the node is waiting for states and must send another request
message o the upper node. The direction of a request siored in the queue
indicates which child node is to be sent a state when the branch node

receives a state.

branch{IU [request/IL] IR RO S0.QUOLOR) - 80 = []]
OU = [frequestiOUx],
branch(IU ILIR [regileft)fRQ1.S5C.0Ux, 0L OR).
branch(IU IL [requestIR] RO .S0,0U,0LOR) =~ 80 = [] |
OU = [requestiOUx].
branchilU IL IR [regiright}fRQ] 5Q.0Ux OL,OR).

U, IL, and IR indicate streams of input messages from the upper, left,
and right child nodes. OU, OL, and OR indicate output messages to these

nodes. RQ and §{ are queues for requesis and siates.

If state queue §C contains states when the node receives a reqguest
message, it selects a state from the gqueue based on evaluation wvalues and

sends it to the node that sent the request message,

branch(lU [request/IL] IR RQ .SC OUOLOR) - 80 = [/]}
select(§Q Srare S0x),
OL = [Srare/OLx],
branchilU JLIRRQ SQx,OU, 0L OR}.
branch(IU L, [request/IR] RQ,5Q,QU.QLOR) - 50 = [/ |]

select(80 Stare S0x).
OR = [State/ORx],
branch(IU,IL IR.RQ S0x.0U OLORx).

When request queue R contains requesis, the node sends a stae
received from another node to the node that generated the request message.
In the following example. a state received from an upper node is sent o the

left child node:

branch{[state(E Sy IL IR [reg{left)iRQ].[].OU.OLOR) - truef
0L = [srarefES)0Lx/,
branch{IUJILIRRQ.[],0U.0Lz.OR}.

When the request gqueue R is empty in the above situation, the node

adds a state received [rom another node to the 50O

hranchi|stare(E STV JLIRRQ.SC.0UOL.OR) - RQ = [}/
branch{lU L IR.EQ [srarelE 535000 OLOR)

3. Use of RBU from GHC processes

A production is performed by retrieving knowledge elements from a
knowledge base and updating the knowledge base based on production
rules, The knowledge base is a global state for parallel production
processes. GHC cannot handle global states among perpetual processes, nor
effectively retrieve and updatc the knowledge base, even if a common
stream is prepared as an argument of every clause to implement a global
state in GHC. The unification implemented in GHC cannot be used to search
for muliiple knowledge eclemcents, because a GHC wvariable can only be
assigned a value once. Once bound with a knowledge element, the GHC

variable's bhinding cannot be changed.

Connecting GHC to a dedicated system that processes knowledge buses
enables a parallel production system to be built. RBU knowledge elements
are 1erms defined in the same first order logic as GHC thus eliminating
syntactical transformation. RBU siores a set of terms as a term rclation
which is used to guarantes the coasisiency in knowledge bases dunng

parallel updating.
3.1 Rbu predicate
The special predicate rbufC) is provided in GHC 1o use RBU. Commands

for rerrieving and updating knowledge bases are bound 10 the stream

argument C.

For example:

C = [fursierd (1] ptaS01)).01].X)ujsteed [2]072.00]1.031.¥), ..}

Urs represents a unification restriction stream operation and wjs a
unification join stream operation [Yokota 86]. These operations are an
extension of relational algebra operations with unification. The firsi
command sentence, wrs(rel f1].pfa,871)).[1].X), dictates a search of the first
attribute of the term relaton tr] for terms unifiable with the condition
pla.3¢l}), vielding the derivation of the first atrribute a5 a result. Results

are returned as a strcam bound to the wvariable X in the command sentence.

X = [plag(5(2}))).p(a.g(b})..].

The sccond command sentence, wjsierd [2].072.[1].[3].Y}. is used 1o derive
the third auribute of a result relation generaled by a unification join
operation which searches the second attribute of rr] and the first auribute

of rr2 for unifiable terms. Results are returned bound 1o the variabie F.

Y = [gr8(10).c)...]

The special function symbol ¥ is used to indicate a wvariable in
command seniences and in results. GHC wvariables cannot be used [for
knowledge reirisval, so other symbols are needed to indicate variables [or
retrieval. These variables are hound to knowledge clements in RBU. but
unbound im GHC. This corresponds 1o unbound variables appearing in a

template predicate of the serof predicate in Prolog systems.

3.2 Production in GHC with RBU

A production sysiem is implemented in GHC using the rbu predicate. A
term relation for production rules and another term relation for an initial
state are given and transitive states generated during production stored as

term relations.

As an example, consider the production ruies and the imitial state of

the "Moenkey and Banana" problem in Tables 1 and 2. The first attribute of

Table 1 contains the matching part and the second attribute contains the
execution part of the production rules. The first attribute of Table 2 is the

contents of the initial state. The second and third attributes of the table are

used ai execution time as waorking spaccs.

Table 1. Example

of production rules

[monkey{on(floor), hold($(1)),5(2).$(3)).
histary(${81)]

[[$2)\=35(6).5(3)\=8(7}],

[monkey on{floor), hold($(1)).$(2).5(3}).
history($(8))].

Tmonkey{on{ficor) hold{$(1)),$(61.8(7)),
history([move($(E).5(7 I S8}

[mankey({onfiadder) hold{nil}], 51152},
aoject$(3), onfceiing). (1 .8(2)),
history{S(411

(@
fmonkey(onfladdar) holdini), 5(1).5(2]}
object($(3),on(ceiling),5(1),$(2)).
histary(S(4)]

[mankey(onfladder) holai$(3)),5(1).5{2)},
history([hold(S(3NIE(4))]

[monkey{on(fioor), haidinil), $(1).8(2)),
object(8(3),en{flocr). ${1).5(2)),
history (S(4)]

{0

[mankey(on(floor), hold{ni), £{1),5(2]).
object{$(3),on(ficor]. ${1).5(2)).
history($(4))].

[menkey{on(fioor).holdf$(3)).5(1).5(2)},
historyi[held($¢3))/%(4)]H]

[monkey(en(ficar),hold($(1)).8(2),5(3)).
history(8i4)]

{18(1)\=nil],

[monkey(onffloor), hold{${ 1)L 5{2).&(3)),
history($(4))].

[monkey(on{fiooar), hoid(nil), $(2),5(3)).
abject(§(1), on{floor), 5(2).5(3)),

history (fdrop($01 IS4

[monkey(onifloor), hold(nil),$(1).$(2)).
objecti$(3), an{floor) ${1}.8(2)),
history(S(4))}

i
[menkayion(floor},hold{nil).§(1),5(2}),
history($(4))],

[monkey{on($(3)), hold(nil).§(1).5(2)).
histery(felimb(S(NS4]]

[monkey(on($(1)),hold(5({2}},$(3),5{4]).
history{SraN]

[[$(1)i=floor],
[monkey(on(S(1})hoid($(2)).5(3). 5(4}},
history{S(5))].

Jmonkevion{floor), holdi$(2)), 5(3), (4]},
history(fdown{$(1)}15(5}])]]

1{:

Takle 2. Example of initial state

[monkey{onichair), hoidimi}, 5. 71$(1)] 1) §i2)
[ebject{chair.on(floor).5.7)15(1)] §1) $i2)
[objeciibanana, onfceiling),2. 2151} &) §i2)
[objectfiadder.onifloor), 8, 5){8{1)] S(1) §iz)
[Ristory([J}i$(1}] (1) (2

The following GHC clauses use RBU commands to produce new stares

from a given state using production rules:

productioniseatef Eval Stare), 01 ,02,C1.C3) - true |
Cl = [ujsirule []].Stare[1].[4.2] X}C2),

X={/1
logp(X.Eval State O1,02,C2.03).

loop({finish] Eval State O 02.C1.C2) - true |
of =02,
Cl=(C2,
loop([{Rule.[Cond Del Add]]/L] Eval.State,0] O3,C1.C3) - Rule = [] |
check{Cond. true X).
update(X Eval Stare Del Add 01 ,02,C1,C2),
L={j]
loop(L.Eval Stare 02 03.C2 C3}.
loop({[Rule.[Cond.Del Add][/L] Eval State, 01,03 .C1.C4} .- Rule \= [] |
Cl = [ursiStare [I1=Rule 3={Cond Del Add]] J2.3] XNC2],
X={/)
loop(X Eval Stare, 01 02 C2.C3},
L={]]
loop(L Eval State 02.03.C3.C4).

The ujs command in the production predicate is usad for patern
matching by unifying matching parts of rules with a state. Unifying a
mule with an element of a state causes the top of the mawching part o be

removed. The wjs command retums modified rules az a stream bound o X

X=f_/ | indicates a request for send a result from RBU. Modified rules are
processed by the loop predicate, which invokes the wrs command 1o unify
matching parts of modified rules with the state. Once the mawching part of
a rule becomes empty, conditions are checked and the state is updated using

information stored in the execution part of the rule.

The GHC program for leaf nodes must be changed 1o use REU

commands. The third argoment is used w0 transfer REU commands.

leaff{sratefE S)If,00 .Cmdl) - irue |
production{stared £ 5,010,002, Cmdl ,Cmd2),
02 = [requestid3],
leaff! O3 .Cmdl),

States and mles are best retrieved and updated in parallel. Each ume
the rbu predicate is invoked, a new RDBU process is created which 1s able 1o
independently retrieve and update term relations. An rbu predicate 18

prepared for each leaf node.

four_leaf tree - true |
roatiBlu Bld),
branch(Bld.B2u.B3u,[].]].BluB2d.B3d),
branch(B2d.Llu L2u. (] [].B2u Lid.L2d),
hranchiB3d,L3u L4u.[].[].BIu.Lid Lid),
leaff Lid,LIu.C1), rbui{Cl),
leaffL24.L2u,C2), rbuf{C2},
leaffLid l3u C3), rbufC3),
leafiL4d Ldu C4), rbufC4).

Figure 3 illusirates state rransitions in RBU. Parallel updates do not
cause inconsistency in the knowledge base, because a new term relation is
generated for each update. Artifice is needed to minimize copyving between
transitive states. Most state elements are unchanged by a state transition,

and must be shared among srares.

node node

P " s Term relation
Shared [%, K '
&
memory [%
¥ *
»]
r '
L 1
¥ 1
¥ .
r L]
r 1
r -
o
r
; ' ced e s Update
-,
¥ .
I L Y
Update [T :‘
Updﬂt& T]
e, R e

Figure 3. State transitions in RBU

3.3 Communication between GIC and RBU

The RBU system is independent of the GHC system because they have

different ecxccution mechanisms. In acrual use, they must be tightly
coupled, The two systems should share an atom rable 1o minimize the
translation overhead and storage space. Predicate names and function

symbols are stored in the atom table and referenced by both svstems using
table entry addresses. It 15 redundant both to translate reference addresses
into character strings for communicating, and to prepare storage for twao
atom tables, It is much more efficient w use the reference addresscs

themselves for communication.

Buffers are needed to transfer retrieved resulis, because retrieval and
GHC processes are executed concurrently. A demand-driven protocol 15 used
1o transfer results, A buffer 15 uvsed for each outpur stream (variable) in the

RBU system. On demand, GHC can request the RBU sysiem 1o transfer a

13

knowledze element (wuple) from the buffer. Figure <4 shows this

communications protocol.

GHC HEU
— — il
cammand(] ursizrl [1] pia S0 L E_j 1
""""""""""""""""""""""" T
. ackrowledeefl) *s,

X fgeoececeeeeenanmeenenn. . 2CKAOWIED R .

“g?_ﬂ:i'_] _______________________________________ . S A
IR pler] pfag(3tz)i)......
_command(2.ujs(erd (2102 [TL30) »

-

i PR 1= OO w2
L .
PR L. - 23 1))

5 0
.-g.ﬂﬂl': .} ... = 1;1
e menreemmmransan s snnemranenes notreadyiZ)
| BEL) et ccnte e >
finisht]) %
(oo smsmnn s s e R e nn e Buffer? 9
B OO SUPRPRPURROI B
I tuplef2.q(3(10).c)) ...

Figure 4. Example of GHC and REU communications

Each command sentence has an identifier corresponding to the buffer.
In Figure 4, variable X in the command sentence wrsftrd,[1].p(a.301)).[1].X)
corresponds to a buffer identified by the number [, and the variable Y in

wjs(eed J20,0r2 11,03, Y} corresponds to buffer number Z.

RBU returns an acknowledgment when it accepts a command sentence
and prepares a buffer for an output strcam, GHC sends ger commands with
stream identifiers on demand. RBU returns a tuple for each ger command

from a corresponding buffer. If results are not ver ready for the ge!

— 14 —

command, a status indicating “not ready” is rewrned with the identifier.
Once all results have been sent te GHC, a status indicating “finish” is
returned. &er commands have identifiers and do not have to be sequences

in RBU commands,

4. RBU prototype

We implemented an RBU prototype to study this production system., As

vet it can only sequentially retrieve and update knowledge bases, but is a

first step to building a parallel knowledge handling system. A parallel
version of RBU will be implemented soon. Data structures are assumed 1o be
manipulated in parallel. A term relation is an individual unit that provides

a lock for updating. A chunk of storage 13 treated as a page (o manage
stiorage allocations. Storage management is simplified by restriciing page

use, lLe., a page is never used by more than two relations,

The prototype is also being used to evalvate indexing for term
relations. QOur indexing wuses data structures called hashing along with a
trie structure, and is suitable for frequent updating and retrieval of tcrms

by unification with a condition using backiracking.

4.1 Indexing using hashing and a trie structure

Different approaches have been proposed to improve retrieval speed.
One is dedicated hardware, e.g., a unification engine [Morita 86, Yokota 86].
[Ohmeri 87) proposes a hash vector for indexing clauses. Superimposed
code words lor terms and a dedicated engine for manipulating the words has
also besn proposed by [Wada 87]. We use indexing that retrieves a set of

terms using unification and backtracking.

Retrieved terms resemble each other somewhat because they are
unifiable with the search condition. For efficient backiracking, these
terms need to be located near an index. The rie is a type ol structure that
shares identical elements and meets this requirement [Knuth 73], Figure 5

gives an example of a trie for a set of terms.

p(3(1).5(5(2))) p-2 e

pi 81 b))
pifitali1}) a3} 2 =kl 4 ad 51 '—‘l $
p(ftab) a1} b-0 1 31

Figure 5. Trie structure for a set of terms

The costs of unification are propertional 1o the count of comparisons
between components of the object terms. A rie reduces the number of
comparisons when unification is performed. For example, consider the
situation of searching the set of terms in Figure 5 for terms unifiable with
the condition piffa.b) hic)}. Using the trie structurc, the component p is
compared only once, whereas four comparisons arc necessary if the trie
structure is not used. The number of comparisons needed to scarch for all
terms unifiable with the condition is 10 using the tric structure as opposed

10 18 not using the trie structure,

A hash tzble is used before the trie struciure when storing many (ypes
of lerms in a term relation (Figure 6). The [irst component of terms are

used as hash entries. The trie structure is combincd with hash collision

resolution.
p2 — .- p-2 $1 eI s b=, (Tem wple)
b0 1,
Hash
table .
2 = h-1 = al 51-'51*—*1:3
bl M S

Figure 6. Tuple index with hashing and irie structure

16 —

4.2 Search and updating speed

This section compares the search and updating speeds of the RBU
prototype with those of the Quintus-Prolog interpreter. Prolog compilers do
nolL support assert and rerrace predicates, i.e., they cannot update

knowledge bases, and therefore the compiler has not been cxamined.

Figure 7 compares the scarch speeds of the prolog interpreter and wurs
with and without indexing. The urs without indexing is about [our lime
slower then the prolog clause search. This search ume increases with tuple
count in both prolog and urs without indexing. However, the search speed
of urs with indexing is scarcely changes regardless of thc number of
tupies. For 1000 tuples, it is about four times faster than the correspending

prolog clause search. This speed up is 2 result of the indexing.

045 T & RBU without indexing
0.8 T ™ Cuintus Prolog
. ° RBU with indaxing

038
0 T *
g+ /
-
z T
U."E =

0.1 T //
0.0E - .F’-//E]
a—n T

Figure 7. Comparison of search specds

Figure 8 comparcs the tuple insertion speeds of the (wo systems. Tuple
insertion using RBU takes only about one sixth the uime of u Prolog consult
operation. The overhead for making an index for a term relation is about

one tenth of the inscriion time.

M T = Quinws Fralog
o8 v RBU load+mkindex -
= T = RBUbad
20 4+
i5 4
-
10 T
£ - a
- - n--—'—'-__._.---
—Q#———-'-—.__.-—'—_-_.__-"-l——-'—_-_._
-/:_/“-_ i
0 ' - } 1
0 250 500 750 1000
tuples

Figurc 8. Insert speed comparison

The unification algorithm for a trie structure and a more detailed

evaluation of the RBU protoiype will be given in another paper.

5. Concluding remarks

We have presented one way of mmplementing a parallel problem
solving system using GHC and RBU. The Berer First Search localizes
communications among parallel processes, This configuration is suitable
for the Parallel Inference Machine (PIM) [Gow 87] being developed in 1he
FGCS project. A number of processors and shared storage compose a cluster
in this machine, making it important to localize processors
communications. We plan to locate each leaf process in a processor (Figure
g1.

REU enables GHC 1o process knowledge bases. The combination is
useful both in parallel production sysiems and other knowledge processing
systems. Indexing method using hashing and a trie structure effectively
speeds up retrieval and keeps overhead low in RBU updating. We plan w0

implement a parallel version of RBU on the PIM.

PIM

" Branch

i\ node

+ |(Branch e Branch \|| | Branch J

Pisnnode /s _”;:g»' node } i_node

i 1T

: Leai Leaf Leaf Leaf i Leaf Y
Process noda node nn-de N u ge Ji :I node
Processor > X *-r P -
Cluster .-" Shared Storage P

[T —— [T T T T T e e e e e]

Figure 9. Implementation on the PIM

Acknowledaments

We thank Dr. Hidenori ltoh, manager of the third laboratery of ICOT,
and the laberatory staff for their useful discussion and Mr. Hiromu Hayashi,
manager of the anificial intelligence laboratory. Fujitsu Laboratories Lid.,
for his helpful suggestions. We also thank Mr, Mark Feldman of the
artificial intelligence laboratory for his helpful advice on the refinement

of the paper.

References

[Barr 81] A. Barr and E. A. Feigenbaum, The Handhook aof Arrificial
Inreiligence, 1, William Kaufmann, Inc. 1981,

[Fuchi #4] K. Fuchi, "Revisiting Original Philosophy of Fifth Generation
Computer Systems Project,” Proc. of the International Conference on
Fifth Geaneration Computer Svsrems, 1984

[Goto 87] A. Gowe, “Parallel Inference Machine Research in FGCS Project,”
Proc. of the US-Japan Al Svmposium 87, pp. 11-36, 1987.

[Gupta 871 A. Gupta, Parallelism in Producrion Systems, Morgan Kaufmann
Puhlishers, Inc. 1987,

- 19 —

Mwoh #7 M. ltoh, T. Takewaki, and H. Yokota, "Knowledge Base Machine
Based on Parallel Kernel Language,” Froc. of Sth Inrernational
Workshop on Database Machines, pp. 15-28, 1987

[Knuth 73] D. E. Knuth, The Art of Compurer Programming, 3, Sorting and
Searching, Addison-Wesley, 19731,

Morita 86] Y. Morita, H. Yokota, K. Nishida and H. Itch, "Retrieval-By-
Unification Operation on a Relational Knowledge Base,” Froc. of [1Zmh
International Conference on VLDB, pp. 52-59, 1986.

[Ohmori 87] T. Ohmori and H. Tanaka, "An Algebraic Deductive Database
Managing a Mass of Rule Clauses”, Proc. of Sth Inrernational
Warkshop on Database Machines, pp. 291-304, 1987,

[Ueda 85] K. Ueda, "Guarded Hom Clauses," Logic Programming ‘85, E. Wada
{ed). Lecture Notes in Computer Science 221, Springer-Verlag, 1986,
[(Wada 87]) M. Wada, Y. Morita, H. Yamazaki, 5. Yamashita, N. Miyazaki, and H,
Itoh, "A Superimposed Code Scheme for Deductive Databases", Proc. of

Sth International Workshop on Database Machines, pp. 569-582, 1987.

[Yokota 86] H. Yokota and H. Ttoh, "A Model and Architecture far a
Relational Knowledge Base," Proc. of rthe 13th International
Symposium on Compurer Archirecrure, pp. 2-9, Tokyo, 1986,

