ICOT Technical Report: TR-375

S ——

IR-373

co-LODEX - A Cooperative Expert
System for Logic Design
by
F. Maruyama, T. Kakuda,
Y. Matsunaga. Y. Minoda
and N, Kawato{Fujitsu)

May. 1988

€988, 1COT

Mata heokusar Bldg 21F Iy A=A 04 =5

ICDT 1-28 AMita 1-Chome Telex ICOT Ja296d

Minato ko Tekve 108 Japan

Institute for New Generation Cumpui;i‘h Technology

co-LODEX: R Cooperative Expert System for Logic Design

Fumihiro Maruyama, Tasko Kakuda, Yusuke Matsunaga,

Yoriko Minoda, and MNobusxi Heweto

Distributed artificial intelligence (DAL} is concerned with
cooperative solution of problems by distributed agents. Motivated
by the cenventional distinction betwesn datapath desian and con-
trel design, we study a DAT svystem for VLSI leogic decsic

Assumztion-based reszoninc ic algo useful for autemating the log-

4 Smem o e e e arln s ml dmasrd gl ler o mremire=s k=p LT i =

Al SEELThn SICCEEE, wWILlZ2a LOEVICEDLY LOVOLVIE CEllaclvVe CeClLELICRE
In —hls DECsSr, W DrEsEntT @ Coopersiive 2Xpert svsmem for

logic desicn, oo=l00EX, which Zzezturss D21 and assumprtion-taszsd

rezsonling., Co-l0CEX consiscs 2f thrses dlsc=ibuted sgents, twe of
which corresceond to datscath desicn and contreol dasign, respec-

tively. Zzch of the two agents Lterates the refine-evaluate-
redesicn cycle, wunder constraints on conflicting criteria, aresz
and time. Tf it itself cannot clear some constraint, it asks the
cther for changes. This is where cooperation takes place in an
attempt for the agents together to satisfy all the given con-
straints.

We treat design decisions as assumptions since they are
sometimes tentative and can be retracted later. We think of
redesign as contradiction resolution by viewing constraint vicla-
tion as contradiction. When a constraint viclation is detected
during evaluation, the redesign mechanism based on assumption-
based reasoning 1is invoked. Assumption-kased reascning is of
more importance when cooperation comes in, because some decisions
are forced to be retracted by the other agents. Justifications
for constraint violations called nogood justifications (NJ's)
play a central role in the redesign mechanism. Co-LODEY carries
out redesian by expanding and generating 8J's on the hierarchy

that represents the circuit under design.

l. Introduction
The rapidly-progressing VLSI technology reguires CAD systems
that can produce designs of good gquality within a short period.

although rule-based expert svsiams have grsat potential, at

- . - I . D = = o — T 4 - = s <
cres2nt thelr cuisuitz ars oot gsa=izlzoTory oompered ko thosza b
E z _ E -
= e g e g 2 Tamd - SR S, T ——— PR
TAFETIENCEY CES5LdNers. UGS G CLE MSET IRTLOUE SToo8mME SEEnEsE Lo
P2 the lEgu of mecherisme for grmzliamar=ieg ra=iops kimfe ==

knowladese and sucporsizz the izmserstiva degicn ovnler rafins
evalulats, aNC ISTsIlTn

4 - T T T § a7 a — 3 T - - - il

Digsrizusesd arcificial inceliligence (DAI, Ls concerzesd wizh

cooperatlve soluticorn of preblems by distributed agents [Smiih
B5]. T is particulsrly effective for problems without any by
gle global goal. Since logic design invelves mutually confliciing
criteria, for example, area and time, DAI systems for logic
design are worthy to study. Previcus approaches along this direc-
tion include ULYSSES [Bushnell 6] and the work of Brewer and
Gajskl [Brewer B86].

ULYSEES is a design envireonment consisting of existing CaDp
tools as knowledge sources (KS's). Knowledoge sources communicate
with each other through files within a global database called the
blackboard. ULYSSES is a realistic approach to teool integration
as it makes good use of existing tools. However, automating the
iterative design cycle is beyond its scope.

Brewer and Gajski wview that design at one level Dbecomes a
specification for the lower levels and propose a design paradigm
of & set of communicating expert systems, each of which
corresponds to each of the levels of abstraction. Although there
are two directiens, dowvn for constraint propagation and up for
failure reporting, design is limited te a cingle stream and is

not flexible enocugh.

We recognize two streams of design, datapath design and con-
trol design, 1in the logic designers’ community. Datapath design
starts off with a block diagram and designs each functional com-
penent in a hierarchical manner, that is, designs a cocmponent
with subccmponents and subcomponents with sub—-subcomponents, and

AT

sc on. Control desico begins with 2 behavicral specificasicn. ss-

fu

teblishes finite-state machines ccniorming to the specificaticn.

control sigmels. Design prograssss in these two gtreams with in-
terzcticn betwesen them., We propose a coooerative expert gvsten
for logic design, <o-LODEX, which contains twoe agents <that
correspond to datapath design and control design, respectively.
Each of the two agents iterates the refine-evaluate-redesign cy-
cle, under constraints on conflicting criteria, area and time. If
it itself cannot clear some constraint, it asks the other for
changes. If asked for changes, an agent tries to make scms
changes in an attempt for the agents together to satisfy all che
given constraints.

In general, the consequence of a design decision is not al-
ways clear when 1t 1s made. On later evaluation against con-
straints, it sometimes happens that the decisicn was wrong in the
particular environment and must be retracted. Since no advance is
made in design as long as no decision is made, usually the most
plausible alternative at that time is selected. With the results
of the decision added to the body of design data, the next deci-
sion 1s made. When the design gets to the point where evaluation
is possible, it is evaluated against constraints. Design goes
1like this.

Assumption—based reasconing is a type of reazsoning that uses

not only <facts but also assumptions, which have been assumed to

hold but can be retracted at a later time [de Kleer 67, Justifi-
cation, originally introduced fer truth maintenance [Doyle 73],
is a kev to manipulating information containing assumpticons. It
is noteworthy that justificaticn is a logical concent.

Zzurndetions of sgsumcticon-hesed reassoning are given in

{2) Scme decisicns are forced to be retracted by the other agents
in cocoperation.

{3} Constraints are also subject to change.

Design decisions and constraints are treated as assumptions in
co=LODEX, We think of redesign as contradicticon resslution by
viewing constraint violation as contradiction. When a constraint
viclation 1is detected during evaluation, the redesign mechanism
based cn assumption-based reasoning is invoked. Justifications
for constraint violations called nogood justifications (NJ's)
play a2 central role in the redesign mechanism. They are
represented as conjunctions of assumptions and conditions about
area or time. Co-LODEX carries out redesign by expanding and gen-—
erating NJ's on the hierarchy that represents the circuit under
design.

The rest of this paper is organized as fellews. In the next
section, we give the overview of co-LODEXY focusing on its CAD as-
pects. Its DAL aspects and its distributed agents ars described
in sectien 3. In secticn 4, we discuss the redesign mechanism
based on assumption-based reasoning. OQur status and conclusions

are given in section 5.

2. Co-LODEX Overview
Co-LODEX +akes as input both a behavicral specification and

a lock diagram, and produces a CMOS standard cell lmplementa-

tion. It also accepts olebal constraints on arsa znd time,
zgainst which desicn is sveluztagd. Deslign 1s carriec gut In TWO
streans, dezapeth desicn Zrom the block disersm end conTrcl
design Ircm the behaviors specifisszticon, with Immsract=icc
betwsen =hen. Aftar sutting thefr wesules togsther, co-lILEX
does scme optimization and outputs a CMCS standard cell cizsuils
descripticn in ferms of standars cells andéd the cConnectlicns

betwasan them.
The specification language for behavior is an extensicn of
DDL [Duiey 68], basad on temporal logic [Moszkowski B6]. Figure 1
shows the specification of GCD (Greatest Common Divisor) [Campo-
sano 87].
FUNCTION: main: clk;
idle::
STOP{rst=0), =<-xi, y<-yi, GOTC loop;
loop::
IF{x=y) THEN{ou:=x, GOTO idle}
ELSE(IF(%<y) THEN(yY<-¥-X)
ELSE(X<—X-Y).
GOTO loop);
FEND;

Figure 1 Example Behavioral Specification

There are two intervals, idle and loop, which are counterparts of
states in DDL but are not limited to one clock cycle in length.
'STOP{rst=0)' means that interval idle is finished when =rst 1is
egqual to 0. "¢-' means register transfer and ':=' means terminal
connection. The rest will be self-explaining.

The user is supposed to enter a bleock diagram through the
graphics editor of co-LODEX by selecting and placing functional

components and connecting them. A block diagram corresponding to

the behavioral specification in Figure 1 is shown in Figure 2.
COMPARATOR for a comparator, SUEB for a subtracter, MUX for a mul-
tiplexer, registers X and Y, input pins XI and YI, and output pin
QU are functicnal components.

Dasic cell Count. The tToTeil basic cell count musET noT svoesad
1I07 iz an sxemozlis. CoosTralints cn time ars expressed in

e lpmger =han

P i)

themsgelves are subjact o changs, because desicn i

[
wu
)
0
el

i3
|_!
o}
=
i
l
o

i

I7 process ancg ls sensitive to the circumstances. The designer
micht want to explere another possibility by strengthen or relax
some constraints, instead of sticking to the first result he or
she achieved. Co-LODEX allows the user tc add, retract, or re-
store constraints by storing all the constraints that have been
given so far. With the constraints changed, it comes up with
ancther solution by keeping intact the portion that has nothing

te do with the changed constraints in crder to make turnarcund

short.

3. Couvperative Distributed Agents

In logic design, design is evaluated based on mutually con-
filicting criteria, for sxample, area and time: there is no single
alobal geal. In other words, it is impossible +to sarizlize the

Ao md - R iha memamemd £ emd A T o= I L Y R ——
SESTOS CTRITIOANE S wng FpSfiTICAVICN. ANENSEC. TAE QZELLSTE

7ur zzzrcach to this proolsm L
agext =xecutss the cesign on it owm to produss a partial solu-
tion, refsrring to the relevant global constraints. These partial
gzlutions are ceombined to form a complete design. Scme adjust-

ments based on the results of evaluation may be necessary, which

would be possible through cocoperation between the agents.

3.1 Configuration and Communication

Figure 3 shows the configuration of ¢o-LODEX. Co~LODEX has
three agents, two of which we mentioned earlier. The third agent,
User Interface Agent, is responsible for transferring information
to and from the user.

Datapath Design Agent produces as partial solution the whole
datapath with each functional component implemented by CMOS stan-
dard cells, while Control Design Agent designs circuits that con-
trol +the flow of execution and each functional component of the
datapath. These two partial scolutions are linked at the control
terminals of the functional components as illustrated in Figure
4.

Here are a few examples of how these +two agents influence
each other. First, if a delay constraint is so strict that the
components on a path do not satisfy the constraint, Controcl

Design Agent asks Datapath Design agent to redesign some of them.

6

Secondly, L1f Datapath Design Agent cannot design components
on a path fast encugh teo satisfy a clock cycle constraint, it

asks Contrel Design Agent either to give up +the path and take

ancther or +o breazk the crperaticn ione the path intc sub-
CperaTliens. =:zch of which 1s executsd in cne covcle

Finallw, if Latapath Desicgn Acent has fc rameve cons o tha
cuplicsts Compenents kbeczuss of the 2resz constrzing, it zsks Con-
Trci Tssicn A7ent to change conirel so as to make sure thze shs

reducad set of componencs is encugh without any cocnflics, cr dou-

In orger to cocperate as sesn in the above exampies, ths Two
agents exchange information, which includes the four tvoes shown
in Figure 5:

1. Reguest for change is issued with the failed constraint if
Datapath Design Agent is unable to satisfy a constraint. What to
change is left to Control Design Agent.

2. An alternative datapath is informed if Datapath Design Agent
has replaced the current datapath with it.

3. Since Control Design Agent determines the accurate timing of
each operation in the behavioral specification by establishing
finite-state machines conforming to the specification, it gen-
erates internal constraints on time, according to those specified
by the user. Although it may be logical that Control Design
Agent itself evaluates the design in a case like the first exam-
ple, it is expensive as it involves transfer of =& large amount of
design data between agents. Actually, instead, Control Design
Agent sends the internal constraints on time to Datapath Design
Agent asking for evaluaticn as scon as it generates them.

4. A new datapath is sent to Datapath Design Agent, that has

been made possible by the change of control.

One of the distinctive pictures of ccoperaticon L1n co-LODEX
seems to emerge from the above. One agent comes up with cone par-

£ial solution and makes the others check it. In the meantime, the

agent r©procesds to the next task, I the chsck is successful, the
sextiz’ solusicn will continue *o ka2 wvaifd at least uptil any
cooo-adicticn coours. Otherwise, The agenc ccmes back to the pra-
Tiecus —2s3X 2nd tiss to Zind aneother scluticn Tor example, Con

trcl Desicn Acsat can tell Datarzath Desicn acent To gvaluate,
first of all, "critical paths” ip order to Xnow &g S2rlv as Los—
sible whether the control it has designed is feacible or net,
wnile it begins to implement the control. A negative result is
informed as an urgent message, which is handled right away and

causes to design contrel in an another way.

3.2 Datapath Design Agent

The purpose of Datapath Design Rgent is to design all the
functional components forming the éatapath. It starts off with
the block diagram and designs each functional component in a
hierarchical manner all the way down to CMOS standard cells. The
design is done by applying rules in the KS's, under constraints
on basie cell count and those on delay or cleck cycle., Component
Design KS contains rules for designing a component with sub-
components. Figure 6 shows an example for designing an n-bit
subtracter with an n-bit adder and an n-bit one's complement.
Technology Mapping KS takes a component and implements it with
the CMOS standard cells in the library. Figure 7 shows an example
of implementing 4n-bit adder with n 4-bit carry-lockahead-adder

(CLAY cells.

3.3 Control Design Agent

Control Design Agent establishes finite-state machines con-

forming to the specification. At this point, every detail of tim-
ing is determined as far as synchronous portien is concerned.

Contrel Design Agent generates internal constraints on time by

exanining which path must ze covered withing one clock cvclie. It
sends these constraints eout o Dataprath Design Acent. It thsn
rea;izes the finite-scats Tachines with IZlip-Ilops &nd designs

“rcults that cgensIzte cootrci sicmals to the componsnts. Amcns

a
ke
'

‘s2x Interiace Agsent

User Interface Agent is responsible for transferring infor-
maticn to and from the user. By information here we m=zn ths fol-
lowing:

1. The behaviecral specification is input in a text form.

2. The user is supposed to enter a block diagram through the
graphice editer of User Interface Agent by selecting and placing
components and connecting them.

3, User Interface Agent provides a menu-based dedicated window
for specifying constraints in an inequality form. It alsc en-
ables the user to retract and restore them by storing all the
constraints that have been given so far.

4. The user can design any component manually through the graph-
ies editor of User Interface Agent and forces co~LODEX to use it.
There seems to be an aspect of cooperation between the user and
Cco-LODEX through User Interface Agent, focusing on the third
point, the user exploring possibilities by strengthening or re-
laxing constraints, and the fourth peint, the user voluntesring

to design some of the components.

4. Kedesign Based on Assumption-Based Reasoning
As mentioned earlier, we regard design decisions as assump-
tions. Assumpticn-based Truth Maintenancs System (ATMS) [de Xleer

E€] enumerates all ths zssumrticns in advance and examines ail

the combinaticns of thaa., In dssign, however, we ars nos in-
terazted in all the combizecicns of 2ll the desicn dacisions. ke
czuse wna2ther a decisicn hzs lts mesning or not desands on ===
declzlong made eaviier, In The ewampls of Flgure O, for inemzncs

now Lo coastouct an adder has no meaning 12 the subtracesr wEs

Besides, we want to talk about quantity, for exemple, +the
totel basic cell count of the adder and the one's cocholement is
not less than 432, not just combinations of assumptions. We no-
tice that the two criteria we are interested in, area and time,
are additive in the sense that the quantity of the whole 1is the
total sum of that of its constituents. The delay along a path on
the circuit, for example, can be attributed +o that of " the com-
ponents on the path. Additivity allows us to break a condition
concerning the whole inte those concerning its parts. In order to
do so hierarchical structure is of great help.

We propose a redesign mechanism based on nogood justifica-
tions (NJ's). They are represented as conjunctions of assumptions
and conditions about area or time. Co-LODEX carries out redesign
by expanding and generating NJ's on the hierarchy that represents

the circuit under design.

4.1 Hierarchical Design Description

Design ckjects concerning datapath are represented in a
hierarchy. Figure 8 shows a part of the hierarchy corresponding
to Figure 2. There are +two types of nodes, component nodes

(ovals) and alternative nodes (rectangles). A component node

—_ i —

represents =ach component in the datapath. There 1s a special
component node called the datapath node that corresponds to the
whcle datapath. An alternative node represents each alternative,

contains informaticn ebout the connecticn betwesn the sukcom-

sonents, ané has the subccmponsnt nscas as chilcdren Ficure &
ENCWE &5 [CLlicws Che currsnt datspach, DRIZPATEIL, fs ans shown
ir Figuzre I Trhe gubireocar iz compesad of an adder ang & ocne's

complement like in Figurs 6. The 32-0it edder conslsts o

kel
-

il
'R

il

-

i-big C1A c=lls connectsd Ln series liks in Figure 7. An altsr

I3

15

tive 15 ealled sither "in" or "out", according to whethsr it is
adopted or discarded, respectively. Bach component node has at
most one alternative node as "in" alternative. Cther alternative
nodes, which are invalid at the moment, are stored in the "out"
alternative list for later restoration due to the change of en-

vironment.

4. 32 Nﬂgéod Justification
2 nogood justification (NJ) is a logical expression that
must not held during the design. Satisfying any of the NJ's means
constraint violation and invokes ﬁhe redesign mechanism. An NJ is
in a conjunctive form. Each conjunct is one of the following:
I. a design decision, or an alternative,
2. a constraint,
3. a condition about basic c¢ell count
4. a condition about delay.
Each NJ ig put at one of the alternative nodes,
Among NJ's are what we call default WNJ's. Suppose a con-
straint saying 'the total basic cell count of the datapath must
not exceed 130C' is wvalid. The following default NJ is written at

DATAPATHL in Figure £8:

¢ of basic cells ¢ 1300} & DATAPATHL
& (SUB + COMPARATOR + ... » 13003y (1}
where the iflrst conjunct is the constraint, the second an alter-

native, the third a condition abouz the total sum of the basic

" = o e - 4 - - . 1
c2lls oI the compohRels. L7 25 SSUvWalsno T2 e orlglipal oon-
s d e - i rp——— —hae memer Eamd me oewd m? ma Do -t —— 2
ECraine Ln oie BSTES LOET ERT SEELen TROLATLOY WIS CCnETIZLnn
wizn ZATAFRTEI g5 ZETEpatTh getlisIiss Zz. Ielzulz MIi's allow uE <z
- e R R | [—— —— — W o = nm 1 . = - - a=
IsCUCe STEUSTILON ECELNST CONETTEINTE Lo ChESRING on MU 5. NoW wWe
mmdry Lo AmS T 3 mmmmrzel e oD M
aIe ISACY -0 Colne TUDELELCN 80 SEnEIETICL O J's

4.3 MJ Expansico

NJ exzansicn is used to specialize an NJ in an attsmst o
narrow a scope down for contradiction resolution, or redesign.
Expansion of an NJ with respect to a component node ies defined as
follows:

1. removing the component's contributicn from every condition
with the component in it,

2. making an NJ as the logical product of the conjunction ob-
tained above, the component's "in" alternative, and the condition
about the component's subcomponents, and

3. putting the resulting NJ at the alternative node of the com-
ponent.

For example, expanding (1) with respect to SUB {in Figure 8) may
give us the following NJ at SUBL:

(# of basic cells < 1300) & DATAPATH]

& (COMPAEATOR + ..., » BEB) & SUB1L

& (ADD + 1'S—-COMPLEMENT > 432) (2)

This happens when the design turns cut to exceed 1300 basic cells
and the subtracter is selected as a candidate to be changed.
Further, expanding (2) with respect toc ADD will give us the fol-

lowing NJ at ADD1 as the 4-bit CLA cell consists of 50 basic

— 12—

calls:
(§ of basic cells < 1300% & DATAPATHIL

& (COMPARATCE + ... > 868) & SUBL

& (COMPAZATIR - ... » 868 & 3081 & a0T1 (4@
Notice that (1) dres not allow To use 4-hit CL2 eelle for = 30~
bit adder under the condition:
¢ of basic cells ¢ 1300) & DATAPATHL

& (COMPARATOR + ... » BB8) & 5UBlL

4.4 NJ Generation

Suppose every alternative for a component causes wviolation
against constraints (not necessarily the same constraint). NJ
generation enablies us to get an NJ with no reference to the com—
ponent, from a set of NJ's, each of which contains each alterna-
tive as a conjunct. If, for example, there are only three alter-
natives, a, b, and ¢, for component X, and we have NJ's, A & a, HE
&b, and C & ¢, then NJ A § B & C can be generated at the alter-
native node of X's parent node. This procedure is justified by
resclution [Reobinson 65]. The generated NJ suggests that we
select a compeonent as a candidate to be changed among those it
refers to.

Suppeose, in addition to (43, we have NJ's for an alternative
with 2-bit CLA cells (ADD2: 256 basic cellsy and for an alterna-
tive with 1-bit adder cells (ADD3: 256 basic cells):

of basic cells < 1300) & DATAPATHL

& (COMPARATOR + ... » 1012) & SUB1 & ADD2 (5)

{# of basic cells ¢ 1300) & DATAPATHI

& (COMPARATOR + ... » 1012) & SUBl & ADD3 (6)

If no alternative is availaple other than these three, from (43,

{3y, and (B), »J g¢=n2=ration QLVES JuS a new MJ

{%# of basic cellsz ¢ LIZ0DY & CATAPATHL

§ (CCMPAFRTOR - ... ¥ LJLIY & EUBL (5
Thisg shews that the dssign llustratsd in Figure 6 iz impossiklis
under the esnvircnment szecified by the first thras senjuncts
To=lODEX would heve to change either the subtracier or the sen-

4.5 Recdesizn Algorithm

The redeslan algorithm using expansion and and generation of
NJ's is outlined. The redesign mechanism is invoked when some
default NJ turns out to be true for the evaluated design. The
redesign algorithm begins with the NJ, from the alternative node
where the NJ resides.

Sstep 1. If this alternative should be kept untouched, then
select one of the subcomponents, expand the NI with respect to
it, go down the hierarchy by cne level with the NJ expanded, and
executes Step 1 again. Otherwise, go to Step 2.

Step 2. If there is any other alternative available, which can
be an "out" alternative, that makes no NJ's at the ancestor nodes
(including itself) true, then replace the current alternative
with that and exit. Otherwise, go to Step 3.

Step 3. Generate an NJ and go up the hierarchy by one level with
the NJ generated. If the NJ generated contains constraints only,
fail! Ctherwise, go to Step 1.

The decisien on whether to replace an alternative or which sub-
component to select in Step 1 is made based on heuristics, which

can be separated from the above algorithm. One of such heuristics

would be to select the largest or the slowest subcomponent.
We have proposed a redesign algorithm that iz defined on the

hierarchy represénting the design. So it is already plugged in o

the wnole desicn process. rrom & gratical point of view, 1t is
importent for the user o be sols o veluntssr to 4@ssicth wiTihcouT
dizabling the svstem's JustiIZlczTicn metnenlsm. Cur aptorocacnh LS
L= adf "no-mcrs—zlitsrzsiive" zssvencicas Suppcse, Icr sxmzmzls,
we a2dd & "me-mere-alisrnative"” as the Iil<h gonjunct to BS T
when generating it If the user comes up with a smaller adiizax

i

and enters it to the system, the system adcpts it as "in" alter-
native and meakss the assumpticn false. Tt means (7) is no mors
satisfied and the subtracter can be restored under the same en—

vironment as before.

5. Status and Conclusioos
We are implementing co-LODEX on PSI's (Perscnal Sequential
Infer=snce Machinesy in 2372 [Chikavama £4] wusing the gbjecti-

oriented feature and the raemote object facllitv. Experiments and

argleation a»a echadulss wisk I+ scompleted

Our work foouses con The ooooeratlich beTwesn cistrilbutsd
agents, Datapazh Desisn Lgent and Contrzl Desicn Agent, and the
redegicn mechanism based con zssumpilcon-zassd reascning. One en-
censicn weuld ke to 248 an scent for desicn for testability. Ve

believe that assumpticn-based ressconing provas to be meore eilsc-

tive when used in the context of DATI.

_]ﬁ-\.

Acknowledgement

This work is based on the results of the R & D activitlies orf

the FPifth Generaztion Computer Systems Project of Japan. We would

1ike to thank Mr. Fuiii of ICOT for his encouragement and sup=

S

l”

orT.

References
[Smith 85] Smith, R. G., "Report on The 1984 Distributed Artificial
Intelligence” Al Macazine, Fall 1985 (19€5;.

[Buchknell 868] Bushnell, M. L., Director. 5. W., "VLSI C2D Tool

In-szrs+icn Usirg the UIYE3ES Environment” Proc. of
e T = a md e LT Npep——— e S P 9
23rf Jesgion Autzmaticn JonI., BpL.ol-ol (1THE).

rewer I . D s7zxi. . D., "An ExXperc-System Prrzdiso
Zzr Tesizn” Proce. oI Lird Zesion suscmatlon Conl.
To.8I2-9% [LEEE}
[d= Kizer 221 ¢2 Klesr, J., "an Assumpticn-Sased Truth Maintensncs

Svestem” Arcificial Intellicence 28 (10B6).
[(Doyle 79] Doyle, J., "A Truth Maintenance System" Artificlal
Intelligence 24 (1979,
[Reiter 87] Reiter, R., de Kleer, J., "Foundations of Assumption-Based
Truth Maintenance Systems: Preliminary Report” Proc. of
ARRT-8T, pp.lB3-188 (1987).
[Finger 85] Finger, J. J., Genesereth, M. R., "RESIDUE: A Deductive
Approach to Design Synthesis" Tech. Rept. HPP-85-1,
Stanford University (19853).
[Duley 68] Duley, J. R., Dietmeyer, D. L., "A Digital System Design
Language (DDL}" IEEE Trans. Computers, Vol.C-17, No.%,
pPR.850-861 (1968).
[Moszkowski 86] Moszkowski, B., "Executing Temporal Logic Programs”
Cambridge University Press (19B6}.
[Campocsano B7] Camposanc, P., "Structural Synthesis in The Yorktown
Silicon Compiler" Proc. of VLSI'87, pp.29-40 (1987).
[Roebinson 65] Rebinson, J. A., "A Machine-Oriented Logic Based on the
Resolution Principle” Journal of the ACM, Vel.1l2, No.l,
pp.23-41 (1865,
{Chikayama 84] Chikayama, T., "Unigue Features of ESP" Proc. of

FGCS'84, pp.292-298 (1984).
—_ 18 ==

