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Abstract
Constraint logie prograinming {CLP) is 2n extension of logic programming by introduc-
ing the facility of writing and solving constraints in a certain demain. CAL (Centrainte
avec Logique) is a CLP language in which {(possibly non-linear) polynomial equations can be
writlen as conslraints, while almost all the other CLFP languages proposed =o far have con-

centrated only on linear equations and inequations. This paper describes a general semantics
of OLP including CAL, and shows the validity of CAL in this framework.

1 Introduction

A paradigm called Constraint Lugic Frogramming (CLP)} was proposed by Colmerauer [2], and
Jaffar and Lassez [T]. A similar paradigm (or language) was proposed by Dincbas, Simonis, and
van Hentenryck [3]. Programs written in logic programming languages like Prolog are executed
by unification. CLP is an attempt to increase the descriptive power of logic programuming by
employing constraint solving instead of unification as its execution mechanism. In this sense,
constraint solving can be viewed as a generalization of unification.

The idea of programming by constraints is not new, e.g. [4) and [12]. However, it is in the
framewark of logic programming that constraints give full play to their ability. There are many
advantages in the combination of logic programming and constraints. The most outstanding
feature of constraint programming is that it allows the declarative description of problems. This
feature should be preserved when controls are described as well. Declarative description of
problems is also a feature of logic programming and, therefore, is inherited by the combination
naturally.

I fact, there is a siimple and unified framework for the declarative and operational semantics
of CLP. This may not he true for a langnage in which controls are described operationally. A
simple generalization of the ordinary goal-reduction technique of logic programming can be
viewed as the operational semantics of CLF.

Traditional logic programming possesses logical, funetional, and operational semantics, which
coincide with each other (8], [10], and [15]. Jaffar and Lassez showed that CLP is a generaliza-
tion of traditional logic programming in the sense that it possesses these three semantics [7]. In
addition, they introduced algebraic semantics of CLP. According to 7], exccution steps of CLP



programs depend upon decision of the satisfiability of constraints in a given domain. However,
we require more; the canonical forms of constraints should be computed if the constrainis are
satisfiable. Thic is a very similar situation to that in ordinary logic programming where the
unification procedure decides the satisfiability of equations In the Harbrand universe and comn-
putes the most general unifier if satisfiable. Sinee equaiicns cen be considered consiraints, the
operationzl mode! of CLP is 2n extension of the model (of vsual logic programming) hased on
pnification. Thus, we arz almost on the side of Jaffar and Lassez in the theoretical argument,
but zre on 2 different side in the dutalls.

Thiz paper describes the theoretical foundation, implementation, and application of CAL
(Contrainte avec Logique), which is the CLP language we arz developing. After 2 preliminary
definition of the logical semantics of CLP in Section 2, Section 3 presents functional seman-
tics and Section 4 presents operational semzntics. Section § discusses the canonical forms of
constrainte which are appropriate as the answers from the system. The language, CATL, which
treats polynomial equations 25 constraints Is iniroduced in Section 6, and Doolean CAL, which
ie a version of CAL that treats Boolean equations as constraints, is described in Section T.

2 CLP on Many Sorted Algebra

This section presents basic motions to describe the scmantics of CLP. Let S be a finite set of
sorts, F a set of function symbols, C a set of constraint symbols, P a set of predicate symbols,
and V a set of variables. A sort is assigned to each variable and fonction symbel. A finite
(possibly empty) sequence of sorts, called signature, iz assigned to each function, predicate, and
constraint symbel, We write w1 s, f 1 &3852...8; —+ s, and p i &isy... 8, if & variable, v, has a
sort, &, if a function symbol, f, has a signature, s153...5q, and = sort, s, and if 2 predicate or
constraint symbol, p, has a signature, 5182.. .5z, respectively.
Terme and their sorts are defined inductively as follows.

1. A variable of sort s is a term of sort s.

2. If f is a function symbol such that fis152.. .65 —+ &, and t1,12,..., 04 are terms of sorts
Sy, 82, .., 4 respectively, then f{t;, 12, ... .1y) 15 2 term of sort s

Atomic formulae and an atomic constraints are defined as follows.

3, If pis a predicate symbol such that p @ s180... 84, and ty,t,...,1, are terms of sorts
$1382,« 0+, 8p Fespectively, then p{t;, 1z, .. .1, ) is an atomic formula.

4. If ¢ it a constraint symbol such that ¢ : s187...8,, and #3,12,..., 1, are terms of sorts
81,87, .., &, Tespectively, then c(tl,ig,“.,Iﬂ} is an atomic constraint.

We write t ¢ s if a term ¢ has a sort 5. The set of terms, atomic formuine, and atomic
constraints are denoted by T(F, V), A(P, F, V), and A(C, F, V), respectively. A constraint is a
finite (possibly empty) set of atomic constraints, Intuitively, a constraint is a finite conjunction
of atomic constraints. The empty constraint means true.

We assume that for cach sort, &, there is a special constraint symbel, =,, of signature ss.
For this symbol, we use infix notation, and the suffix s may be omitted if there is no danger of
confusion,

A combination D of a class of sets, {D{s)js € §}, a class of functions, {D(f}|f € F}, and
a class of functions, {D(e)|c € C}, satisfying the following conditions is called a structure. A
structure plays the same role as the Herbrand universe does in the semantics of ordinary Prolog.



1. If fis a function symbol such that f : s187...5, — &, then D{f)} is a function from
D(s,) % D(s3) % -+ -x D(sa) to D(s).

2. If ¢ is a constraint symbol such that ¢ : 5,8, ..., then D(e) is a function from D{s;) x
D{sz) % --- % D(s,) to {false, true}.

In what follows, let D be 2 fixed structere. Suppose that D(=,), which is z funciion from
D(s) »x D{s) to {false, true}, satisfies the following condition.

Di=;Hz,y) = if x =y then true else false

Wote that =, here plays the same role as unification in ordinary Prolog.

A class, I, of {functions, {/{p)|p € P}, satisfying the following conditions is called an infer-
pretation, which plays the same role as an Herbrand interpretation in the semantics of ordinary
Prolog.

3. If p is a predicate symbol such that p : 5183...5,, then J{p) is & function from D{s;) x
D(s3) »«+» % D(sy,) to {false, true}.

An assignment is & function, @, from V to |J, D(s) satislying the following condition.
4. If v:s, then v@ € D{s). {We use the symbol, @, in postfix notation as usual,)

An assignment, &, can be naturally extended to a function of T(F, V) and A(C, F, V). Then
t9 € D(s)iftisa term of sort s, and p@ is false or true if p is an atomic constraint. Let C
be a constraint. If there exists an assignment, &, such that ¢@ = true for every ¢ € C, then
' is'said to be satisfiable, and & is called a solution of O, Similarly, @ can be extended to a
function of A(F, F,V)} into {false, true}, denoted @1, if an interpretation, I, is given.

A program elause, which is an extension of a definite clause, iz an expression in the form of
P =P1,P2, .-, Pn (7 = 0), where p is an atomic formula and each p; is an atomic constraint
or an atomic formula. A finite set of program clauses is called a (constraint logic) program.
Let L be a program. An interpretation is called & model of L if for any program clause (p :
=P1, P2y .., Pn)E L, and for any assipnment, @, ;07 = p@7 = -+ = p, O = true implies
pATl = true.

3 Functional Interpretation of a Program

Tirst, we extend the function given by van Emden and Kowalski [15] for CLP. Let there be a
program, L. Based on an interpretation, J, we can define another interpretation, J, as follows.

J(p)( di,day. .. ds) =

if there is a program clause p{ty,ta. .., 4.) t =91, P2, ..., Pm € L and an assignment, @,
such that p, @7 = p,@7 = ... = p @ = true and d; = 4,0,d; = 129, ...,d, =, 0

then true

else false

Since interpretation J is dependent on program L and interpretation I, let us denote it
T(L,I). Then T(L, ) forms a function which maps one interpretation to another. An interpre-
tation, [, is said to be less than another interpretation, J, denoted 7 < J, if the following hold.
For every predicate symbol p: s35;...5,, and for every element d; € D{s;),dz € D(s2),...,dn €
D(sq), if I{p)(di,da,...,dn) = true, then J{p)(d),ds,...,d,} = true. Proof of the following

proposition is & routine,



Proposition 3.1 The sef of all the interpretations forms o complete lolftice with respect o =,
and T(L,_) is continuous o il. That is to say, the following conditions hold.

11 < J then T(L D)< T(L,J).
o Ifh €l < ..., thensop T(L, T} = T(L,sup I}

For zuv ordinz] number, o, interpretations T | @ and T | « zre defined by transfiniie
induction as follows.

T Ta = if o is a snccessor ordinal, §+1, then T(L,T178) else sup{T 1815 < o}

T |la = if oalis 2 successor ordinal, § + 1, then T(L,TL8) else inf{7' | 518 < a}

The definition after else is adopted also when e = 0. Thus, T T 0 becomes the least element
with respect to <. That is to say, for every predicate symbol p @ $152...8n, and for every
clement, dy € D(s;),d: € D(s3),...,da € Di{s.), T 1 0(p)(dy,dz,. .- dn) = false. On the
other hand, T | 0 becomes the greatest element with respect to <. That is, for every predicate
symbol, p : $1,82,...,9s, and for every element, dy € D(s5),dz € D(s2)s...vdn € Disa),
T | 0(p)(dridzy ..., dp) = true.

It iz easy to show the following.

TTi0<T11<TT2<...
Tio>Ti1>Ti2>...

From Propesition 3.1 (1) and the fixed-point theorem with respect to order homomorphisms
of a complete lattice, T(L, ) has the least and the greatest fixed-points. We write them lfp(T, L}
and gfp(T, L}, respectively. Then, for some sufficiently large ordinals, e and 8, ip(P,T) =T T a
and gfp(T,L) = T | 5. In fact, it is easy to show that Ifp(T,L) = T 1 w from Proposition 3.1
(2). In general, the greatest fixed-point gip(T, L) is different from T' | w.

Lemma 3.1 For any program, L, the following conditions hold.

1. T(L, 1) < I if and only if I is a model of L. Especially, the greatest element, T 1 0, is the
greatest model of L.

2. 1p(T, L) is a model, and for any model, I Up(T,L) < I. Therefore, 1ip(T, L) is the least
model of L.

Here, we define the syntactical counterpart to the function, T(L,). Consider a pair of an
atomic formula, p, and a satisfiable constraint, . For convenience, we denote this pair p: =C
and call it 2 QA-pair (question and answer). We denote the zet of all QA-pairs QA. From a
subset, 5, of QA, another subset, T, is defined as the set of all QA-pairs, {p(s1,82,-+., %) : -},
such that there is a program clause, p(t1,82,- -+, ta) I =Pl Pn-- 2 Pm € I, and

1. For each p,, p; is an atomic formnla such that (p; ~(4) € §, or an atomic constraint such

that G;: {Pi}.
2 0= s =1, = 1,008 = R IUGUCU. UG,
3. & is satisfiable.

We denote T, defined above, Q(L,S). Then Q(L, ) is a function which maps one subset of
QA to another. Function Q{L. ) has a similar property to T{L, ) with respect to the inclusion
relation of sets C.



Proposition 3.2 Q{L,_) is continuous with respect to the inclusion relation of sets ©. That is,
the following conditions keld.

1 IfSCT, then Q(L,§)C Q(L,T).
2 IS5 C8C..., then UQ(L, 8:) = Q(L,IUS).

Similerly, @ 1 e, and O | o are definad as follows.

071 if ais asuccessor ordinal, 8+ 1, then Q(L,Q 18) else QT8 | B < «}
Qla = if ais asuccessor ordinal, §+ 1, then Q(L,Q | f) else N{Q L 5| B < e}

In particular, @ 10 =P and @ | 0 = QA. The following are also routines.

Q10cQTlIcQr2C .-
Qlo2Ql12Q122--.

Q{L,) has the least fixed-point, lfp(Q, L), and the greatest fixed-point, gfp(Q, L). For snf-
ficiently large ordinals, @ and #, Up(Q,L) = @ 1 «a, and gip(Q, L) = @ | B. In fact,
Up{Q,L) = Q T w, but gfip(Q, L.} is different from @ | w, in general.

For § CQA, an interpretation, |5], is defined as follows.

ll

ISI{Fj{dI:d‘J:: .. .,dn} =
if there is a QA-pair (p(t;,12,...,1s) 1 =C) € § and an assignment, &7,
such that dy = 4,0,d; = £;0,...,d, = 1,6 and @ is a sclution of
then true
else false

Lemma 3.2 For any program, L, end for any ordinal, a, TTa =10 Te|and T l a = |G | a|.

By the above lemma, fp(T, L) — | ip(@, L)| and glp(T, L) = | gfp(Q, L)].

4 Operational Interpretation of Programs

This section defines an operational model for CLP. A foermula in the form of pr,p2,. .., P C i
called a goal, where each p; is an atomic constraint or an atomic formula, and C is a satisfiable
constraint, A satisfiable constraint is called a suecessful goal, when it is viewed as a goal such
that n = 0. Let I. he a program. "T'he (extended) SLD-resolution is the process which obtains a
new goal from another goal py, pg, ..., 8n; € in the following way.

1. If p; is an atomic constraint such that D = {p;} U C is satisfiable, then the goal,
P2y v -2 P L, 05 obtained,

2. I py = pls1,%2,.. ., 5m ) i8 an atomic formula such that there is a program clause {p(ty, 2,
cortm) b =1y Gayee s Gk) € P osuch that D = {s; = t1,82 = t3,.. 18 = I} UC Is
satisfiable, then the goal, gi1,42, - - .. Gk P2y -+ -y Py &7, 15 Obtained,

A sequence of goals, g, y,...,n, is called an SLD-resolution sequence il each Gy 18
obtained from ; by SLD-resolution. Here, we define a success set, §5(L).



§5(L)={(p:-C)e QA
there exists an SLD-resolution sequence which begins with the goal, p 0,
and ends with the successiul goal, C'}.

Theorem 4.1 For any program, L, |#p(@Q, L)| = |55(L)|.

The reader can easily see that, if pis input as a quesy, a constraint, €, such that (p: —C) €
58(L)is output as an answer from the system. The above theorem guaraniees the correctness
of this mechanism.

5 Constraint Solving and Canonical Forms

According to the operational model of CLP described in the previous ssction, decision of the
satisfiability of constraints is necessary and sufficient to execute a program by (extended}) SLD-
resolution. However, a satisfiable constraint, as it is, may not be satisfactory as output from the
system if it is assured to be only satisfiable. For example, the constraint, {z+y = 3, 2—y = 1},
is satisfiable, and is therefore qualified to be outpul as an answer according to the definition
in the previous section. It is the answer {z = 2, y = 1}, however, that users actually waut in
many cases. In this sense, constraint solving should not be a mere decision of the satisfiability
of constraints but conversion of constraints into another form that vsers can understand easily.

Two constraints are said to be equivalent if they have the same solutions. We write €' ~ D
if ¢ and D are equivalent. For example, {z 4y =3, z—y =1} ~ {z =2, y = 1}. Clearly,
~ defines an equivalence relation for constraints. Suppose that for each equivalence class, E,
there is a representative, E |. The equivalence class to which C belongs is denoted [C], and the
representative, [C] |, is called the canonical form of C. Let us call an algorithm, A, satisfying
the following conditions, a constraint solver with respect to |.

1. A decides the satisfiability of an arbitrary constraint.

2. A computes the canonical form of an arbitrary salisfiable constraint.

When there is a constraint sclver, as defined above, the SLD-resolution in the previous
section can be improved; it computes the canonical form of the union, IJ, of constraints instead
of merely making the union. Actually, unification of ordinary logic programming can be scen as
computation of the canonical form of equality constraints in the Herbrand universe. Moreover,
computation of the canonical forms may make program execution more efficient, if there is an
algorithm that solves constraints incrementally based on the canonical forms.

6 CAL (Contrainte avec Logique)

A language named CLP(R) was developed at Monash University as an instance of CLI" languages
[9] and [5]. In CLP(R), constraints in the form of linear equations and linear inequations can he
handled. There is another important CLF language: Prolog III of Colmerauer [2]. In Prolog 11,
linear constraints over rational nummbers and Doolean constraints can be handled. This section
describes our CLP language, (AL (Contrainte avec Logique). The main feature of CAL is that it
has the facility of handling constraints in the form of (possibly non-linear) polynomial equations.



6.1 Language and Domain

The language of CAL is defined as follows.

5§ = {AN)}
F = {x,+} U {fraction}
C={=)

P = {siring of alphanumeric characiers starting with 2 lowercase latter]
V = {string of alphanumeric charactars stasting with an upnercase latter}

In the actual CAL system, there is 2 sort of Herbrand universe for & compatibility with
Prolog. Here, however, we assume that thers iz only one sort AN of algebraic number for
simplicity. If there is only one sort, the sort of each symbol need not be specified, and each
signature is determined only by arity.

We define 2 structure for the above language a5 follows.

D[AN) = the set of all algebraic numbers
D{%) = multiplication
D{+) = addition
D{fraction) = the rational number it denotes

It is clear that we can write polynomial equations as constraints.

6.2 Constraint Solver: Buchberger Algorithm and Grébner Bases

Buchberger introduced the notion of Gribner bases and devised an algorithm to compute the
Grobner base of a given finite set of polynomials [1]. This algorithm has been widely used in the
field of computer algebra over the.past few years. Gribner bases satisfy the conditions which
are listed in Section 5 almost perfectly. Therefore, the CAL interpreter utilized the Buchberger
algorithm as the constraint solver. First of all, we describe the theoretical backeground of Grébner
bases and the Buchberger algorithm.

Without loss of generality, we can assome that all polynomial equations are in the form of
p=0. Let E={p; =0,...,p, = 0} be a system of polynomizal equations, and I the ideal in
the ring of all the polynomials generated by {m,...,ps}. The following close relation hetween
the elements of I and the solutions of F is well known as the Hilbert zero point theorem [6].

Theorem 6.1 Let p be a polynomial. Every solution of E is also a solution of p = 0, if and
only if there exists e natural number n such that p® is an element of I.

Moreover, the following corollary is impertant to determine the satisfiability of constraints.
Corollary 6.1 E has no solution if and only if 1 € 1,

Thus, the problem of solving constraints is reduced to the problem of determining whether a
polynomial helongs to the generated ideal. Buchberger gave an algorithm to determine whether
a polynomial belongs to the ideal. A rough sketch of the algorithm is as follows (see [1] for a
precise definition).

Let there be a certain ordering among moromials and let a system of polynomial equations
be given. An equation can be considered a rewrite rule which rewrites the greatest monomial
in the equation to the polynomial consisting of the remaining monomials. For example, if the
ordering js lexicographic, a polynomial equation, Z — X + B = A, can be considered as a rewrite
rule, & — X — B+ A. Two rewrite rules whose left hand sides are not mutually prime are said to

=3



overlap. In this case, the least common multiple {LCM) of their left hand sides can be rewritten
in two ways by these two rules, which may produce different results. The resulting pair is called
a critical peir. If further rewriting does not suceeed in converging a critical pair, the pair is said
to be divergent and is added to the syslem of eguetions. By repeating this procedure, we can
eventually obiain z confluent rewriting svstem. The confiuent rewriting system thus obtained
is called a (Grébner base of the original svstem of equations. The following theorem establishes
the relationship between ideals and Gribner baees

Theorem 6.2 Let B be ¢ Grobner base of a system of eguations {py = 0,...,p, = 0}, and let ]
be an ideal generated by {p1,...,Pn). A polynomicl, p, belongs to I if and only if p 1s rewrilien
to O by f.

Moreover, the following theorem guarantees the validity of considering the reduced Grobner
bases as the canenical forms of constraints. A Grébner base is said to be reduced if it has no
two rules, one of which rewrites the other.

Theorem 6.3 Suppose that the ordering among monomials is fired. Let E and F be systems
of equations. Then if the ideal generaled from E is the same as that from F, then the reduced
Gribner base of E is seme as that of F.

Since the relation between the solutions and the ideal described in theorem 6.1 is incomplete,
the reduced Grabner bases do not satisfy the requirements in Section 5 completely. For instance,
constraints {X = 0} and {X? = 0} have exactly the same solutions. However, the reduced
Grobner bases are different. That is, that of the first constraint is {X — 0}, while that of the
second is {X? — 0}. Namely, the Gr8bner base of the radical of the geperated ideal, 1, i.e.
{plp® € I}, is more desirable than that of ideal I itself for the purpose of the CAL system.
Therefore, we are looking for an algorithm which computes the Grobner bases of the radical.
However, we do not think that such an algorithm is critical, because the ordinary Grébner bases
seem to work satisfactorily.

6.3 Program Example

First, we will illustrate the execution of a CAL program by an example, As explained in the
previous section, CAL can distinguish itsell when constraints are non-linear. The following is
an example of proving a geometrical theorem; the four midpoints of the edges of a quadrangle
form a parallelogram. The program is as foliows.

mid(AX,AY ,BX,BY,CX,CY) :- AX+CX=2%BX, AY+CY=2#BY.
paralAX,AY,BX,BY,CX,CY,DX,0Y) = (AX-BX)#*(CY-DY) == (AY-BY)#(CX-DX).

The above clanses state the conditions for midpoint and parallel. The mid clause states
that point (BX,BY) is a midpoint of segment (AX,AY)-(CX,C¥). The para clause checks whelher
segment (AX,AY)-(BX,BY) and segment (CX,CY)-(DX,DY} are parallel. In this clause, for con-
venience, we used a meta-predicate which does not fit the purely logical framework, namely,
the predicate ==, This predicate checks the equality of its right and left hand sides under the
current collection of constraints, just as the same predicate symbol does in Proleg. This kind of
control seems to be indispensable to write an actual application program in any language. The
body of the para clause is obtained by transforming the equation:

AY =BY  CY=-DY
AY —BY X -—DX




representing the equality of the tangents of the two segments.
To prove the above problem by this program, the {ollowing goal sequence should be evaluated.

T— mid(0,0,x4,v4,%1,y1),
mid(x1,¥1,x5,¥5,x2,y2),
mid(x2, y2,x6,y5,x3,0),
mid(x3,0,%7,0,0,0),
para{x4,y4, x5,¥5,%7,0,x8,¥8),
para{x4,y4,x7,0, x5, y5,x6,y6).

Refer to the following figure for the coordinates.

(x1,¥1)
EI-E,}"E]
(x2,¥2)

(xd,y4)
(x6,y6)

(0,0) (x7,0) (x3,0)
Figure 1 Coordinates for a Geometric Problem
The above goal is evaluated as follows.

1. The first predicate, mid{0,0,x4,y4,x1,y1}, s matched with the head of the nid clause.
Then constraints 0+x1=2%x4 and C+yl=2#y4 are obtained and their Grébner base, {4 —
1/2+x1,y4 — 1/2%y1}, is computed.

2. Similarly the next three predicates are matched with the head of the same clause, and
constraints x1+x2=2+x5 yi+y2=2xy5, x2+x3=2nxs5, y2+0=2+y8, x3+0=2x7, and 0+0=2+0
are obtained. A new Grdbner base is always computed incrementally from an old base,
when cach constraint is obtained.



4. The next predicate, para(x4,y4,x5,y5,x7,0,x6,y6), is matched with the head of the
pare clause. Then the equation, (x4-x5)*(0-y6) == (y2-y5)*(x7-x8),is checked under
the constraints obiained so fzr. Both sides of this equation are simplified to x2*y2 by the
current Gribaer base. Therefore, the equation holds under the constraints.

4., The last predicate, para(x4,y2,x7,0,x5,y5,%x6,y6), is processed similarly, and the equa-
tion, (x4-x7)=(y5-y5) == {ya-y3)s(xT-x8),is checked. Both sides of thiz equation are
simplified to ytsx1-yi=x3), and therefore, the equation holds.

As explained in (2), during execution of CAL programs, each encounter with an atomic
consiraint causes invocation of the consztraint solver. If the new consiraint is proved to be
inconsistant with the previous ones, th2 execution fzils and backtracks.

The above example uses Grébner bases indirectly via the predicate, ==. The following is an
example of using Grébner hases directiy.

sur{H,A,S5) :- A=H=2s5.

right(A,B,C) :- A™24B72=C"2.

tri(4,B,C,5) :- C=CA+CB, right(CA,H,A), right(CB,K,B), sur(H,C,5).
where A°2 is a syntax sugar of A+A, and so are the others.

The first predicate expresses the forinula to compute the area of a triangle from its height and
baselive length. The second is the Pythagorean theorem. The third asserts that every triangle
can be divided into two right-angled triangles. (See Figure 2.)

—
CA cB

Figure 2 Area of a Triangle

If the goal, tri(4,B,C,8), in which all the parameters are free, is giveu, this program com-
putes o Grébner base consisting of seven rules. An oulstanding feature of this base is that it
includes a formula constructed by variables &4, B, C, and 5 only, namely:

S 2=(-A"4-B 4-C a+ 2B 2e O 2+ E el AT+ ATE*R"2) /16

10



which is the famous Heron's formula in developed form. Of course, this program can be executed
by a goal with concrete parameters. For example, when the goal tri(3,4,5,5) is given, the
program answers that 572=36,

7 Boolean CAL

CAL dascrined in the previous sectioz is for constraints in the form of polynomial equations over
algebraic numbers. We also implemented another version of CAL, in which Boclean equations
can be writien 23 constraints. A typical domain for this version of CAL is the set of truth
values. This constraint solver employed a similar algorithm to Buchberger’s but was modified
{or Boolean comstraints {11].

In Boolean CAL, we can write programs which need logical evaluation very easily and natu-
rally. For instance, it is an easy task to write a program which verifies the correctness of logical
circults,

7.1 Language and Domain

First, let us define the language and the structure of Boclean CAL as follows.

= {BA}
F={a®&1,T}
C = {=}

P = {string of alphanumeric characters starting with a lowercase letter}
V = {string of alphanumeric characters starting with an uppercase letter}

I)(BA) = an arbitrary Boolean algebra
D(A) = conjunction
D{@®) = exclusive disjunction
D{1) = false
D(T)= true

In the actual system, other logical connectives such as disjunction, implication, and negation
are also included in F. However, since it is well known that they can be defined from A, &, L,
and T, we have omitted them for simplicity.

7.2 Boolean Griabner Bases

There are many known procedures to decide the satisfiability of Boolean equalions. Of these
procedures, the semantic unification method is one of the most promising. For instance, Dinchas
employed it as a constraint solver for his language [3].

However, a Grabner base type approach can be applied to the Boolean cquations as well as
to ordinary algebraic equations. This approach is better than the semantic unification method
in the following points.

1. It is not necessary to introduce extra variables which are not explicitly written in the
program or the goal. Thus, output from the system is easy for the user to undersiand.

2. Every constraint has its canonical form in the sense of Section 5, and the canonical form
iz computed efficiently.
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There is an algorithm to compute 2 Boolean Gribner base of a given Boolean constraint [11].
Here, we summarize several important properties of Boolean Grobuer bases. Let E be a system
of Boolean equations, p @ Boolean polynomial, I the ideal generated by E, and K a Boolean
Grébner base of F. The following is the Boolzan counterpart to the Hilbert zero point theorem.

Theorem 7.1 Every solution of F is also a solution of p= 0 if and enly if pe I.
Corollary 7.1 E has no solutions if and only if 1 € I.
Theorem 7.2 p is rewritten to 0 by R if and only if p is an element of I'.

Theorem 7.3 Suppose that the ordering emong monomials is fized, and let E end F be systems
of Boolean equations. Then the reduced Boolean Grobner bases of E and F are the same if and
only if the generaled ideals are the same.

Note that the relation between the solutions and the ideal is complete for Boolean equations.
Therefore, the reduced Boolean Grébner bases satisly the requirement in Section 5 perfectly.

8 Conclusion

The argument on semantics is mainly along the lines of that by Jaffar and Lassez [7]- Here we
summarize the differences. We separated the constraint symbols from the predicate symbols.
In general, a CAlL programmer knows what function symbols and constraint symbols mean,
hut does not know how the system solves constraints. In this sense, these symbols are built-
in in CAL. On the other hand, a programmer must know all about the predicate symbols
beecause he introduces the symbols., Therefore, the samantics of constraint symbols and function
symbols shuuld be given a priori as a structure, while predicate symbols should be defined by
a programmer. ln this situation, separating the symbols at the beginning enables us to define
the semantics naturally. In [7], the constraints are supposed to go ahead of the other literals in
a clause. For flexibility, we did not assume this. We did not discuss finite definability, solution
compactness, or satisfaction completeness, since we are not very interested in negation as failure,
in particular, in CLP. There are many predicates which do not fit negation as failure. Even if
a predicate fits such negation, there is most likely to be a decision procedure for the predicate,
and in such a case, it seems to be more natural in CLP to incorporate the decision procedure
into the constraint solver. Instead, we discussed the canonical forms of constraints, which are
sunitable as output from the system.

As shawn in the second example, we can obtain an answer in the form of a relation among
parameters, in particular, in the case where many parameters in a goal remain free. This
effect is very similar to that of partial evaluation, e.g. [13], or the unfolding technique in logic
programming, &.g. [14]. However, the result is more impressive and effective in CAL, since
compuiation of Gribner bases is much heavier and much more complicated than mere unification.

In the current version of CAL, the value of a variable in consiraints may be (virtu ally) any
algebraic number, i.e. a complex number which can be a solution of polynomial equations with
integer coefficients. However, if & certain variable, say z, can take its value only in real numbers,
then the constraint, 241 = 0, is inconsistent. Therefore, if we have a powerful constraint solver
which krnows a lot about the smaller domain of real numbers, the execution time is expected to
be reduced drastically for some practical problems. On the other hand, the user may want to
write non-algebraic constraints, such as sin(z) = 1, or ¢* = 7. In this case, it may be necessary
to extend the domain to the set of all complex numbers.

12



Thus, there must be a tremendous variety of requirements in writing and solving constraints.
To satisfy all unpredictable user requirements, the constraint solver should be designed to be
completely open and customizable. According to this policy, the system is designed to accept
the redefinition of a constraint solver suitahle for the user’s purpose. A user who remakes the
constraint solver is required to clarify the language and the domain of his constraints according
to Section 2 and to show that his constraint solver satisfies the criteria deseribed in Section 5.
At the very least, the nzer should implement an algo:ithm which determines the satishability of
his constraints.
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