I'K-356
MNonmonotonic Parallel Inheritance Network

by
C. Sakama & A Okumura

March, 1988

988, 1COT

Mita Wokusar Bldg, 21F (03 456-3191 ~5

II :O l 4-28 Mita 1-Chome Telex 1COT Jiruad

Minato-ku Takyo 108 Japan

Institute fo_r New Generation Computer Technology

MNonmonotonic Parallel Inheritance Network
Chials Sakama and Axra Okumura

Institute Jor New Gezeration Computer Technology
Miza Xokusal Bldg. 21F, 1-4-28, Mita. Minate-ku
Tokyo 108, Japan
csnet: sakamaficot.fp@relay.cs.net

wucp:{enea,inrig, kddlad, mii-eddie, uke} ficot!sakama

Abstract

This paper discusses a formalization of nonmonotonic inheritance reasoning in

semantic network and presents a parallel inheritance algorithm based on this approach.

1 Background

First, consider such an inheritance hierarchy in semantic network.

Elephants are gray.
African elephants are elephaats.
Clyde is an African elephant.

This hierarchy is represented by a set of first order formulae as follows.
W = {YzElephant(z) 2 Gray(z),
Yz A fricanElephant(z) o El'ephﬁnt{.r},
AfricanElephant(clyde)}

In this case, Gray(clyde) is deducible from W. That is, inheritance is realized by the repeated
application of modus ponens.
However, when there are some exceptions in the hierarchy, the case becomes somewhat com-

plicated, that is, nonmonotonicity can arise to inheritance. Consider the following hierarchy.

Elephants are normally gray.

Roval elephants ars elephants, but are 30t gray.

Clvde is a roval elepnant.

Tis hierarcay can be renresented by a set of frst order formulae as lollows.
W = {¥z=RoyalElephant|z) D Eleshant(z),
Yz Royal Elephant(z) 3 =Grayiz},
YzZlevhani(z) A ~HoyalZlephant{z) = Gray(z].

Rovyai Elepnant{ciyae)}

Such an inheritance hierarchy with exceptions is called a nonmonatonic inheritance hierarchy.
Suppose that Elephant(taro)is added to W. When fare s not a roval elepnant, ~Hoyal 21 ephant{iaro)
must be represented expiicitly in W to deduce Gray(taro). Thus, to represent a nonmanotonic
inheritance hierarchy by first order logic, it must be represented explicitly with the formulae.

[Etherington83 Etherington37a] formalized such a nonmenotonic inheritance hierarchy by de-

fault logic [Reiter80]. For example, the above case is represented as:

W = {¥YzRoyelElephant(z)D Elephant(z),

Royal Elephani(clyde)}

Elephant(z) : Gray(z) A ﬂRoydEiephani{z}}

b Gray(z)

{

Here, D is a set of defaults, and is informally interpreted as: "When Elephant(z) holds, and
Gray(z) A ~Royal Elephant(z) is consistent with this, then infer Gray(z).”

As a result, Elephant(clyde) is deduced from first order formulae W, but Royal Elephant(clyde)
in W blocks the derivation of Gray(clyde) from default D. Besides, when Elephant(taro) is added
to W and taro is not a roval elephant, —RoyalElephant{taro) need nat be represented axplic-
itly in W to deduce Gray(tero). That is, a uonm;:mutun.ic inheritance hierarchy can be treated
implicitly by default reasoming.

As is pointed ont by Touretzky, however, this approach is somewhat impractical because it
needs as many inheritance rules as sxceptions in the hierarchies. What is worse, update of such a
hierarchy requires modification of all the affected defanits as well as the corresponding first order
formulae. This becomes increasingly complex as the network grows, and does not make the most
of default reasoning.

This paper presents the formalization of nonmonotenic inheritance reasoning by default logic

different from Etheringron’s approach. and aiso gives a parallel aleorithm based on it.

2 Theory of Nonmonotonic Inheritance Reazoning

(]

.1 Nonmonotonic Inheritance Metwork

First, a binary relation J5_4 is defined as an acvelic relation betwesn an individua and a

clazz, or a subclass and a superclass.
Definition 2.1 Suppose a class (or an individual} r, y. and a set, Upper;{z) (1 2 0):

LISAlz,y)iffzey, orzCy.

a

¥ & Upperg(z) iff IS A(=z,y).

S. 3 € Upperipa(z) if f y = Uppeni(z) and [5_A(y, z).

e

A IS Af=z.y), then z € i Upperiz). C

The fourth condition above denotes that the F'S_4 hierarchv is acyclic. Next, a nonmonotonic

inheritance network is defined.

Definition 2.2 A nonmonotonic inheritance network A = (W, D) is defined as follows.

W' : aconsistent set of ground instances of either S Az, y), Property(z, w),

or =Property(u,v).

IS_A(z,y) A Property(y. =) : Property(z, z)
{ Property(z, z) '
15 A(z,y) A ~FProperty(y, z} : < Propertyi z,

= Propertyiz, z)

0D =

::}J a

[n the above definition, Prr:g:ertj:,..r[y,;jl (or ~Property(y, z)) denotes that a class or an indi-

vidual y has (or has not) a property z.

Ezample 2.1 Suppose the following well-known nonmonotonic inheritance kierarchies.
Molluscs are normally shellbearers.
Cephalopods are molluscs but are not nermally shellbearers.
Nautili ace cephalopods but are shellbearers.

Fred is a naotifus.

Im the above hijerarchv, cephalopods become an exception to molluscs with respect to the
oroperty of shellbearers. and azutili also become an axception to cephalopods with respect to the
sreperty of sheilbearers.

Such a hierarchy is represented by A = (W, D), where

W = {I&_Aleephaiopod, moiluse},
I5 _Ainautiins, cephaionod).
I5_A(fred. nautiius),
Properzy{moiluse. has_shell),
=Property(cephalopod, has shell),

Property(nautilus, has_shell)}
As a result, the extension of & becomes:

E = Wy {Property(fred, has_shell)}. {Informally, an extension denotes a set of

logical conseguences of a default theory.) O
The above example is represented by [EtheringtonS3,Etherington87a), as follows.!

W = {VzCephalopods(z) 23 Molluse(z),
YrNautilus(z) D Cephalopods(z),
'z Vautilus(z) O Shellbearer(z),

Nautilus(fred)}

Molluse(z) : Shellbearer(z) A =Cephalopods(z)
Shellbearer(z) '

Cephalopodsit) : ~Shellbearer{z) A = Nautilus(z)

=5hellbearer(z)

D = {

}

Compared with Etherington’s formalization, the approach presented here can give a simple
semantics for the interpretation of nonmonotonic inheritance reasoning. This is because the
nonmonotonicity in the inheritance of property is treated separately from the I'S_A hierarchy
between classes.

In this approach, the data in the network VW can be described separately from its inheritance

rules [which are ziven as a general rule for inheritance reasoning. This leads to a simple

![EtheringtondTh] employs a different manner of representation. based on Touretzky’'s approach.

description of a netwerk, and furthermore, update of the netwerk can be achisved only through
modiiication of the corresponding data in ' and there is 0o need to modify defanis.

Note that the traasizivity does ot hold for the [5_d relation In A, then I 5_4(fred. cesnalopod),
lor axample. cannot de derived in the above example. If it is required. however, by repregsanting i
a5 4 property such as Property(nautilus. upper(cephaloped)), Praperty(fred, uppericephaionad")
can be desived.

A is called 2 nermel default theory and has at least one consistent extension for every consistent

17" "Reiter30].

Definition 2.3 A nonmonotonic inheritance network A is definite iff it has only one extension.

(=

Ezample 2.1 is a definite case. Howaver, there is an indefinite network which has multiple
extensions being inconsistent with each other. For instance, Example 2.1 becomss indefinite
if [5.A{fred, cephalopod) is added to W. It generates two extensions: Fred has shell in one

extension, while he does not have it in the other. Such an indefinite case is discussed in the next,

i

2.2 Nixon Diamond

When multiple inheritance is considered in a nonmonotonic inheritance network, there is
sometimes a probiem for ambiguity. Consider the well-known Nizon digmond problem. That is,
Nixon is both a Qualker and a Republican, and Quakars are typically pacifists, while Republicans
typically are not. Then, the problem is whether Nixon is a pacifist or not.

[n Etherington’s manner, it is represented as follaws.

W = {YzNizon(z} D Quaker{z),
YzNizon{z) D Republican(z),
Nizon(nizon)}

D {Quaker(:} : Pacifistiz) Republicani(z): -rPucifiat[:c]}
Paci fist(z) ' ~Pacifist(z)
As a result, there evists the following two extensions which are inconsistent with each other.

Ey = {Nizon(nizon), Quaker{nizon), Republican{nizon), Paci fist(nizon)}

E: = {Nizon(nizon), Quaker{nizon), Republican(nizon), - Paci fist(nizon)}

The same situation happens in A = (W, D) as:
E. = Wy { Property nizon. pac: f1st)}
E. = W U {=Property(nizon, pacifist)}
where
W = [{I5_A(nizon, quaker},
[5_3nizon. mesudlican),
Property|guaker, pacifist),

- Property|repudlican, pacifist)}.

Such a network which has mora than one extension is called indefinite, and there are two
attitudes for treating such ag indefinite network.

A skeptical reasoner draws no conclusion from ambignous information, and hence offers no
conclusion as to whether Nixon is a pacifist or not. A credulous reasoner, on the other hand, toes
to draw as many conclusions as possible, and hence offers two alternatives: Nixon is a pacifist in
ane case, and is not a pacifist in the other case [Touretzky87).

The skeptical attitude is superior to the credulous one from an algorithmic point of view.
Since a skeptical reasoner always generates a unique extension, its algorithm is simpler and more
efficient than that of the credulous reasoner, which must generate muitiple possible extensions
that grow exponentially as ambiguity increases. The credulous attitude, however, is considered
more expressive than the skeptical attitude since it can represent ambiguous information.

Qur algorithm, which is shown in the next section, is close to the credulous attitude in the
sense of producing ambignous information, but it does not generate multiple extensions. That is,
it produces a set of properties for an input class, and ambiguous information can be represented

as one of its properties.

3 Parallel Inheritance

3.1 = Algorithm

Inheritance algorithms combined with parallelism have been studied over the past few years.

NETL [FahlmanT9] is well-known as a semantic network system. In NETL, inheritance is per-

formed by parallel marker propagation over nodes in a network. As is pointed out by Etherington,
however, NETL does not treat nonmonotonic cases correctly.

[Touretzky36] have proposed some inheritance algorithms for a nonmonotonic inheritance sys-

term. Those aigoritams are based on the choice of inference paths in muitipie ineritance. and
limited parailelism is achieved. Thev offer creduious inference svstem and also skeotical version
iz discuszed in [Harty37). Heowever, they require each derived path to contain its entire degivaiion
hiszery and it becomes overicaded as the size of the network increases.

[Etheringrond3.Etherington37a) have shown a parallel aigarithm hased on his farmalization
and proved its correciness, that is, all inferences lie within 2 single axvensien. However. his
aigorithm is not complete in gzeneral: there are some extensions which do 2ot come out fom
the algorithm. [Cottreil33] has aiso shown a parallel connectionist mode! based on Eihericgzon’s
approach, but there s no assurance of correctness and the example given there is guite simpie.

Now we siow 2 = aigorithm (parallel inheritance algorithm) for the nonmonotonic inherizancs
network presented in the previous section. The notation in the algorithm corresponding to A is
as follows,

property{class,C Props) where CFProps #@ iff Yeprop & C Props,

SProperty(class, eprop) € W or Ynot{cprop) € O Props, 2=Property(class, eprop) € W,
property(class. Q) if Yeprop. Property(class, cprop) @ W and = Property(class, corop) & W.
15.alclass, Uppers) where Uppers # 0 iff Vupper € Uppers, 315 _A{tlass, upper) e W.
ta.alclass, B) iff Yupper, [5_A{class, upper) € W,

Notation which begins with a capital letter in the following procedures denotes a set.

procedure w(input : class, output : Props);
begin
property(class, C Props);
is.afclass, Uppers);
Temp — ;
while Uppers # 0 do
begin
select upper fram [Ippers;
call x{upper, I Props);
Temp — TempU [/ Props;
[l ppers — Uppers — {upper}
end

call reverse(C Props, Rev(Props);

=1

Frops — C Props 2 Temp = Rev(Props)

end

procedure reverse(input : U Props. output : Rev(Props);

begin

if CFPr¢os = 2 then RexCProps =1

2ize

whiie £ Props = 3 do

begin

select cprop from C Props;
if eorop = notf prop) then prop € Rew(Props
else not(cprop) € RevC Props
end

end

Procedure « produces a set of properties for an input class, and procedure reverse turns over

the properties as: prop — not(prop).
Ezemple 3.1 To see how this procedure works, we apply this algorithm te Example 2.1.

First, the following is defined from W.

property(molluse, {hasshell}).
property(cephaloped, {not(has_shell}}).
praperty{nautilus, {has_shell}).
property(fred, D).

1s_a(molluse, 0).

ts_a{ cephalopod. {mollusc]).

ta.ai nautilus, {cephalopod}).

is.af fred, {nautilus}).
Then = fred, Props) works as follows.

property(fred. B);

is.al fred, {nautilus});
Templ — D:

call (nautilus, ' Propsl);

property nautiius, {has_shell});
is-a{nautiius, {cennaiopod});
Temp? — {:
call =/ cephalopod. ' Pronsd);
property(cephalopod, {notlhas_shelll}):
is.alcepnaiopod, {molluse});
Templd — B;
cail s{molluse, " Propsd);
property| molluse. {has_sheill);
is_a{molluse,);
Tempd — P
Uppersd =0
call reverse({has_shell}, {not{ has_shell)};
U Props3 ~— {has_shell} U (® - {not(has_shell}})
= {has_shell}
m(mollusc, {has_shell});
Temp3d — QU {has_shell};
Uppersd — {mollusc} — {mollusc}
=0;
call reverse({not(has_shell}}, (hasshell});
U Props? — {not(has_shell)} U ({has_shell} — {has_shell})
= {not(has_shell)}
wl{cephalopod, {not{ hasshell}});
Temp? — YU {not(has_shell}};
[ppers? — {cephafnpr}d} ~ {cephalopod}
=
call reverse{{hasshell}, {not(hasshell)});
U Propsl — {has_shell} U ({not(has_sheill)} — {not(has_shell)})
= {has_shell}
r(nautilusg, {has shell});
Templ — QU {has_shell};

Uppersl — {nautilus} ~ {nautilus)

=}
call reverzelD.2);
Frops — D i{agazhell} = 1)
= {has_sheil}

mi fred. {Acssnedl}). T

n :he 7 procecura, muliipie inneritance (s achieved when [hera [z more THan One UDDer iass
for a class In iz g eiase. Uppers). Then each upper class can independently call she = proceduzs

i

recursively, parailel sxecution is achieved in muitiple inheritance.

3.2 Awvs.w
Here, the soundness and completensss of the 7 procedurs with respect to 2 nonmonotonic

inheritance network A is shown.

Propesition Suppose a nonmonotonic inheritance network A and its extension E, then
Welass, w(class, Props) iff
Props = {prop | 3E, Praperty(class, prop) € £}
U{not(prop) | 3E, ~Properiy(class, prop) € E}.

FProof Suppose first that 3n.n + 1, Upper,class) # 0, Uppera(class) = @, then
Ve, € Upper,[class), is.a(e,, D) holds. Assnme =(e,, Props,), then
Props, = CProps, U (Temp, — RevC Props,)
= CProps, U () — Rev(Props,,)
= ' Prans,
= {cprop | Property(c,, cprop) € W} U {not(cprop) | =Property(c,,cprop) € W}

Next assume Ye; € Uppery(elass) (0 < i £ n), n(e;, Props;) where
Props; = {prop | 3E. Property{c;,prop) € E} U {not{prop) | IE. = Property(e;, prop} € E}.
holds.

Let We,_y & Upper;_i(class), w{c;_q, Props:_¢), then
Props;—y = CPropsi-1 U (Temp;_| = RevC Propa;_().
(a} If uprop € C' Props;_y or not{uprop) & C Props;_, then
Property(ci_y,uprop) € W oor = Property(ci_y, uprop) € W.

(b} Otherwise, uprap &€ Temp;_y— Rev] Props;_y ar not{ uprop) € Temp,_— Hev(Props;_y,

10

then
uprop = T emp.-: or notluprop) £ Temp:_; where Temp;_; = Props:.
By she assumption. Yo = [Mppergclass),
ZE. Propertyic:,uprop) € £ or ZE, ~Property(c;,uprop; € E.
In cass uprap £ Tempy_y, clearly uprop € Hewl Props;_, then
=Properiyle; . uprop; € W and Propesty(e;oy, uprop £ £
In case not{uprop: = Tempi-1, clearly not{uprop) £ Rev(Props;_-. then

FProperty{cie:, uprop) € W and - Property{e;_y, uprop) € E.

Therefore,
Propsi—y S {prop | ZE, Property(ci—1,prop) € E}
Ulnot(prop | 3E,=Property(ci.,prop) € E} (=).

Let ¥ei—y € Upperiai(ciass), SE, Property(ci;, uprop) € E or = Property(c;.,, uprop) € E.
(a) I Property(c;_y,uprop) e W ar =Froperty{e;_1,uprop) € W, then
uprop € CProps;—y or not{uprop) € C Propsi_,.

(b) Otherwise, 3E, Property(c;, uprop) € E or =Property(c;, uprop) € E.
By the assumption, Y¢; € Upperi(class), uprop € Props;, or not{uprop) € Props;,

where 7(¢;, Props;).
In case EE,Prcrperty{c;_l,ﬁpr,ap} € E, =Property{ci—1,uprop) £ W holds, then
uprop € RevC Props,_y and uprop € Props; — RevC Props;_y.
Then uprop € C Propsi—; U (Temp;_y — RevC Provs;_).
In case 3E,=Property(c;—y, uprop) € E, Property(ci_y, uprop) € W holds, then
not(uprop) & RevC Props;_y and not(uprep) € Props; — RevC Props;_y.
Then not(uprop) & C Propsi~y U (Tempiy — RevC Propsi.;).
Hence uprop € Props;—,, or not(uprop) € Props;—;, where z(c;—1, Props;_).
Therefore,
Propsi_y 2 {prop | 3E, Property{ci—y, prop) € E}
U{net(prop) | 3E, =Property{cii,prop) € E} (i)
Together from (+) and (7],

Propsi_y = {prop | 3E, Property(ci—1, prop) £ E}

11

UWnot(prop) | ZE, =Propertylc;_;, prop} £ E}.

3y induction. we have the desired result, C

4 Diseussion

The pravious sections presentec a formalization of the nenmonotonic inheritancs aatwark hy
a normmal defawlt theory. [t enables us to define inheritance -ules apart rom data in a network.
and improves readability or maintenance of a aetwork. The problem is, as is mentioned in section
2.1, some recundant I.5_4 link, which is defined transizively, makes a definite network indefinite.

Besides, the parallel inheritance algorithm based on this approach, generates a set of all
inheritable properties for an input class. When a network is definite, those properties are included
in an extension. While in a case of indefinite network, it collects ambiguous information from
multiple extensions, and then the result of the algorithm is net correc! in a sense. However, the
requirement for the correctness of the algorithm is apparently to defend resultant extensions from
logical inconsistency. And in 7 algorithm, the outpur is not the extension itself, but a set of
properties for an input class, and the ambignous information is pushed into argument, so there
is no problem logically.

In general, the interpretation of indefinite network is not straightforward; there are many
pathological cases. Let us consider an example of Sandewall's type lc problem. [Sandewall36]
has defined some basic structure types for inheritance network and given sound inference rules

for these structures. His type le structure is as follows.

iz-a
+ Elephant

is-a

- AfricanElephant

is-a

Clyde

In this case, Etherington ar Touretzky yieids two alternatives; Clyde is gray in one case and is

not gray in the other, while Sandewall’s approach only concludes that Clvde is not gray. The same
with Sandewail’s result iz achieved in [Brewkad7), where ne formalized nonmonotonic inherizancs
gtarmn im hig f THiee lane ina warighis et otion (MeCarthv@6l In Torarith
5¥5iem in Ais frame-lke language using varmable circumseriplion (MeCartay36). In our algorithm,
for an inout class Clvde. two alternative proper:ies, gray and not{gray) are generated as outpui.
There is no anique interpretation for such an indefinite network, and which is o be preferred

canzot De Judged in general (Clyde oniy fnows his color.)

References
[Brewka37] Brewka,G.: "The Logic of Inheritance in Frame Systems™. [JC4I°§7, pp.483-488,
1987.

[Cottrell3] Cottrell, G.W.: "Parallelism in Inheritance Hierarchies with Exception”, IJCAI'S3,
pp.194-202, 1985.

[Etherington83] Etherington,D.W. and Reiter,R.: "On Inheritance Hierarchies with I:Zxceptinns",
AAADS3, pp.104-108, 1083.

[Etherington87a] Etherington,D.W.: "Formalizing Nonmonotonic Reasoning Systems”, Artificial
Intelligence 31, pp.41-85, 1987.

[Etherington37h] Etherington,D.W.: "More on Inheritance Hierarchies with Exceptions”, A4AI'37,
pp.32-357, 1987.

{Fahlman79] Fahlman,5.E.: "NETL: A System for Representing and Using Real-World Knowi-
edge”, MIT Press, Cambridge, MA, 1979.

(Hortv87| Hortv,J.F., Thomason,R.H. and Touretzky,D.S.: A Skeptical Theory of Inheritance”,
AAAI'ST, pp.358-363, 1987.

[MeCarthy86] MeCarthy,J.:" Applications of Circumseription to Formalizing Common Sense Knowl-
edge”, Artificial Intelligence 28, pp.39-116, 1986,

[Reiter30] Reiter.R.: "A Logic for Default Reasoning™, Artificial Intelligence 13, pp.81-132, 1980.

{Sandewall36] Sandewall E.: "Nonmonotonic Inference Rules for Multiple Inheritance with Ex-
ceptions”, Proc. of [EEE, val.74, pp.13435-1353, 1986.

[Touretzkv36] Touretzky,D.S.: "The Mathematics of Inheritance Systems”, Research Notes in
Artificial Intelligence, Pitman, London, 1936.

13

1

Tourerziy37] Towretzir.D.S.. Horty,d.F. and Thomason, R.H.: "A Clash of Intuitions”, [JCAT'ST.

20476482, 1987

Uecaldf] Ueda.K.: "Guarded Horn Clauses™. Lecture Notes in Computer Sciences 221, Soringer-

Verizg, Beriin, 1086,

Appendix

Here, we show an impiementation of the = aigorithm in GHU (Guarded Horn Clauses’
[Uedad6]. GHC is the parallel logic programming language developed as she kernel language
ar ICOT.

The syatax of a clanse in GHC is in the following form:

H:-G1,G2:.Gm | 1. B2, ey B

where the part preceding " is called a guard, and the part succeeding it is called a body. 4
clanse with an empty guard is a goal ciause. The declarative meaning of the clause is the same
as Prolog.

The execution of a GHC program proceeds by reducing a given goal clause to the empty clause

az {ollows,

e

(a) The guard of a clause cannot export any bindings to the caller of that clause.

(b} The body of a clause cannot axport any bindings to the guard of that clause before commit-

ment.

(e) When there are several candidate clauses for invocation, the clause whose guard first succeeds

is selected for commitment.

Under these conditions, the execution of goal reduction is done in parailel. Now an interpreter

15 shown using the example of a shellbearer.

/*=x Nonmenotonic Parallel Inheritance Network in GHC ===/
W% inheritance procedura LI
pi(Class,Props,Tail):- true |
property{Clasz,Props,Temp),
is_a({Class,Uppers),

has_property{(Uppers,UProps,Ras),

14

f£ilvar{Props,UProps,Res, Temp, Taill),
nas_prapessy{[UClass|Rest] ,UProps,Talill:- tmue |

3i(UClass,UF-ops,Temp),

hag_proper=y{Rest,Temp,Tail).

L r - - - -
has_zrepessty(ll, UProps,Taill:- szue | UProps=Tail.

2ilzar{[CProplRest], I2,Taill,Dus,Taill):- CPropi=net() |
2itverZ(acs({CPzopl),in,Talill, Tems,Taild),
Silver{Rest,Temp,7TailZ,0us, Taill].

filter{[not(CProp) |Rass],In,Tadill, Jut,Tailll - e |
filter2(CProp,Ia,Taill,Temp,Taill),

filver{Rest,Temp,Taill,Jus,Taill),
filtar{Out, In,Taill,Out,Tail2):- trua |
In=0ut,Taili=Taill.
£ilter2(CPrep, [P11P2],Taill,Temp,Taild):~ PL\=CProp |
Temp=[P1|Rest],
filter2(CPzop,P2,Taill,Rest,Tail2).
£ilter2(CProp, [F1|P2],Tailt ,Tamp,Tail2):- PLi=CProp |
filter2(CProp,P2,Taill,Temp,Taill).
f£ilter2{CProp,Taill, Taill,Temp,Taill):- true |

Temp=Taill.

LN daza YNY
is_a(mollusec, Uppers):= true | Uppers=[J.
is_a(aquatie, Uppers):- true | Uppers=[].
izs_a(cephalopod, Uppers):- trues | Uppers=(mecllusc,aguatic].
is_alnautilus, Uppers):- true | Uppers=[cephaloped].
is_a(fred, Uppers):- true | Uppers=[nautilus].
propestyi{melluse, CProps,Tail):- true | CProps={soft bedy,has_shell|Tail].
prapersylaquatic, CProps,Tail):- trua | CProps=[svimming|Tail].
property{cephaloped,CProps,Tail):~ trus | CProps=[not(has_shell) has legs|Tail].
propezty{nautilus, CProps,Tail):- true | CProps=[has_shell,not(swimming)|Taill.

proparty(frad, CProps,Tail):~ trus | CProps=[american|Tail].

A
isaw i -"\-e

0

=

Sr3ps = _azerican, hasshell,net{swimming),zas legs,soiz Dodyl

Euld pal Cos

Tzis GHC program is easily iransiated into a Prolog program, which periorms sequential

inhecizance in a network.

16

