ICOT Technical Report: TR-350

TR-330

Deriving a Compilation Method for
Parallel Logic Languages

by
Y. Ketda & J. Tanaka

March, 1938

1988, 1COT

Mlita Bokusay Bldg 21F EF 4a6-4001—~ 5

“ :D | 4-38 Mita 1-Chome Teles 1COT]394

MMmato-Ro Tokyo 108 Japan

Institute for New Generation Computer Technology

Deriving a Compilation Method for Paralle! Logic Languages

Youji KOHDA Jire TANANKA
International [nstitute for Advanced Study Instizute for New Generation
of Social Information Sciznee, Cempuier Technology,
FUIITSD LIMITED 2iF, Mita Kokusal Building
1-17-25. Shickzmaia. 123, Miga,
Cta-ku, Tokye 144, JAPAN Minaic-gu, Tokyo W8, JAPAN

Abstract

1t is already known that & Cencurrent Prolog program can be compiled into an eguivaient Preiog prograrm.
Using a Cencurrent Prolog interpreter written in Prolag. we coaverted Cencurrent Proisg programs step
by step to compiled codes in Prolog. Each conversion step was successiully exscuted on 3 Prolog languags
processor. We examined how cach conversion step contribuied to performance improvement, usicg sampls
Concurrent Prolog programs such as & meta interpreter.

1. Introduction

Concurrent Prolog (CP) is an AND parallel lagic language developed by Shapiro [3]. He also developed an
interpreter for CP written in Prolog. The interpreter was considered significant as a working specification;
however, it suffered from poor execution performance. Ueda and Chikayama have solved this problem by
develaping a compiling techaique from CP to Proleg (4] Lnair compilation technique is based on the scheme
of Shapirn's CP interpreter, Therefore, it seems [easible to derive their compilation method from the CP
interpreter schieme. :

The concept of partial evaluation is famuliar. It is widely known that the partial evaluation of an
interpreter for lanzuape L2 in language L1 and a program in L2 results in a compiled code in L1 [or that
program. In our case, L1 and L2 correspond to Prolog and CP. However, we do not give a precise way
to make a partial evaluator in this paper. Instead we will pive a method of partial evaluation from CF to
Prolog by derivation. It should be emphasized that a derivation path from CP to Prolog exists.

In program transformation, only an initial program is given, and it is transformed in small stages. The
final program after programn transformation will usually be too complicated to understand. This means that
the correctuess of each conversion step is very important o ensuring the correctness of the total transforma-
tion. This paper gives both initial and final programs, our interest lying in how to bridge the gap between
them. This is why we use the term derivation instead of iransformation.

We use an append program as a working example throughout this paper, We begin with Shapire’s CP
interpreter and an append program in CP, and modifly them step by step. Finally, the append is compiled
into Prolog. This is identical to what Ueda and Chikayama have developed.

The derivation method is useful both theoretically and practically. It can help us to design a compiled
code; eacl conversion step can he executed divectly on a Prolog processor, and by observing the execution
speed, the effectiveness of specilic conversion methods can be studied. We can experiment with many new
compiling techniques before deciding upon the final one. Kursawe gave a full account of this idea in hia paper
[2]. He showed that successive conversion of an append program in Prolog can finally yield a Warren-fype
Abstract Prolog Machine Code.

2, CP and CP Interpreters

A CP program is a set of guarded Horn clanses. A Horn clause has the form: H:-G|H. Here, H is a predicate
called the head, G is a sequence of subgoals called the guerd part, B is a sequence of subgoals called the body

part. When G is true, the Horn clause is abbreviated as H:=B. When B is also true, it is simply written
out as H. CF is characterized by the commit operator, |, introducing nondeterminism, and the read-only
annctation. 7, intreducing data driven contool.

Computation in CP is a series of reductions. To reduce a given goal, first, choose a set of clauses each of
whose heads is unifiable with the geal, including only the clauses whose guard part is recursively reducible.
Second, randomly select one of these clauses. That is, the clause s guarded at the | from the resi in the
set. Finally. replace the given goal by the body part of the selecred clanse. Fach new goal is subjected o
ciccessive reductions. The commit opersicr, |, achlevss coeordination among perallel execusing zoais.

The svizhol 7 can be attached to any variable to indieate tha: the variable is weed oniy icr & resd-
out oparation: a read-only variebie canaot Le upided wish oon-vasiables until some value is assizaed o it
Thie assures a unidirectional flew of information. The read-coly ennotaticn, 7, achieves cooperation amasg

paralie! ex=cuting goals.

(1) CP interpreter in CF

The reduction process of CP can be written in CF as shown beiow [1]. This is a meta interpreter.

(M) mecall{true). % halt
meall((A,B)) i meall(AT), mecall(BT}). T fork
meall(G) - system(G) | G. %% system
meall(G) i~ nonsystem(G), Gitrue, #(A,B) | % reduce

reduce(G7?,Body), meall{Body?).

When elause goals conjoined by , are given, meall/MEf reduces each goal recursively. When a single
goal is given, it tries to reduce the goal. If the goal is true, it simply terminates. If the goal is a system-
defined predicate, it exscutes the predicate directly. Otherwise, the reduction is carried out by reduce, and
the returned body goals are solved recursively by meall/MY,

(2) CP interpreter in Prolog

Shapiro’s CP interpreter written in Prolog is shown below [3]. Notice that the overall program structure is
similar to that of meall/M0. The core of the interpreter consists of solve /S0 and reduce/RO.

(50) solve(['SEND’},_.) +— L % halt
solve([*SEND’[H],[],d) =, fail.
solve{[*SEND'|HL,['$SEND’|T],nd) = 1
solve(H,T,d).
solve([A|H].T,) :- % system
system{A), |, A, '
sn-l\l'e{ H,T,I‘ld},
solve([A|H],T,F} - % reduce and fork
reducef A, B F,NF),
schedule(B,H,T,NH,NT], !,
solve(NH,NT,NF}.
(RO) reduce{ A,B,_nd) - %% reduce
Euarrla-.d_c.iausE{A,G.B},
schedule(G, X, X, H,['SEND'|T]}, %% create a new queue
solve(H, T d), . % solve guard G in it
reduce(A suspended(A),F.F).
(GO) guarded.clause(A,G,B) -

t The Name/ldentifier Tormat is used to distinguish diffecent versions of elauses.

*
r

guarded_clause(A,B1), find_guard{B1,G,DB).
guarded clause(A,B) -
functor(A,F,N}, functor(ALF. N},
clause(A 1,1}, unify{A,AL). % CP unily
find_puard{{A|B},A,B) =~ L
find_.guard{ A,true,A).
(C0) schedule(true H,T.H.T) = L T breadth-fiest
schedule(suspended(A)H.[ATH.T) = L
sehednlel [ADLILT.HITI) - 0
sehedulal AVH,T.H1,T1),
schedule(B.H1.T1,H2,T2).
schedulel A, E A T H.T)

Soive(H,T.F} has a goal queue as a difference list, H and T, and a deadiock detection flag, F. The
cueue has a ryels marker SEND to inform selve /S0 that every goals in the queue has been tried. Solve/50
takes a goa! cut of ihe hezd of the goal queue and attempts to reduce it. Reduce/RO iries to reduce the
goal. When the reduction succesds, i.e, when a clause unifiablel with the goal is found and its guard is
successfully solved, reduce /R 2 returns its body goals to the second argument. When the reduction fails, it
returns suspended{A), whers A is the suspended goal. The third acd fourth argumests of reduce /BRI are
the deadlock flags. When the given goal has been reduced, nd (ne deadlock) is forced to be set to the fourth
argument. When it has been suspended, the deadlock flag at the third argument is passed through to the
fuurth argument. Initially, d (deadlock) is set to the deadlock flag. Deadlock can be detected by confirming
that the deadiock flag has never fallen to nd while the goal queue goes round.

Schedule /C0 schedules the reduction result in the goal queue breadth-first; the goals are appended at
the tail of the queue. A depth-first scheduling strategy can also be used; the goals are inserted in [ront of
the head of the queue. In that case, schedule/C/ shown helow is used instead of schedule/CF. When the
given goal is marked es suspended, however, it is a suspended goal, and is always scheduled breadth-first.

(C1}) schedule(true H,T,H,T)+ . % depth-first
schedule(suspended{ A), TL,[A[T],H,T) := |
schedule({A,B),H,T,H2,T2) :~ |,
schedule{B,H,T,H1,T1},
schedule{A,H1,T1,H2,T2).
schiedule(A H,T,[A[H],T}.

3. Compilation Techniques

As already stated in Section 1, Ueda and Chikayama developed a compiling technique from CF to Fro-
log. Their method is twofold. The first idea eliminates the overhead of goal invocations. The goal queue
and deadlock detection ﬂa.g in sofve are ncluded in each gflr'l.T as extra arguments, therehy eliminating the
processing time via selve.

The second idea implements depth-first scheduling which can manage the depth of a reduction tree;
when depth-first ceduction reaches the current depth limit, the search path is suspended and the current
depth limit is increased in preparation for the coming deeper search, then another unreached path is tried.
To implement this idea, a decrement counter is included in each goal as an extra argument. The counter

remembers how many times reductions can take place before reaching the current depth limit. Lhey called

t Unify in guerded_clause /G0 15 a special unification procedure; it has been tailoved for CP to handle the
read-only annetation, 7.

this scheduling strategy N-bounded depth-first scheduling, where N is the step size of the depth limit. The
counter is initialized to N every time it reaches zero.

Because these two ideas are indapandent of each other, we can produce four variations as shown below.

Scheduling strategy Interpreting ! Compilation
_B:eadth,"[}h:prh-ﬁrs: (1) Spapiro’s imterprets: I (i} Breadth/Depth-first compilation
b N-beunded depth-fisst | i Fonanced imearpreias | {v) N-bounded depth-first compilation

emiation 1) s Snapirc's CF interpreter. Varation (E) adonte the fiost idea: CP pregrams are compiled
ssrporating sither breadth-first or depth-dirst ssheduling. Variation (i) adopts the second idea; it is 2
snmazeed OP interpreter incorporating N-bounded depth-frst seheduiizg. Variation {iv) adopts bath idsas:
CP programs are compiled incorporating N-bounded depth-first scheduling.
Ve will derive (i) from (i) in Section 4. and (iv) from (iii} in Section 5. Enbanced interprezer {ul}
iacorzcrating N-boundsd depth-fizst scheduling will be showp ip Subsectizn 5.1, Sample compilaticns for

(i) and {iv] are shown in Subsections 4.4 and 5.2, respectively.

4. Compilation Incorporating Breadth-first or Depth-first Scheduling

This and the fallowing sections will show that programs in CF can be converted to a Proleg program. The
CP interpretet is incorporated into CP programs gradually in this derivation process, ‘The CF interpreter
in this section uses a simple scheduling strategy, which is either breadth-first or depth-first. The compiled
code derived here is a simplified version of Ueda and Chikayama’s compiled code. The following section will
show a full derivation using N-bounded depth-first scheduling.

The derivation process consists of four major stages, some of which may consist of several minor steps.
The first stage converts a CP program to its Prolog version using the definition of reduce/R0. The program
is further modified in the second stage using the definition of sofve/50. Tn the third stage, indirect goal
invocations are replaced by direct invocations. In the final stage, auxiliary predicates are unfolded to obtain
the target code,

As stated before, we use an append program as an example for the derivation. Append/A0 below is a
CV program.

(AD) append([X|Xs),Ys,[X|Zs]) - % CP program
append(Xs?,YsT,Zs).
append([],Ys,Ys).

4.1 First Stage
In the first stage, append /A0 in CP is converted to its Prolog version, append/A 1.

(1) Partial evaluation of reduce/R0

Reduce /R0 is partially evaluated, with respect to append/A0. Since reduce/R0 is written in Prolog, the
result is also a Prolog program.

First, consider the second clause of reduce/R0, as it is simpler than the first cleuse. Tt deals with
reduction failure. Tt reports the failure by returning the suspended goal wrapped by suspended, and transmits
the deadlock flag. The foliowing clause has the same elfect.

reduce{ﬂppend{L,M,N],5uspended{append{L,M,N]},FU,FG}.
Now turn to the first clause of reduce/R0. It searches a clause whose head is unifiable with the given
goal by guarded_clanse/G0 and tries to solve the clause’s guard by solve/S0. Because append/AD consists
af two clauses, both of whose guards are true, guarded_clanse/ G0 eventually returns the two clauses. The

following clauses have the same effect.

reduce(append(L,M,N}.append(Xs7,¥s?,7s),F0,nd) :—
unify{append(L,M,N),append([X|Xs],Ys,[X|Zs])),
sehedulef true, X, X HPSEND|T)), solve{H, T d), .
reduce{append{L M N}, true.FO.nd) :-
unify(append(L.M.N). append([],Ys,¥s)).
sehaduleltrua XX H . FEEND | T]). solve(H,T.d). |
The evzluation process can g> further, Fizst, schedule(irue X, X.HE. [2END T).s0lve(H,T.d) al-
wavs turns out irze. 2ad can be deisted. Second. unify can procesd whenever aryumenis are given even
aify procesd. They take charzs
sifAE. D) zod unidiL) have the
same meaning a5 uadv(AH T); and unifi(L,[[}, but they are optimized enough.

partially. Two suxiliery predicases. ulis! and wa:f are introduced zo hels =
i

of the subeomzousation of vasy. 2ad are the same as those used in [4]. T

Thus, the fxal result of tkis stage is append /i1 below.
{Al) reduce{append{AL1.Ys, Al append (X7, Y7, Ze}, yud) -
ulist{A1.X.Xs), uli=e{A3,X,Zs), L
reduce(append{Al. A2 A3) true, _nd) -
unil(A1), unify(A2,A43), &
reduce(append (X,Y.2),suspended{append (X,Y,2)),F,F).

4.2 Second Stage

In this stage, append/A1 and solve /S0 are converted step by step to append/A{ and solve/54. It is the key
point of this stage that, in solve /50, schedule and selve are always invoked after redoce returns. We will
successively move them from solve /50 to append/A T

{1) Migration of schedule to append
Solve/S0 includes two successive invocations as follows:
reduce(A,B,F,NF), schedule(B,H,T,NH,NT)

They are integrated into the single invocation below by eliminating shared local variable B. This results
in solve/s2 and append/42,
reduce schedule{ A JI,T,NH NT,F,NF}
At the same time, eppend/41 s converted to u,r.lpﬁurf_,"’.ai 2. achedule s moved from selve/S0 to ap-
pend/ AL,
(AZ) reduce_schedule{append(A1,Ys, A3 H, T NH,NT,_,nd) +—

ulist(A1,X,Xs), ulist{A3,X.2Zs), |,
schedule{ append(Xs?,Ys?,2s) , H,T,NH,NT).

reducc_schedule{append{ ALAZ AZ)H, T, NH,NT, ,nd) :—
unil{ A1}, unify(A2,A3), !,
schedule(true H, T, NH,NT).

reduce_schedule{append(X, ¥, 2), I, T.NH,NT,F,F} :-
schedule{suspended{append(X,Y,Z)),II, T, NII,NT).

(52) solve(['SEND',,) - 1.

solve(['SEND"H],[].d) !, fail.

solve([*$END’|H],Tynd) :— |,
schedule{suspended(*SEND*),H,T,NH,NT],
solve(WH, NT,d).

solve([A|H),T,.) :=
systemf{A), L, A,

solve(H, T, nd).

solve{[AIH],T,F} -
reduce schedulel A H, T NH NT.F,.NF),
o solve(NH,NT.INF).

(2) Migration of solve to append
Sulve /52 involves two successive invocations as fallows:
reduceschedule{ A H. T.NENT.F.NF), L solve(NH,NT,NE}
They are mtegrated inso the {sllowing invocation by ebminating shared local variabise NH, NT, and
NF. This pesul's in safre/s3 and eppend/A8.
5(AH.T.F)

! above iz negligible. hecause reduceschedule fails umemediately when it backtracks and the elavee
inziuding the [is the jast clause of solve/S2. At the same time, append/42 is converted te .a;pcndf.-ﬂ:
solve is moved Fom scive/S? to append /A%,

(Al glappend(Al,Ys,A3)H,/T,) -

ulist{A1,X, Xs), ulist(A3,X.Zs), |,
schedule(append{ Xs?,Ys?,2s),H,T.NH,NT),
solve{INH,NT,nd}.

#(append{A1,A2,A3)H,T,) :-
unil(A1), unify(A2,43), !,
schedule{true, H, T.NH,NT),
solve(NH,NT . nd).

lappend (X,Y,Z),H,T,F) :-
schedule{suspended(append(X,Y,Z2)),H,T,NH,NT},
solve(NH,NT,F).

(53) solve(['SEND"),..,.) = L

solve(['SEND'[H],[],d) := |, fail.

solve([*$END'|H],T.nd) =,
schedule(suspended(*$END'),H,T,NH,NT),
solve{ NTL,NT,d).

solve([A[H],T,.) -
system(A), L A,
solve(H, T nd).

solve([A|H], T, F}) - %1,
S{AH,T,F).

{3) Deletion of solve

Next, solve is deleted. Solve /S8 invokes §, which, in turn, invokes solve/S8. Thus, solve /53 15 merely used
as an intermediary and can be deleted completely. Solve/53 really does two things: taking a goal out of the
goal quene, and classifying the goal and reducing it according to its type. We will move the first action into
append/A3. In preparation, selve/53 is divided into two.
{53 solve{[A|H],T,F) :~
“$2YAH,T,F).

SHAEENDY[], L) - L

$2'(*SEND",H,[},d) :- !, fail.

‘32°("3END"H,T.nd) :- |,

schedule{suspended{*$END’) H, T NH,NT),
solve{INH,NT,d).
B2 AHT.) -
system{ A, . A,
solve/H.T,nd).
‘227 (AH.T.F) o
F{AH.T.T).

All the selve invocations are yzi=ldsd. consuiiing solve /537, For exampis, solve(NH, NT.d) is unfolded
inte NH=[{G NH2[232 (G.NH2LXNT.E}. Al the ‘527 invocations can be also replaced by § ipvocations.
Thois replacement 1= saie oo ihe assumption that no user—defized predicates ase the same as sither 'SEND o
svstem-defined ones. As a side effect, system-d=fined pradicates must be explicitly bandled as shown below.
Oaly wnify is shown as a represeatative. The other system-predicates must be programmed in the same way,

[AL) Blappend{A1.Y¥s ADLHT,) i~
ulist{AT,3,Xs), ulist{A3.X Zs), |,
schedule(append{Xs?, Y52 Z:) L. H.T.NH.NT).
NH=[G|NH2], $(G,NH2,NT,nd).
Slappend(A1.A2A3)H,T,.) =
unil(Al), unify{AZ, A3}, |
schedule{true H,T,NH,NT},
NH=[G[NH2], §(G,NH2,NT,nd).
g{append{X.Y.Z}.H,T.F} :~
schedule{suspended{append (.Y, Z2)),H. T . NH,NT],
NH=[G|NH2], $(G,NH2,NT,F).
(54 B{'SEND"[l...) =1L
B(SEND’H [],d) - !, fuil.
$(*SEND’,H,T,nd) :- |,
schedule(suspended{*SEND’),H,T,NIH,NT),
NH=[G|NHZ], 3{G,NH2,NT).
${unify (X, Y),H,T,.) :- |,
unify{ X,Y),
H=[G|H2], $(C,H2,T,nd).

4.3 Third Stage

MNow both append/ /44 and selve/54 consist solcly of § clauses. The & clause actually invoked is determined
only by its first argument. ‘U'he symbol § is, therefore, redundant and can be eliminated by promoting the
first argument to a predicate. This is performed in two steps. The first step is trangient and deletes § from
the head of a ¢lause. The second step deletes § from the body.

{1) Deletion of § from the head

15 deleted from the head. First, the first argument of cach head is promoted to a new predicate; the
argument's principal functor becomes a new predicate name, Second, the new predicate is extended and
takes the remaining arguments H, T, and I as shown below, where X, ¥, and Z are the original arguments

of append.
append{X.,Y,Z,H,T,F)
The result of this step is shown below. All the &3 have been successfully deleted from all the heads.
Note how the arguments of selve/S0 are added to the original arguments of append/A0. § in the body,

however, still remains unchanged. To compensate for this discrepancy, § clause marked as (#) in solve/S3
below is temperarily reintroduced. This § will be deleted in the next step.
(A3} append{ Al ¥s A3 HT,) =
ulist{A1,X.Xs}. ulist{A3,X,Zs). L
sehednle{append{Xs?,Ys?, 2. HO.TO.F0)H, T,NH.NT),
NH=]GINH2], ${(G,NH2.NT.nd}.
append[A1.AT A3 .T,.) -
i ALY, unify(A2, A3). L
sehedvleftrue HLT.NH.NT).
NH=/GNH2. 8(G,NH2.NT.ndj.
append(X.Y.Z.H,T.F) =
sehedulefsuspended(append (X, Y, 2, H, T0.F0)), B. T, NH.NT).
NH=G NHZL 3(G,NH2Z,NT.F).
55y REND{[L =L
‘SEND'(H,[Ld) - !, fail
‘SSEND'(H,T,nd} == 1,
schedule(suspended(*$END'{H0,T0,F0)),H,T,NIH,NT),
NH=[G|NH2], 3{G,NH2,NT.d).
unify (X, Y, H,T,) =},
unify (X, Y),
H=[G[H2)], §(G,H2,T,nd).
(#) $(G,H.T,F} -
functor{ G, A),
arg(A,G,TF),
Al is A=, arg{A1,G,T),
A2 is A-2, arg(A2,G,H),
call{&).
(2) Deletion of § from the body
The auxiliary § introduced in the previous step is deleted. When § is invoked, it gives ita extra arguments
ta a goal which is also given as an argument, and invokes the goal. Fortunately, a § invocation is always
immediately preceded by a take-out queue operation. By changing the goal queue structure, taking a goal
out of the queus and setting extra arguments in the goal are accomplished by 2 single operation using the
fallowing technigue. This technique was originally developed by Ueda and Chikayama.
Lel each element in the goal quens have the following form:
S(head{ Ay A By dn) 1y B)

Head(Ay, AmI1y0Ba) is an extended goal, where Aj,. Am are the original arguments of ihe goal,
and By,. A, are the extra arguments. This form has a function similar to the A-expression. Hy,. Bq serve
as formal arguments; each argnment [in head can be initialized by unifying a value and the B; outside
the head.

In the case of append, this A-like expression has the form like this:

§{append({X,Y,2,H0,T0,F0),H0,T0,F0)
where H0,T0, and FO are the extra arguments coming from solve /50, The following program fragment does
two things: taking a goal G from a goal queue I, and setting NT and NF to 0 and TO. At the same time,
the rest of the goal queue, HZ, is set to HO.

H=[3{G,H2,NT,NF)|HZ]

Five unifications occur simultanecusly: G=append(X, Y, 2. H0,10,F0), H2=H0, NT=T0, NF=F0, and
H=[|H2]. These unifications accomplish the intended task as a whole.

The result of this step s shown below. All the § invocations have been succassfully deleted from all the
bodies, Lthereby successfuily delesing all the § invocations from ali the clauses. Instead. 25 can be seen in
append/Af and solve /56, a substitute for § appears in the goal queue.

(A} append|Al Ys AZFH T) :-
ubise! AL, M. M<), ulist{A3 X, Zs), |,
schecule(¥i appead(Xs?. Y57, %s.H0,T0,F0).F10,T0.F0) H.T.NH.NT),
NE="${G.NH2,NT.nd}|NH2],
call{G).

append{ AL AZAIH.T.) -
unil(A1), unify(A2,A3), &
schedule{true H.T,NH,NT},

NH={3(G.NH2,NT,nd)NH2],
call{G).

append(X,Y,Z2,H, T F) -
schedule(suspended($({append(X,Y,2,H0,T0,F0),H0,T0,F0)).H,T,NH,NT),
NH=[8{G,NH2,NT,F)|NH2],
call{G).

(56) SEND'([],-.) -

'SEND'(H,[],d) :— !, fail.

SFENDYI,Tmd) - |,
schedule{suspended(#(*SEND*(HO,T0,F0),HO,T0,F0)),H, T, NE,NT),
NH=[%(G,NH2,NT,d)|NH2],
call(G).

unify (X, ¥, H,T,.) == 1,
unify (X, Y),

H=($(G,H2,T,F){H2],
call{G).

4.4 Final Stage
Once the scheduling strategy is fixed, schedule can be unfolded. Append/AT and selve/S7 shown below

are obtained by unfolding schedule, consulting schedule,/C0. The resull is compiled code incorporating
breadth-first scheduling, which corresponds to variation (ii} in Section 3.
(AT) append(Al,Ys A3 HT,)
ulist(A1,X,Xse), ulist(A3,X,Zs), I,
T=[8(append(Xs?,Ys7,Zs,H0,T0,F0),H0,T0,F0O)INT],
H=[3(G,H2,NT,nd)|H2],
call{G).
append{ALAZ2 A3 H,T,) -
unil(A1), unify(A2,A3), !,
H=[3(G,H2,T,nd) [H2},
eall{G).
append(X,Y,2,H,T,F) +
T=[$(append(X,Y,Z,H0,T0,F0),H0,T0,F0)|NT],
H=[3(G,H2,NT,F)|H2],

call(G).
(37) BEND([lL L) - L

SFENDU(H.[Ld) - 1, fail.

SBENDHH.T.nd) !,
T={3*3END'(HO0,T0,F0),HU,TO,FO}|NT],
E=[3{G.H2NT.4)H2],
call{ G}

unfv XY HT.)

TSR S
H=80C,E0T,F)[H2,
calif =],

Now 1zt us turo to aooihss scheduling strategy. Append,/42 15 cbtained by unlelding scheduie/C1
which pecforms depth-firs: schaduling. Append /45 equals append /AT except for the first clauss. Thus. only
i first clanee of aorend /44 iz shown below. Selre/35 is the same as solve /37, and it is omitted here.
Append/A% can be eonveried farther to append /A8, because 1t is useless to put a goal at the head of the
goal queus and immediately take it out. The result iz 2 compiled code incorporating depth-first scheduling,
which also corresponds te variation (i) in Section 3.

(AS) append(Al1,Ys,A3,H,T,.) :-
ulist{ A1,X, Xs), ulist(A3 X, %s), |,
NH=[3(append{Xs7?,¥s?,2s,H0,T0,F0),HO,TO,F0) |H],
NH=[3(G,NH2,T,nd)|NH2],
call(G).

{43) append(ALYsA3HT.) =~
ulist(A1,X,Xs), ulist(A3,X,Zs), |,
append(Xs?,Ys7,Zs,H,T,nd).

5. Compilation Incorporating N-bounded Depth-first Scheduling
This section shows an enhanced O interpreter incorporating M-bounded depth-first scheduling. To incorpo-
rate N-bounded depth-first scheduling into Shapiro's CP intecpreter, the execution information of each goal
must be explicitly specified, because such an emhanced interpreter must access the information at will to
govern the whele reduction process. ¥e will call such an informstion block a PCB (Process Control Block).
The interpreter schedules each goal, referring to the information in the PCB attached to the goal.

A PCH and a goal arc attached to each other by @ in the following way.

goalf@®@Pel
An enhanced CP interpreter handling the PCB is outlined below,
(IL1) reduce{ Head@PCB,Body,nd) :-
firmware(policy, PCB,Guard PCBs,BodyPCBs),
gnarded clause{Head, Guardd,Body0),
attach({Guard(,GuardD’CBs,Guard),
schedule{Guard X, X,H,['SEND" T},
solve(II,T,d), !,
attach{Body0,BDodyPCDs,Body).
reduce(Goal@P CB,suspended(Goal@Suspended PCB),F,F) -
firmware(palicy PCH Suspended PCH).
Reduce /R handles the form goal@Peb, Selve in reduce /R is the same as solve /S0 in the original CF
interpreter. Firmuware calculates two PCB lists of child goals from the PCB of the parent goal, referring to

Tk =

the specified policy; policy decides how to caleulate the PCB lists. Attach is an auxiliary predicate only for
matching; it combines a goal list with a PCE list sequentially, and produces a goal@Peb list.

5.1 Interpreter Incorporating N-bounded Depth-first Scheduling

Hare, PCB is the form {B.BC), where D is a decrement counter whick limits the depth ol a reduction tree
and BC is the initial vaiue ior the counter. Reduce /22 incorporsting N-bounded depib-fizst scheduling is
shown below, Re.-fu::__."ﬁ_f sambines with 3.;1!1:':.,"5{5 cocresponds o variation {ili} i Sectian 3.
Lere. the poiicy is cefined as “If B has not vt reached 0. reduction can contizus aad B is derommented
by 1. If not. reducticn 35 suspeaded. sad BC is et to B
{R2j reduce(Head&@(B.EC}.Bady...nd) 1=

B0, NB is B-1,

guarded _clanse({Head, Guard0,Body0),

attach{Guardd,(BC.BC).Guard),

schedule(Guard, X, X, H,['SEND'|T]),

solve(H,T.d4}, |,

attach{Body0.(NB,BC),Body).

reduce{ Goal@@{_ BC),suspended{ Goal&(BC,BC)),F.F).

Since all the child goals that generated from a parent goal have the same PCBH, attach hers is simpler
than aitach in reduce/R1.
MN.B.: Schedule in solve iz sehedule/C1, because breadth-first scheduling is meaningless here.

5.2 Compilation Incorporating M-bounded Depth-first Scheduling

A compiled eode incorporating N-bounded depth-first scheduling is obtained by performing the program
conversion described in Section 4, using reduce/R2 instead of reduce /R 0. The first stage is the only exception;
it needs special consideration. Reduce/R2 is partially evaluated, with respect to append/A0. This results in
append /AT below,

{AD) reduce{append{ A1, Ys, A3)0(B,BC)append(Xs?,Ys?,Zs)@(NB,BC),nd) :~
B0, ulist(A1,X,Xs), ulist(A3,X,Zs), !, NB is B-1.
reduce{append{Al,A2,A3)@(B,BC),true,_nd) :—
B0, unil{A1), unify(A2,A3), .
reduce{append(X,¥,2)@(_,BC),suspended (append(X.,Y,Z)@(BC,B C})),F,F).
Here, the PCB can be included as extra arguments of each goal without any trouble, because it always
goes with the goal. This results in append /A9 below.
(A9") reduce(append{Al,Ys,A3,B,BC),append(Xs?,Ys?,Zs,NB,BC), ,nd) :-
B0, ulist(A1,X,Xs), ulist(A3,X,2s), !, NB is B—L.
reduce{append({A1,A2,A3,B,BC),true, ,nd) -
B:0, unil{Al), unify{ AZ,A3), L
reduce(append(X,Y,7%, .BC),suspended{append(X,Y,Z,BC,BC) },F,F).
In the remaining slages, the clauses are converted to append /410 in the procedure described in Section
4. Append/A710 corresponds to variation (iv) in Section 3.
(A10) append{Al,Ys,A3,B,BC,H,T,) :-
B»0, ulist{ A1, X, Xs), ulist{ A3, XN %=}, |, NB is B-1,
append{Xs?,¥s?,2s,NB,BC,H,T,nd).
append(A1,A2,A3,B,BC,H,T,.) i~
N0, unil{Al), uniy{AZ AJ), !,

—_ 11—

H=[8(G H2,T nd)|HZ],
call{G).

append{X,Y.Z._.BC.H,T.F) i~
T=[$(append{X.Y.Z,BC,BC,H0,T0,F0),HO, TO.FO}NT],
H=[%(G,H2,NT.F){HI],

call{G).
6. Compiling a CP Meta Interpretar
Ths rrpend we have used as an example so far is really 2 sirpie program. Al the guards that appeared iz
sppend are irue, 2. append is merely a FOP program. FCD is a subset of CF where all guards are sirher

true or system-deflned predicates. The CP programs vsed in [4] are really FCF programs. Now we wil
develap a eampilation technique for full CP. We use mcall/M7 as the next sxample.

Mcail/M] is a working version of meali/}M9 in Seciion 2. Meall/ M1 invokss several zuxiliary predicates,
svstem-defined system, ezec, clauses and user-defined resolve. System detects a syste m-defined goal and erec
executes it, Clauses collects candidate clauses that are unifiable with the given goal. Resolue selects one

redicible clanse from ihe candidate clauses,

(A1) meall{true).
meall{{A,B}) = meall{ A7), meall(B7).
mecall{ A) :— system(A)} | exec{A).
meall{A) - clauses(A,Clauses) |
resolve(A, Clanses, Body), meall{Body?}.
[#) resolvel{ A.[(Head:—Guard|Body)|Cs],Body) :-
unify(A, Head), meall{Guard) | true,
resolve(A,[(Head:— Body)|Cs|,Budy) =
unify{A,Head), Bodys(.]-) | true.
resolve(A,[C|Clauses],Body) :-
resolve(A,Clauses,Body) | true.

Meall/M1 is really a full GP program, because the first clause includes meall(Guard) and the third
clause includes resolve(A, Clauses, Body) as a guard, and both are user-defined.

Compilation proceeds as before. We need no more tricks. In the fiest stage, reduce/R0 is par-
tially evaluated, with respect to meall/M1. To make the following explanation brief, we will concen-
trate on the (#) clause in mecali/MJ. The following clause is the intermediate result of unfolding re-
duce{resolve(L,M,N),B,F0,F1), cansulting the (3] clause above.

(#1) reduce({resolve(L,M,N),true,FO,nd) :-
unify({resolve(L,M,N),resolve(A,[(Head:-Guard|Body) |Cs],Body}),
_-sr-.]mriulp.{{unify[A.Head},mcaﬂ{Guard}},X,X,H,[‘EEND’ITHI,
solve{H,T,d), L.

The first unify can proceed to a further computation. The second unify can be moved out of schedule,
Lecause unify is system-defined and is executed immediately by solve. The (#2) clause below is the second

intermediate result,

{#2) reduce(resolve({A Arg2,Body),true, _nd) -
ulist{ Arg2,(Head:-Guard|Body),Cs),
unify{ A, Head),
schedule(meall{ Guard }, X, X,H,[*SEND|T]},
solve(H,T.,d), .

The rest of the task proceeds in the same way as append. The (#3) clause below iz the final code after
the derivation, incorporating depth-first scheduling. This result corresponds to variation (i) in Section 3.
(££3) resolve(A,Arg2,Body,I1,T,.) :-
ulist{ Arg2,(Head:-Guard|Body),Cs),
unify(A,Head),
NH=[$(‘SEND"(H0,T0,F0),H0,T0,F0)|NT].
mecall{Guard NHNT,d}, |,
H=[3{G,H2,Tnd)|H2],
call{z].

7. Performance Improvement in Practice

Sections 4 and 3 snowed how to compile a CP program in Prolog. Since each program obtained this way isa
complete Prolog program, it tan be executed on any Prolog processor. The eflect of each step on periormance
can be rmeasured by checking the exscution speed. Performance was measured by the total execution time
of three sample problems.
The sample problems used in the measurement are as follows:
{a) Reverse a list three times through a pipe
nreverse(3,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),8).
ie, reverse([1,‘2,3,4,5,6,?,3,9,]D,ll,l?,lﬁ,ltl.ﬁ,lﬁ].:{}, reverse(X7,Y), reverse(¥ 7,5}
(b) Sort a random list using the quick sort algorithm
gsort([17,26,13,21,5,1,20,9,3,27,15,25,11,30,24,8,2,
25,20 4 23,19,16,22,31,6,10,14,32,12,7,18],5).
{¢) Quick-sor! a short random list on meta anferpreter
mecall{gsort{[4,2,3,5,1],5)).

We used Quintus Prolog®™ Release 1.5 that has a Prolog compiler. The experimental resulls are
summarized in Table I on the next page.

The table organizes the results along two axes:

s Fight derivation steps among four stages
Three problems in every step:
nreverse, gsort, and meell
s Two selections either using or not using the Quintus Compiler
Three scheduling strategies in each selection:
depth-firet, breadth-first, and 10-bounded depth-first scheduling§

The rows at the first stage contain real processing time in seconds. The other rows contain the ratio of
the processing time in the stage to the corresponding time in the first stage. For example, when using the
Quintus Prolog Interpreter and depth-first scheduling, nreverse took 14.83 sec in the first stage. Nreverse al
the initial stage took 7.15 times as many seconds as in the first stage; it took 106.0 sec = 14.83 sec x 7.15.

Compiling considerably affected the performance improvernent in the derivation process. The improve
ment in the Prolog interpreter is apparent from Table 1. In the case of Prolog compiler, on the other hand,
the improvement is dependent upon the selections of the problems and the scheduling strategies.

In both cases, the performance improved considerably in the first stage of the derivation, hecause the
execution cost of reduce/R0 or reduce/R2 was substantially decreased. No improvement was found in the
second stage, because some goal invocations in solve were simply moved to each append. The performance
improved somewhat maore in the third stage than in the second stage, because indirect invocations to the

1 N is 10; the step size of depth Limit is 10.

— 1% —

Table 1 Performance [inprovement in the Derivation Process

Quintus Prolog Interpreter | Quintus Prolog Compiler
Cierivation Problem
H Depth Breadth 10-Deptih Depth Breadth 10-Depth
Initial Stags nreverse 715 5.01 8.035 0.4 14.4 8.83
a~ginal OF gaprt TET 4.589 S.dd 2.2 15.2 B.T4
[rOgTET J meail 5.32 522 5.05 4.79 4.84 4.5
First Stage nreverse | 1453ses | 2897 sec | 18.30sez | Q7T sec | 133 sec | 1.70sec
| partic! evaluation gsord r 1042 sec | 4167 see | 16.20ses | D.30sex | 178 sec | 1.57 see
sf reauce meall 2.2 sec 14.05 ses | 15,17 3es | 282 sec | 2EIsec | 320 sec
Second Stage | mrererse 1.03 1.04 102 1.040 0.98 0.58
migreiton gsort 1.01 1.0t 1.04 1.038 0.87 .29
of schedule meall 1.0 1.01 1.02 0.99 0,55 1.02
Second Stage nrELErss 0.84 084 1.05 059 0.53 0.56
migration gsert 0.91 0.57 1.08 0.93 078 0.87
of solve meall 0.94 087 1.04 0.95 0.39 0.99
Second Stage RTEVETSE .28 0.58 1.0% 0.7H 0.7 0.20
deletion gsort 0.96 0,94 112 LE0 058 0.83
af solve meall 0.99 1.00 1.06 0.98 0.95 &8
Third Stage nreverse 0.94 1.00 1.07 2,37 2.64 124
deletion gsori 0.83 0.81 0.87 1.87 2.13 0.98
uf § from head meall 0.94 0.57 - 0.98 111 112 101
Third Stage nreverse 0.80 .61 T ogs 7.24 2.43 112
delelion gsort 0.63 .52 0.89 1.87 1.95 0m
af § from body meall (.83 0.54 0.85 1.08 1.10 059
Final Stage nreverse 0.36 0.53 0.56 0.74 2.23 0.45
unfelding guori 0.46 0.48 0596 0.93 L.78 .60
of schedule meall 0.77 0.80 0.80 0,48 1.08 091

next goal were replaced by direct invocations, but this is only true in the case of the Prolog interpreter. In
the case of the Prolog compiler the performance became worse. The performance improved further in the

final stage, where the time-consuming scheduling caleulation was eliminated.

§. Future Hesearch

Each derivation stage is characterized as follows. The first stage utilizes partial evaluation. The second stage
moves commen goal invocations into each clause. The third stage promotes the first argument of each clause
to a predicate. The fourth and final stage unfolds auxiliary goals, consulting their definitions. OF these four
stages, the third stage is somewhat magical; an argument is promoted to a predicate and the goal queue
structure is changed. We believe that such magical techniques are necessary to enrich the world of program
transformation. Further investigation is necessary.

Section 7 showed that the meta interpreter can be compiled in Prolog. An interesting subject is the
automation of a process in which a compiled code is generaled from a given meta interpreter and a program,
in other words, developing a specialized partial evaluator which can be used as a compiler. All we have to do
is to make a meta interpreter which realizes the desired functionality. The specialized partial evaluator will
do the rest of the work. It can compile programs written in the new functional style, consulting the meta
interpreter. Hirsch has moved closer to this goal in the domain of CF.

9, Conclusion

Ueda and Chikayama developed a compiling technique from CP to Prolog. The technique might lock
complicated at a first glance. In this paper, we successfully separated several ideas; we derived their compiled

code from the CP interpreter and a CP program. Specifically, we used an append program and a meta
interpreter in CP as our examples, transforming them step by step and incorperating the CP interpreter
gradually.

Acknowledgementis

This research was conducted 25 part of the Fifih Genersiion Computer Project. We wish to thaak the
members of the First Researck Laboratery at ICOT and Dr Kitagawa and Dr. Eccmoio at [TAS-SIS,
FUIITST LIMITED for giving us the oppersuniiy o comzlets thus study.

References

(1; Hirsek. M., Silverman. W. and Shapiro, E. Lavers of Protection and Certrel in the Logix
System, 058619, Weirmann Insziz., 1986

{21 Kursawe, P, Eow to lavent a Proleg Machize iz Proc. of 3rd Inter. Conf on Logic Prog.,
1986, pp. 134148

[3] Shapiro, E,, A Subset of Ceneurzent Prolos and Its Interpreter, Tech. rep. TR-002, ICOT,
1983

4 Usda, K, and Chikayama, T., Concurrent Prolog Compiler on Top of Prolog, in Proc. of
Symp. on Legic Prog., 1985, pp. 113126

—_]5 —

