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Eveluation of the KL1 Parallel System

on a Shared Memory Multiprocessor

Mlazagoeni SATO Atsvphira GOTO

Izstitute fzr New Gensreticn Computer Technology {ICOT) ¥

Absiract

This paper presents the design decisions for the parallel implementation of 2o AND-paralle]
logic programming language, KL1, on a shared memory multiprocessor. To obtain high perfor-
mance in parallel systems on a shared memery multiprocessor, it i3 necessary to mimimize the
synchronization overhead and to use the processing power fully. The KLI parallel system intro-
duces independent scheduling queues with a depth-first scheduling scheme and an on-demand load
balancing mechaniem for realizing these requirements. An evaluation and detailed analysis of the
design dacizions are alzo presentad. Substantial speedup can be obtdined from several benchmarks
according to their potential parallelism. This paper shows that en-demand lead distribution and

independent schaduling queues are efficient for the implementation of KL1 on shared memory mul-
tiprocessors,

1 Introduction

ICOT is condncting research and development of the parallel inference machine, PIM [4]. The PIM
target language is Kernel Language 1 (KL1 ), which is based on the AND-parallel logic programming
language, Guarded Horn Clauses (GHC) [20,21]. Logic programming has been studied because of its
theoretical opportunities for parallelism. Many research groups have been studying parallel imple-
mentation based on AND-parallelism [18,6,3] or OR-parallelism [23,5,2,19]. The reason for choosing
ANT)-parallel logic programming as the targeT.. language is that the PIM target language must be able
to describe not only artificial intelligence (AI) application programs but also the operating systems
which contrel parallel processes. OR-parallel logic programming languages, such as pure Prolog, can-
not describe the aperating systems which manage the overall processing of Al programs. AND-parallel
logic programming languages, such as Concurrent Prolog (CP) [15] and GHC, can easily describe the
contral of concurrent processes [16].

The PIM has a hierarchical structure with 2 cluster concept. Each cluster consists of eight or
more processing elements (PEs) which communicate through shared memory (SM) over a common
bus. The clusters are connected by a switching network. Two kinds of KL1 parallel implementation
models, the shared heap model [12] for intra-cluster communication and the message oriented model
[7,17] for inter-cluster communication, have been studied in ICOT, because the PIM’s configuration
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2 IMPLEMENTATION OF KL1 PARALLEL SYSTEM 2

warrants two approaches. This paper focuses on the shared heap model. Both implementation modsls
will be integrated in the PIM global architecture.
The most imporiant issues in the implementation of the KL1 parallel system on the shared mamany

are to ensure the following:

« Good schedzling 1o minimirs syoebronizetion ovarhaad

exclusive datz access, we reporied severzl important desigr issuss for the BL
svstem in [12] by using a software simulator ez 2 szquantiz! machine, However, this sofiware
simnaio- was mer emgugh to study the other issues. To study lead balancing end schecuiing, I i3
necessz=r 1o support accurate timing om a genuine muliiprocessor. Thersfore, we izpiemeated ti2
KL] paszllel system eon a genuine multiproceszor, Balazcs 21000 [14], in the C languzge with some
extends? functions ior parallel execution.

Saction 2 outlines the abstract execution of KL1 with major dala structures and gives important
design decizions to extend the parallel system and some issues in its implemeztation. Secticn 3
Jiscusses the characteristics of benchmark programs which are used in the following evaluations.
Section 4 sives some detailed evaluations by the KL1 parallel system which is implemented on Balance
21000,

2 Implementation of KL1 Parallel System

2.1 Brief Introduction te KL1

KL1 is a parallel logic programming language based on GHC [20]. A KL1 program is a finite set af
guarded Horn clauses of the following form:

H: _Gl:"':Gm1HI1"'1Bu' (méﬂ,ﬂ?ﬂ}

where H, Gi, and B; are called the clause head, quard goals, and body goals. The operator, |, is called
a commitment operator. The part of a clause preceding | is called the passive-part (or guard), and
that following it is called the active-part (or body). A guarded clause with no head is a goal clause, as
in Prolog.

Execution of a KL1 program proceeds by reducing 2 given goal clause to the empty clause, so
it is natural to rezard the processing mechanism of KL1 as reduction. Figure 1 shows the abstract
execution features of KL1 goal reduction.

(1) Data and control structures and execution control

Parallel KL1 goals are represented by goal-records and their environments. Goal-records include atomic
goal arguments or peinters to their environments consisting of logical variable cells or structures in the
shared (heap) area. The reducible goal-records are stored in a ready-gueue. Clauses in KL1 programs
are compiled to KL1-B [8] just as Prolog is compiled to the WAM [22]. The PE dequeues a goal-record
from a ready-queue, then performs goal reduction by executing KL1-B instructions, accessing the goal
environment. Some goals are waiting for the instantiated values of variable cells to synchronize with

other parallel goals. Such goal-records are bind-hooked with variable cells by suspension-records. The
L —
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Figure 1: Abstract Features of KLI Gozal Reduecticz

meteecll-records form a tree-like structire, whose leaves are the goal-records, to manage their logical
results {success or failure).

(2) Execution of the passive-part

In the ezecution of the passive-part, each candidate clause is tested sequentially by head unification
and guard evaluation to choose one clause whose body goals will be executed. When the PE finishes all
guard tests without choosing a clause, the PE checks whether this goal has fziled or been suspended.
This check is done by the existence of stacked variables, i.e., in the unification of the passive-part,
uninstantiated caller variables are stacked. If the stack is empty, the PE knows that this goal reduction
has failed. If it is not empty, this goal must wait until one of the variables in the stack is instantiated.
Therefore, the suspend operation provides a link between the variables and the goal-record in order to
activate the suspended goal immediately after one of the variables is instantiated.

(3} Execution of the active-part

In the ezecution of the active-part, there are two kinds of operation, body unification and body goal
fork. _

After one clause is chosen by the execution of the passive-part, the PE executes the body unifications
in the selected clause body. When the PE instantiates the variable with the suspension-record in this
body unification, the PE finds the suspended goal and enqueues it to the ready queue.

Tf the selected clause bady includes any user goals, the PE creates the new goal-records and enqueunes
them into the ready gqueve as new reducible goals and updates the children counter of the parent
metacall record. At this point, these new goal records are linked to the metacall record where the
reduced goal was linked to form a goal tree. This operation is called body goal fork.

2.2 Design Decisions for the KL1 Parallel System

2.2.1 General Considerations

This section focuses on parallel goal reductions by multipracessors with shared memory, where each
PE performs goal reduction in parallel, communicating through shared variables in shared memory.

3 —



2 IMPLEMENTATION OF KL1 PARALLEL SYSTEM 4

The major advantage of using shared memery is the reduction in communication overhead among
PFs compared with a message oriented model [7,3]. Using exclusive data access by lock and walack,
goal reduction {see Section 2.1) can be extended to a parallel mechanism. Howsver, such a simple
exzension ie not enough to obtain high performance [12,9], because the following problems in parallel
sxwscution on a shated memory machine also need to be solved.

e Tizz mznazsment to reduce the pumber of lock manipulations

~hutlon methods to realize a good load balance

22,2 Separate of Data Management and Data Sharing

The parzliel execution mechanism should use locel control structures as much as pos:ibie to reducs
commoz bus trefe [9], even though PEs can access 2l of the shared memory. In other words, K11
goals and coatrol structures should be logicaliy treated as local data structures. Therefore, we decidad
to use a local ready gqueue on each PE, so thai pach PE can schedule a reduced goal independently.
In addition, each PE manages its own {ree memory which is allocated for data structure, such as gozl
environments and suspension-records (12}, From this management, exclusive memary access for goal
environments is restricted to when a PE instantiates an uninstantiated variable. This is because it
is not necessary to access exclusively when each PE allocates new data structures, even though they
will be shared among PFs.

Separate data management and data sharing enables each PE to schedule goal reductions depth-
first, i.e., most goal-records and their environments can stay in each separate management area (i.e.,
in each cache memory). ‘The synchronization overhead is also reduced as in sequential execution. (See
Section 3.2.)

2.2.3 Load Balancing

Generally, the separation of the ready-queue makes it difficult to balance the loads and increases the
communication to realize a good load balance. We believe that on-demand distribution is effective
to realize a good balance while reducing the amiount of wasteful communication among PEs. We
compared the following distribution methods.

o Rg-i Method: This method distributes the goals to an idle PE by using a global flag. This flag
is set to request a new goal of other busy PEs when the PE becomes idle. By this initiation,
a busy PE, which first finds the flag at the body goal fork, sends a goal-record to the idle FE
instead of enquening it in its own ready-queue.

» Rg-m Method: This method distributes the goals to an idle PE by using the request message.
This request message is sent to a busy PE from the idle PE. The busiest PE is selected by using
the global information of each ready-quene length. Qo receiving the request message, the PE
sends the goal-record from its ready-queue to the idle PE.

o ltand Method: This method also uses the separated ready-queue. The goal distribution, how-
ever, is done at the body goal fork, and its destination is decided at random.

e Comm Method: This method uses one ready-queue, shared among all PEs. Since each PE
enqueues (or dequenes) the goal to (from) this ready-queue, it is not necessary Lo support the
special mechanism [or load balancing.
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The first two methods are based on on-demand distribution, and the other two methods are
introduced for comparison.

2.3 Implementation Issues of the KL1 Parallel System
There are two majer irzuses in

" . : s vs " .
SIfEUOn [CeCORnIE ELC Lo TL0RINE Ietdenizl.

the imslementation of the KL1 pasalie! systexz: the processor commu-

{1 Processor Communication Mechanism

To raalize the above goe!l distribuilsn methods, it is necessary to implement 2 PE commuaicalion
rmechanizm. In our pare’lel eystez, we adont 2 message-based communication mechenism in eddizion
to communications using the sharad varjable cells.

This message-based communication mechanism is viewed as follows. First wa 27 up 2 post, whizh
raceives the messages from other PEs. A PE which wants to send the message links the messegs to 122
destination post. Then each PE checks its post for receiving the messages at each reductien. There
are three kinds of message: goal-request, goal-send, and messages controling the start and end of ihe
KL1 system.

(2) Locking Mechanism

In the Balance 21000 [13], exclusive data access is realized by the lock operations which use & Test-and-
Set memory called the Atomie Lock Memory (ALM). This direct approach may place an unnecessasy
burden on the bus and has a restriction on available lock numbers. Because of these, the Balance
system provides a “soft” lock, called a shadow lock, to use a copy of the lock in shared memory instead
of accessing the ALM directly. To use the “soft” lock, our data ebject is constructed of 8 bytes, i.e.,
1 byte for the lock, 2 bytes for the data type tag, 4 bytes for tha data value, and 1 unused byte.

The lock operations of the KL1 parallel system are classified as follows:

H-lock is used for exclusive data access in the shared variable cells. Decanse of the single-assignment
feature of KI1, the shared variables can be instantiated by body unification. However, by adopt-
ing the bind-kook mechanism in the suspend operation, the shared variables can be rewritten at
the suspend operation. Therefore, the lock operations on the shared variable cells are limited to
instantiations of shared variables and suspend operations.

S-lock handles messages in processor communications. The message link operation is done with
5-lock.

M-lock is used for maintenance of the process termination. This maintenance is done by the children
counter of each processor and the global counter. The children counter of each processor is used
by each processor locally, so exclusive access is not necessary for each children counter. However,
it is necessary for the global counter. M-lock iz used in the global counter access.

3 Characteristics of Benchinark Programs

3.1 Parallelism

To discuss the system’s ability to explore parallelism, we must know the potential parallelism of each
benchmark program. Here, we define the two kinds of parallelism under the constraint that the basic
5 —_



3 CHARACTERISTICS OF BENCHMARK PROGRAMS G

unit of parallel processing in our KL1 parallel system is one goal reduction. To define these tyvpes of

parallelism, we regard the execution of the program as a reduciion tree. The reduction tree can be

expressed 2s: the top node is a query goa] 2nd each branch node is recursively creaied by 2 reduction.
The first parallelism is the average breadth of the raduction tree 25 defined below.

tete! number of nodes

avercge breadth = , e
mesemum ceplh of recuciion iree

e pangiloiizen fom o S I il ccesmmmar ok g’ e hmgs AR S Est gem = Tin =
Thizoaralaiz CaT be mloagured DY SRQUEDIE: IS WS ETTTIOV DTAZOLI-NIEl BCLELIIE. <E0E.
1 1 . Iy M. N I 3. e =l ar=llal =maip = = anl m a1 =l s . =
Araagio-noE 51_-_.21_-0_]_]“5 gchadulas al perzial ZoelE 2T 22" S5 FECUCLION B 0O UIES. L2% CUETDE
A S S .- oyl A PT s ramimad in =% R LI R [P 1 -

Breagdsh shows Tha gverags number of PIs reguired 17 102 CODDUIENCL 1D RLSIS UF &0 ITSSLE Lo oes

The other tvpe of parallelism is the distributobls coal ratio, 2ssuming depih-first scheduling, Here,
depth-first scheduling schedules the lefimest goal repaatedly, then the forked body goals from lefi <o
tight. Each PE car get the load (goal) from anotner PX ifths other PE has an extra goel in its rzacy

W _F

gueue. Thiz paralilism can be defired a3

teta! mumber af nades branches; — 1
distributable goal ratio = Z1=U ; (branches; ]
toiz! number of nodes

Pranches; is the number of branches at the i-th node. For example, the append program creates only
one goal in cach teduction, so there is no parallelism.

3.2 Relationship among Parallel Goals

In KL1 execution, parallel goals can be synchronized by the instantiation of shared variables, so that if
a goal was scheduled before instantiating the necessary vatiables, that goal has to walt as a suspended
goal until the instantiation of those variables. If the system can schedule perfectly parallel goals for =
given program, there will be no overhead for the suspension. If not, the system must pay a tremendous
price for synchronization among parallel goals. However, it is almost impossible to schedule perfectly
in parallel execution. On the other hand, some kinds of program can be executed without suspension
by simply using depth-first scheduling in sequential execution. This is because repeated invocation of
the leftmost goal can be regarded as a process and such processes have one-directional relations, with
an exact from-left-to-right order of body goals.

3.3 Benchmark Programs and Their Basic Characteristics

The benchmark programs used in the evaluation of KL1 parallel system are:

(1) Three 8-gqueen Programs:

The 8-queen program is a famous problem that searches all solutinns. The first program
(8q-m) is translated from an OR-parallel Prolog program. Solutions by cach search process
arc gathered by stream merge procedures. The second (8g-s) is a highly optimized program
which performs no suspensions. The third (8¢-1) is a program which uses the layered stream
algorithm [11].

(2) Quicksort Program (gsrt):

A list of 512 numbers is sorted in this program, forking sort processes as a binary tree.

— B/ =



4 EVALUATION OF THE KL1 PARALLEL SYSTEM 7

Table 1: Parallelism of Benchmarks

Zq-m Eq-s] 2g-1 BUP | qsrt | prim | mxd

Reductions 108K | 39K | 19K | 38k | 8K | 17K | 40K
| Average breadth 6471 363 | 511 —1 141 15| 44
| Disicibuteble goal ratio | 0.76 | 0.40 ] 0.64 | 0.51 1 036 | 0.01 | 0.1
S/R (depth-first) ol o of 6! 0! ojcao!
'$/R (breadtn-Arst) 0251 01013 —i037! 0.8510.4D |

(3} Prime Number Generator Program {prim):

Thiz program is a simple generale-gnd-test type program.

(1) RPotiom Up Parser (BUP) Parsing Program:

This program ssarchas 2l alternative parsing trees of Japanese-language sentences using

¢ BUP algarithm [100. Liks $g-m, solutions are gathered by stream merge procedures.

() Maximum Flow Program {mx{):

Nodes and links in a given network are represented by KL1 goals and message streams
among them. The flow in each link is restricted. This program finds the maximum flow
by sending and receiving messages between neighboring goals.

Table 1 shows the basic characteristics of the above benchmarks. Reductions means the total
number of reductions, and the average breadth! and the distributable goal ratio are the potential
parallelism for each benchmark. S/R is the number of suspensions per reduction of each benchmark
when one pracessor executes by both depth-first 2nd breadth-first scheduling.

Table 1 indicates that the three kinds of 8-queen program and BUP have both kinds of parallelism.
On the other hand, gsrt, prim and mzf do not have much parallelism. Table 1 also indicates that the
number of suspensions are low (zero) in depth-first scheduling for most programs. In other words, there
is a relationship among goals which can be treated by simple scheduling, i.e. depth-first scheduling.

4 FEvaluation of the KL1 Parallel System

This section evaluates the results gathered by the KL1 parallel system for the following reasons.

s To find the effectiveness of on-demand distribution and the separation of ready-queues in KL1
parallel execution

+ To verify that substantial speedup can be attained from the benchmarks on the KL1 parallel
system

« To understand the factors which reduce the speedup

1The average breadth statistics of BUP could not be caleulated becanse the breadth-first scheduling system does nat
suppotk the otherwize predicate.
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Table 2: Sequential Performance

F"-—_ | 3qma | 8g-s | Sq1 | BUP | gstt | prim | mf |
Execution time {sec) | 123 | 34| 39| a2 10| 21 147
| RPS | 0T+ 71| 32 720 800| 79O | 271 |
| KL1B/r2d | 103} 144326 150|140 ] 14.0] 358
| BLiB/ s=c DOIDE DI laE o ilm b | oLiE 1ll'i
Tablia 3 Susperzions in Leoad Zelancizg (2700

i | comm | rend | rgei | roemm |

| Work rate | 09% | 9+% | 957 | 95% |

| Suspensions o | 03K | 6.2K | 1.0K | C.3K |

KL1B retio (PE=S/PE=1) | 127 115! 0.83| 5.03 |

4.1 Sequen:tial Performance

This subsection gives the performance and several basic statistics of the KL1 parallel system running
on one PE% Table 2 shows the execution time (sec), reductions per second (RPS), KL1-B instructions
per reduction (KL1B/red), and KL1-B instructions per second (KL1B/sec) for each benchmark. The
performance of the append program is 1,400 RPS. The basic statistics are as fallows:

s Average execution time of a KL1-B instruciion: about 90 psec

Lock aperation tithe: about 30 psec

Retry time in a lock contention: about 5 psec

Manipulation time of a message chain: about 230 psec
» Average time of 2 message analysis: aboul 300 psec

Average time of a suspension and a resumption: about 500 psec

4.2 Comparison of Load Balance Methods

Figure 2 shows the speedup ratios of the BUP program which are obtained by changing the load
balance methods. (See Section 2.2.3.) It clearly shows that the on-demand distribution methods (rg-i
and rg-m) can obtain better performance than the other methods (comm and rand).

To find the factors which reduce the performance, we gathered more detailed statistics using eight
PEs. The results indicate that the higzest factor is the increase in suspensions. Table 3 shows the
work rate, the number of suspensions, and the ratio of the number of KL1B instructions on eight PEs
to that of one PE. Work raie is defined as follows:

average P E's busy wailing time over all PEs

work rate =1 - —
average execution time over all PEs

Fach distribution method has almost the same work rate, but the number of executed instructions is
very different. The additional instructions on the eight-PE system are caused by the increased number
of suspensions.

*The Balance system uses the N532032 as a CPU, and its performance is 0.7 MIPS [14].
S —
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As shown in Figure 2 and Table 3, the performance of rg-m is only slightly better than rg-i, The
rg-i distributes goals only at the body goal fork, and the rg-m distributes goals from a ready queue.
Although more evaluation is necessary, we expect the characteristics of distributed goals'to cause a
difference in performance.

4.3 Speedup

Figure 3 shows the speedup of each benchmark under the rg-m distribution method. This indicates
that the speedup is related to the parallelism which is defined in Section 3.1. That is, if the benchmark
has enough parallelism, it can obtain high speedup cn our KL1 parallel system. More detailed analyses
are given in the following subsections.

4.4 Analyses of Degrading Speedup

There are four factors which may degrade the speedup:
1. Increase of idle time because of inefficient load balance (IDLE)
2. Overhead of lock operations (LOCK)

3. Overhead of inter-PE communications (COMM)

4. Increase in computations because of suspensions (SUSP)

Figure 4 shows the proportions of each factor and real efficiency. These statistics are gathered
by using eight PEs under the rg-m distribution method. The proportions are based on the ideal
performance, where one PE’s performance is multiplied by the number of PEs used (eight). The
performance of one PE is not degraded by the above factors. The real efficiency is the ratio of the real
performance using eight PEs and the ideal performance. Each factor is calculated {rom the numbers
and the time In one operation.
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Figure 4 indicates that the main factor in deciding real efficiency is idle time. The next is the
increase of executed instructions by suspensions, although it depends on the benchmark. The overhead
of lock operations and inter-PE communications are minimal, only 1% to 5% each. This is an almost
constant overhead for each benchmark.

(1) Increase in Idle Time

The idle time is divided into two kinds of time. The first is real idle time, where all the other FEs do
not have distributable goals. The second is the waiting time from the request to the answer. Figure 5
shows the percentage of idle time in the work time, changing the number of Pks under the rg-m
distribution method. The benchmarks used are 8g-5, BUP and mazf, because they differ in speedup.
(See Figure 3.) In this fizure, the solid line shows the sum of the real idle time and the waiting time,
and the broken line shows the waiting time.

Figure 5 indicates that the main factor of increase in idle time is the increase in real idle time.
The increase in real idle time comes from the small parallelism of its benchmark, i.e.,in 8g-s and BUF
which have enough parallelism, the real idle time is very small. In modf, which dose not have enough
parallelism, however, the real idle trme is very large.

The increase in waiting time is caused by scrambling to get a goal for many idle PEs, ie., other
PEs which could not get the goal must wait for a certain period then try to get a goal again, so that
if there are not enough goals to distribute, an idle PE must wait a long time.

-_11 —
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Distribution methads | rand r-m
Renchmarks i BUP | BUP | 8g-m | 8q-s | 8ql| qsrt | prim | mxf
Distribution fred | 44.7% | 1.8% | 2.0% | 1.7% | 6.7% | 2.5% | 1.0% | 5.3%

(2) Overhead of Lock Manipulation

The overhead of the lock manipulation is very small. (See Figure 4.) However, the features of lock
manipulations are important, so we gathered two kinds of statistics, the number of lock operations
(see Figure 6) and the lock contention ratio (see Figure T), for three kinds of locks: the H-lock,
S-lock, and M-lock. (See Section 2.3.) These statistics are gathered by using the Sg-s benchmark
and changing the number of PEs.

Figure 6 indicates that the number of lock operations increases only slightly according to the
numher of PEs. Figure 7 indicates that the lock contentions of the H-lock are negligible. The reason
for the small lock contention of the H-lock comes from the KL1 characteristics [1], i.e., there are few
multiple references to the same data object. On the other hand, the increase in the S-lock’s and
the M-lock’s lock contentions are rather large, becanse exclusive access using them concenirates on
only a few global data. In this emulator, which was implemented on the Balance system, this lock
contention is still small. However, this indicates that it is necessary to estimate the S-lock’s and
M-lock’s lock contentions in the design of the PIM hardware.

(3) Communications Qverhead

The communications overhead is small (see Figure 4), mainly because on-demand distribution is
adopted. number of the distributed goals and that of the executed goals. This is called the distribution
ratio. This statistic is gathered by using eight PEs. As stated in Section 4.1, the communication cost is
large, almost half that of one goal reduction. However, the amount of communication is small because
on-demand distribution is adopted. (See Table 4.}

— 12



4 EVALUATION OF THE KL1 PARALLEL SYSTEM 13

[
I Py
3 _JHJnck i ;'-{ |
I [sdok | === Y
. | Medoek | momom 1 r,.-f"' |
! '! i . / |
| | [ ] |
s | | i | I,’r ' /
o s 7
: ! i 1 RO R
il H 1 [ i _‘l' ' [
B 5 F -1 ,.l-_'f—
. e ‘
‘ E 1-";_.: | ‘_.f |
1 | = 'J:' k
ﬂ,—ﬁﬂ'::'"' ' | i
:._—=|=: ! 1 ] i )
u A
2 4 g 3 10 12 14 15
FEs

Figure 7: Lock Contention Ratio

Tahle 5: Statistics of Suspensions

8g-m | 8¢-s | 8q-1 | BUF q;rt prim | mxi
Suspension/red rg-m | 0.01 0f010]} 0.02 0.08 | 0.04 | 0.42
Suppression ratio 3% 0| i0% -1 23% | 4% ] 95%

(4) Increase in Computations Because of Suspension

The increase of computations due to suspension aflects speedup. The reason for the increase in
computzations due to suspension is that suspension requires an extra suspend eperation, described
in Seetion 2.1, and extra instruclions to retry the passive-part executions. Although these exira
instructions depend on the number of clauzes, there is an average of about 10 extra instructions over
benchmark programs®. Therefore, the suspension cost is very large if the suspension has occurred.

However, as shown in Figure 4, the reduction in performance caused by suspension is not large
in our KL1 parallel system with on-demand goal distribution, rg-m. There are two reasons for low
suspension overhead: on-demand distribution and depth-first scheduling. Section 4.2 showed that on-
demand distribution can suppress suspeasions. Table 5 shows the suspension statistics. Suspension/red
is the number of suspensions per reduction in rg-m. Suppression ratio is defined as follows:

rg—misuspensions)
bf{suspensions)

Suppression ratio =

bf(suspensions) is the number of suspensions under breadth-first scheduling by one processor and rg-
m(suspensions) is the number under the rg-m distribution method. Suppression ratio shows how much
the depth-first scheduling with on-demand distribution suppresses suspensions.

Tahble 5 shows that depth-first scheduling suppresses suspensions in most benchmarks, except for
mzf. Depth-first scheduling in not effective for mzf because mzf requires frequent handshaking among
parallel KL goals. It is necessary to study meore effective scheduling for programs like mzf.

"These analyses were dane by a system in which the indexing instructions have not implemented.

. ]3._
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5 Conclusions

This peper presanted the design decisions for the KL1 parallel system, which Is implemented on
the gannine muliiprocessor, Balance 21000. It also gave the characteristics of benchmarks, which
are defned by the seguentiel svstem, and the first detailed results of some benchmarks which were
gatherad by the KL1 parallel system.

“cats That ou- sirategies, en-demend distribution and the separation of razdy

smwizs muliizroczzsors, Substantial spesdup can be obtained from several
1

iz gotamtiel parallelism which can be easily defined by vsing the szqueniial

More dstailed analvses of the factors reducing speedup indicate that the main factor is the low
wari rate which comes from the benchmark’s poor potential parallelism, The other overhead, the
lock manipulation for the exclusive data access in parallel and the communications jor the razlization
of the good load balance, is very small. The overhesd from the increase of suspensions by parallel
execution, hewsver, iz larger than we expectzd. To kesp the increass of suzpension to 2 minimum, we
iniroduce 2 simple scheduling strategy, depth-first scheduling in each PE. The depih-first scheduling
is effective for most benchmarks.
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