ICOT Technical Report: TR-347

TR-347

Structural Superimposed Codeword as
an Indexing Scheme lor Terms

by
A. Nuakuse. S, Shibavama, H. Sakai.
Y. Morita, 1. Monoi & 11 Itoh

March, [98E

988, 1COT

Mita Bobusad B, 218 L3 A56-1191— 5

|[:DT 1-2% Mita | -Chome Telex ICOT 132964

Minato-ku Tokyo T8 Japan

E“sfiﬁlte-for New Generation 'Cﬁmputer Techno_logy

Structural Superimcosed Codeword as an Tndexing Scheme for Terms

2kihiko Kakase, Shigeki Shikayama, Hircshi Sakali {Toshiba corporation)
Yukihiro Morita, Hidetoshl Meonol, Hidencri Itch

{Institute [or Wow Generzticn Computer Technelogy)

Aogtract
Trls peper desoribes the strectural sueoerisoossd oodswors {83520WY &s
an indexing scheme for terms. It reports the reswitcs of perfomencs

evaluztion of E5C0W by experimental rer=ievel of tewms by 550X, Thess
experiments showed several characteristics of 5500 for use in indexing

for terms.

1. Introducticon

Far the advance of knowledge informatien processing, it is necessary
to realize databases which descrite models of the real world.

Basic elements ‘of most conventional database systems, are non
structured data, such as atomic values., Scretimes, atomie values alone
are insufficient to describe models of the real world.

On the other hand, in the study of logic programing such as Prolog,
logic is a very powerful method to describe complex obijects,

Recently, some database models which manipulate terms to import logic
into database have boen reported. [TsurS6)], [YokotaB6], and [MoritaBéa).

In database madels which manipulate terms, it is useful to make
indices to terms for effective retrieval of terms.

However, it is very difficult to make an index to a term by using
indexing techniques of conventional database systems, because a term
has a complex structure and may include variables.

[RamamchanaracB6], and [WiseB4] report how to apply the superimposed
codewords {SC0W) [Roberts?d] to the index of a term. In naive
implementation of SCW for text retrieval, we can make indices to terms

if the terms in a database are varlable free, This paper explains how

to make an indax to a term using the naive implementation of S0W in

stead of explaining the indexing scheme of 50W.

via assume that the tesme $llustrated in Flgure 1.1 ave stored in the
database

Fiess, tha hached wvelus oI sach constant swicl in a tamm is
calouleted. far sw=ssiz, Sorotemm (1) in Flours 1.1, %R czloilate
hia}, R{&), hic), and L), wh=r= "hY denotes the Wazhing Sun~ticn and
"h{a)" iz the binary hashad value of vg" using "h". The bit length of
each hashed velue is sat 2t the same length. To synthesize the
information of h(z), h(b), h{c), and h{d}, we us=e the technigus of
suparinpesed code words, We BSSume that h{a), hib), hi{c), and h{d) are
binary wveluss and have the same bit length, and we OR h(a), h(b).
n{e), and h(d) and make its result an index to (1), as illustrated in
Figure 1.2. Indices for (2] to {4) are also generated by this method.

To retrieve the databess by a term, we also make an index to term "to
retrieve, in the sare way that we made indices to terms to be
retrieved. (In this paper, to distinguish the terms to be retrieved
and terms to retrieve, the former is callsd data terms and the latter
query terms. The index to a data term is called a data index, and the
index to a query tem is called a query index.)

To use SCW for the index to terms, data terms should be variable
fres, but query terms may include variables.

For example, if the query term is "a(b,X)", the index to the guery
term is made by superimposing h(a) and h(b). The variables in the
query term are not superimposed for the index. {In other words, the
hashed value of variables in a query temm is a sequence of bit 0')

Retrieval of unifisble terms to query terms is performed as follows.

We assume that the index of the i-th data term is Di and the index of
the query term is @; if Di"0=Q holds, the term with Di is a unifiable
candidate to the temm with Q. (& denotes MND in this paper)

This is becausse, L all constants in the gquery term appear in the

data term, the abowe eguation always holds,

IR

Hewewver this scheme cannot deal with data terms which have variables.

To realize a database which can manipulate all kinds of temms, like
the models describesd in [Yokotafs] and [MoritaB6a], indices to terms
which can include variables in data terms and query terms are useful

This paper proposas a new indssing scheme for terms named structural
superimposad codeword(S30W) which is developed fram 5G4 and can deal
with varizbles for dats terms.

Section 2, glves an overvies and erxplaine the S5047 constructien
method of with some examples. Sacticn 3, exclains how o evaluatse SSCH
weing test dat=, test methods and test items, Secticn 4 describes and
znzlyses the results of seckion 3, Section 5 compares the SSCW to
ather indexing methods to terms.

Sacticn 6 gives the conclusion and describes fuiure research.

2. EECW Scheme

2.1 38CW Construction Method

In an SCW, the hashed values of each symbol are merely superimposed
bocause the main interest of the S5OW is character informaticn of the
constant symbols in a term. However, to make an index to a term, we
miist consider two more items of information: information on the
structure of a term and information of variables in a term.

By superimposing the hashed values of each constant symbol in a term
according €0 the structure of the term, the 53500 takes the structure
information of the term.

Information of wvariables in a term is included in the index by
providing special hashed values for variables, '

A term is defined recursively using the following three rules.
(1) An atom is a term.

{2} A variable is a term.

{3} A functor which has several arguments, where each argument iz a

term, is a term.

An BS0W is a bit string and is defined recursively as follows.
{1y The 5504 of an atom 1s its hashed walue.
{Z) The 8504 o & m=—iz=te iz the hit sagquence of 1 for data term and
thra bit secpense of O Ior 2 QUETE TSI,
{3y The S50W = = coxrpound termm 1s obtained as follows.
First, the hashed velus of the functor of a copound term is caiodated.
Next, the S50Ws of each argument of this functer are cslowlaterd,
Here, the bit length of the 5504 of an arqument of this functor should
ke shorter than the functor itself.
Last, the SSCWs of each arqument of this functor are superimposed cato
the hashed value of the functor. Here, the hash bit range of the functor

should cover the hash hit ranges of its arguments.

In (1) and (3}, the same hashing functicn is used to caloulate hashed
values of cach constant symbcl in the data teoms and query terms. This
hashing function 1is from a constant symbol and its information on
structure to the hash bit string.

Figure 2.1.1 shews a sample algorithm to make an 55CW.

Procodure "make sow" is a procedure for three arguments.

The input is 'Term' and 'Hashlen', and the output is 'Index’.

iTerm' is a term for which we want to make an S50W, 'Hashlen' is the
bit length of SSCW of 'Texm', and 'Index' is the SSCW of 'Term'.

In this algorithm, the S3CW of each argument of a functor is
concatenated horizontally. This paper evaluates the performance of an
550W which is based en this algorithm. (Concatenating each argument aof
a functor, is ocne special versicn of the gscW. Of courss, there are
other ways to make an S50W, for example to suparimpose each arjument
of a functor,)

For example, the 2504 of temm "a(b,c{d)}" 1is constructed as

illustrated in Figure 2.1.2.

2.2 S850W Desiqn Parameters

The hash bit field of some functor in a term (some functor means not
only the outer moest fenctor of 2 term, but also the functors of
subterms of 2 term) can be divided into two fields. One is the fie=ld
witich iz superitmosed By the heshed velus of its argurencs, and s

fhaw fp tha fia'd which is not mureritreszad by the hacthed valuas of
its aromments, The fommer flald iz called the "superinmosed fis18"
(5F) of the hesh bit field of the functer, z2nd latter field the '"non
superitrposed field" (NST) of the hash bit field of the functor. The

following two parametars are used to maks an S50H.

(1} Helationship between SF and NSE

To decide the ratic betwesn the length of the SF and MNET, we
intredues a parameter superimposing ratio (SR). Iet the hash bit
length of a functor be LF, the number of arquments of this functor be
M, the hash bit length of an argurent be A, the superimposing ratio be
SR, the bit length of the superinposed field ke ISF, and the bit
length of the non-superimposed field be INSF. Then the following
equation holds, in the previous algorithm,

A = <LF*SR/N> {2.2.1)

LSF = A*N {2.2.2)

ILNSF = L-A*N (2.2.3)

L®r denotes rounding the fraction nuber of X,

(2) Mumber of "bit 1"s to be set in the hash bit fie=ld

An important factor for indices using the superimposition technique
is to decide how many "bit 1"s should be set in a hash bit field
[RobertsV9)] and [Moritas?].

In the hash bit field of bit length L, if M of bit 1 are set, the bit
setting ratio (BSR) is N/L.

If nash bit length L and BSR are given first, the number of "bit 1"s

to be set in the hash bit field can be determined by the following

equation.
i = <L=BSR> (2.2.4)
There are two hashing methods to decide the BSR of a functor.
1. Uniformly Distributed Hash
This method uses one BSR for the hash bit fisld of coe functor.
2. Tisgld Sepavaved Haeh

oo into the

2]

Thig hashing methed divides the hash bit field af &
SF and NSF. Bit 1 of ST and MSF are set using ciffersnt ESx.

In field sapz=ated hash, the interference of hit 1 of the 8504 of
the arqument to the functor is less than that of unifermly Sistrioctsd
nash. Hence the SF, ESR are expected to be significantly lower than
that of the H5F.

Figures 2.2.1 and 2.2.2 illustrate these two hashing methods,

2.3 Retrieval Using SSCW

SorW retrieval is the same as that of the 50W, that is

U =0 (2.3) where D is the index of the data texm, DT, and Q is the
index of the cquery term, Q.

1f Or and OT are unifiable, (2.3} holds [MoritaBsh].

If OT and OT are unifiable, there is some substitution "s" which makes
LTs=0Ts, and DTs is the ground instance of DT.

We assume that the 850Ws of DIs and OTs arc 5.

Fer & and D, D S-5 always holds bocause the hached values of
variables in the DT are the bit sequence of 1.

For © and O, S 0=0 always holds because the hashed values of
varidbles in the QT are the bit sequence of 0.

By D'S=5 and 5 Q=Q, D=0 always holds if the DT and QT are unifiable.

2.4 Examples

2.4.1 Fxample Cbtaining an S5CW

The follewing example shows how an S50W is abtained.

For example, we make an S50W of "a(b{X),c}" using the two hashing

methods .

{1y Uniformly distributed hash

Assume that the SR is 70%, the hash bit length of S55CW is 16 bits,
and the BSE is 30%. Texm "a(b(X),c)" is ecxpanded into a tree. Then,
the hash wvalues of "a", "b", "¢", and "X" are calculated. First, the
hash kit lesogth of each hashed value is determined. The hash kit

i
¥

of "z" iz Satermined as 16 bits,

i

= callh s

]

Bazh nit lengih of "h" and "c", by egumtion (2.2.1), we chizin
A= {if Dits » 0.7/2 = & hits.

Hence, i hash Bit langth of "b" and "o ic determined ag § bits,

The hash bit lemgsh of "X" is

A = <6 bits * 0.7/1> = & bits.

Mext, we decide how meny bits should be set in the hash field,

The number of "bit 1"s is calowlated by applying eguation (2.2.4).

For "a", <16 bits * 0.3 = 5 hits, 5 hits should be set to 1.

Foas "h" and "o, 46 hits * 0.3 = 2 bits, 2 bits should be set o 1.
For "X", 211 bits should be set to 1 for a data temn or all bite should be sot
toc 0 for & query term.

We assume that we have the following hashed values,

h{a) = QOLOOLOQQO0L0101

hib) = 100010

h{c) = 010001

hixy = 1111 {term in data).
By superimposing them as illustrated in Fig 2.4.1, we cbtain the SSCW

'0010111113010101°".

{2} Field separated hash

Let SR be 0%, BSH of SF be 45%, and BSE for NSF be 20%.

In field separated hash, the hash bit lengths of "a", "b", "o", and
A" are same as those of wnifornly distributed hash. However, the
length of SF and NSF of each constant symbol must be calculated,

For "a", SF = 6 bits * 2 = 12 bits, NSF = 16 bits - 6 bits » 2 = ¢4 bits.
For "b", 8F = 4 bits * 2 = ¢4 bits, HNSF = 6 bits — 4 bits = 2 bits.
For "¢", there is no SF MSE = & bits,

Mext, we must caleulate the bit numbers to be set to 1.

-7 —

For "a", at SF <12 bits * 0.2» =~ 2 bits,
at NSF <4 bits * 0.45» = 2 bits.

For "b", at SF <4 bits * 0.2» = 1 bit,
at NST <2 bits + 0.45F = 1 bit.

For "a", at NSE <6 hizs » (.45 = 3 bits.

iz esmane Lhat we Rzve obrained the following haches wvaluse,

|

£} ' 0CO100U00010 (5F)

nfay = 1010 @

i

I‘l'

fmy o= 100 (NET O 0100 {SE)

[

h{g) = 011001 (X%
hixy = 1111 (varizhle in data term)
Tn this caleulaticn, '+' mesns concatenatien of bit fields.
Lastly, we superimpose them as illustrated in Figure 2.4.32, and obtain

Fhe SSCW "1010101111015011°.

2.4.2 Example of Retrieval Using 55CW

we assumne that the ==t of terms to be retrieved is as follows.

a(b(X),c) (1)
a(b(e),X) (2)
a(Xx,b{d}) (3)
a{c(d),c) (4)
a(t(e).X) £3)

We assupe that the query term is as follows.

a(b({d),X) (6)

"hi{x,n-bits)" means the hash value of "x" whose hash bit length is n
bits. We assume that the hashed value of each constant symbol is as

follows,

h{a,1l6-bits) = '1001000100110000"

g —

h(b,6-bits} = '001010"
h{c,6-bits) = '100010"
h(f,6-bits) = '000011’
h(d,4-bits) = '0001°'

hie,4=bits)

*1o00°

o -

igure 2.4.2 shows the process of mexing en S504 iodsx using the

i|r

aryrpes Raches yalues,

By using retrievel criterica "DLT0=2", (1), (3}, and (3) are selected
as unifisbhle candidates to (6).

In fact, however, (3} 1s not unifiable to (6). The S20W uses the hash
functicn and superimposes the hashed waluss., Hash eoollision and
interference of hashed values may ooour here. Such mis-selections are
called false drops.

In the following secticn, the performance of S804 1s measured by
counting the false drops.

3, Bvaluation
3.1 Purpese of evaluation

Ao stated in the previous saction, certain parameters must be
determined to make an SSCW.

Therefore, we must evaluate the effect of parameters for the
selectivity of SSCW. Mext, the selectivity of S5CW depends on the
term set bo be indexed. Therefore we must also evaluate the effect of
the characteristics of the term set to on the selectivity of the 58CW.
(1) Selection of the best paramesters of the SSCwW

A5 stated above, an 55CW has two parameters: SR and BSE.

By changing the SR and BSR, we can cbserve how the selectivity of the
850W changes, and predict the best S550W parameters, in uniformly
digtributed hash and field saparated hash.

{2) Cheervation of the 5500 performance when applied to term sets with
various characteristics

The selectivity of the S50W scems to change 1f the characteristics of

—_ G —

the term set change. By changing the nurber of kinds of constant
symbols in a term set, figure of temms, and number of variables in a
term set, we observe how the selection ability of the SSCW changes.

From (1) and (2), we predict which hash method iz petter for dealing

with term sebs with various characteristics,

3.3 fvrluation Methodology

To ernlus=e the S50W performance, we prepered sevesral ternm sets, gach
wdEn 100 4orms. Thess 100 termes c=n be 100 data terms, cr 100 query
terms, e rotrieved 100 data termms by 100 query tewms. This is
equivalent o 10000 selecticn with unificaticn or 100-100 join with
mificaticn. The following R and 5 were counted.

-R mumber of pairs that can be unifiable

-8 mumber of pairs that seem to be unifiable by SSCW
Ve defined the false drop ratio (FDR) as follows.

FoR = (S R)/S

FOR means +the extent to which false drop is included in pailrs
For the actual evaluation of this paper, most experiments are
performed by retrieving a texm set using itself for query texms. Thds
iz called uself-retricval.

1.3 Sample Term Ssts

We provided 23 term sets for the test.

HWe selected three parameters for the term sets,

Parameter 1: NMumber of different kinds of constant symbols in a term set
Parameter 2: Avorage number of rodes in one term in a term set {term size)

Parameter 3: Ratio of variable nedes to the total number of nodes in

a term set

The 23 term sets are categorized into four blacks.

{1y Term block 1 (term 00 and term a1

Term sets in term block 1 are nommal, The three parameters are set to
medium value.

(2) Term block 2 (term 10 to term 20)

In term sets in tarm block 2, to vary the ratio of verizbles in the
term set, parameter 1 is set +o 30, parsmetsr 2 i85 set to shout 4
nodessterm, and pavenster 3 veriss fommm 0% o 0%,

{3) Temm Eisck 3 {temm 21 to term 25)

In term se=s in t=xx block 3, to vary the sizs of ths torms in tha

term s&at, rpevamscss 1 dis set to 30, parameter 2 veriss from 3
nodessterm to 10 noxdsesterm, and parameter iz get £ aboudk 135,

{4) Term block 4 [ferm 26 to term 30) In term set in term bleck 4, b=
vary the mumber of kinds of constant symbols in it, parameter 1 varies
from 40 to 300, parameter 2 is set to about 4 nodesSterm, and
parameter 3 ils set bo about 3%, Details of the test data ars

illustrated in Figqure 3.

3.4 Test Item

We performed the following five experiments. In each experiment, we
measured the FOR of uniformly distributed hash and field scparated
hash.

Experiment 1 (test to chserve the effect of the SR}

To cbserve the effect of the SR on the FDR, we fixed the BSR, varied
the SR from 50% to 100% by 10%, and measured the FDR. For uniformly
distributed hash, the BESR is fixed to 30%. For field separated hash,
the BSR for the SF is set to 10%, and BSR for the NSF is set to 45%.

Wi usexd term 00 for the test data,

Experiment 2 (Lest to chserve the effect of the BSR)

To chserve Lhe effect of the BSE on the FDE, we fixed the SR to 0%,
varied the HEHR, and measured the FTR. For wuniformly distributed hash,
we varied the BSR from 10% to 60%. For field separated hash, we waried
the BSR of the 5F HSF, from 0% to 20% by 10% and 40% to 55% by 5%,

respectively. We used term 01 as test data.

Experiment 3 (test to ocbserve the effect of variables in terms)

Tey observe the effect of the ratio of varizsbles in terms on the DR,
we fixed the SBE to 70%, the BER of uniforsly distributed hash o 33%,
and the -?.J.SE of fiald separstsd hesh to 108 Zor the 57 and 30% oo e

ESS. We usad term 10 to term 15 for the test deEtE.

Eperiment 4 (test to chserve the efiz—t of the size of terms)

To cbserve the effsst of the =ivs of t=rms in the term set oo the
FOR, we fixed the SR to 70%, the 28R of uniformly distributed hash to
35%, and the BSE of field separatsi hash to 10% and 50% for the S5F and
WSE, Generally, by increasing the size of a term, the hashed bit
length of each symbol in a term is shortened. In this experiment, we
wantad to observe the effect of reducing the hash bit length in a

large term. We used term 20 to term 23 for test data,

Eperiment 5 (test +to cbserve the effect of number of kinds of
constant symbols in terms)

To cbeserve the effect of the number of kinds of constant symbols in
term set to FOR, we fixed the SR to 70%, the BSRE of uniformly
distributed hash to 35%, and the BSR of field separated hash to 10%
and S0% for the SF and NSF. The more kinds of constant symbols in
terms, the more hash collisicns occur. In this experiment, we wanted
to chserve the effect of hash collision on the FDR. We used term 30

to term 33 for test data.

We set the length of SSCW index to 32 bits. However, in experiment 3,
we wanted to ohserve the hash collision, Therefore, we used a 24 bit

S50W index for experiment 3.

&, Results
(1) Effect of the SR on the FDR

— 12

Figure #.1.1 shows the result of the experiment for uniformly
distributed hash and Figure 4.1.2 shows the result for field separated
hash. In both hashing methods, DR is wvery large at SR - 100%,
because of the effect of variables in data terms. Suppose an 5500 of
"af¥,Y)" whose SR is 100%. The S5CW is the zequence of all "hit 1"s.
{Se= Figure 4.1.3.) This index metches everything, For the Join
operztion ip particwliar, its elfect on khe 208 Is great, An ER of less
than 60% shows kad FTR, because the small SE mekss the hash bit length

rts of 2 functer too small, and it cannot contein the
armment information effectively, (See Figure 4.1.4)

In this esperimest, the best S0 iz abeob 60% to BOR. Hewewver we must
be careful with this result, because it was cbtained from randomly
generated term sets, In the test data we used, the average nuber of
arppments of a functor is 2 to 3. Hence, an SR of 70% can share the
hash bit field of the funcbor and arguments well. If the number of
arguments increases in & tern set, the SR should be 70% or more.
However, because of the effect of wvariables in data terms, too large
an SR 1s assumed to show bad selectivity. We assume that 58 should not
excesd BO% or 90%.

(2) Effect of the BSR on the TR

Figure 4.2.1 shows the result of experiment 2 for unifommiy
distributed hash and Figure 4.2.2 shows the result for fleld separated
hash. In experiment 2, in uniformly distributed hash, a BSR of 30% +to
40% shows excellent performance. Theoretically, a BSR of 50% provides
the best resclution capability for the hashed wvalue of ane constant
symbol [Roberts79]. However, in our method, we superimpose each
hashed value, so that the BSE of the resultant 5350W is too large if we
set a BSR of S0% to each oonstant symbol. Too small a BSR, however,
provides poor resolution capability for a constant symbol. [Moritad?)]
reports that the best BSE for cne constant symbol is where the BSR of
a constructed SS50W without variable symbols is S0%.

In the test data of this experiment, the average depth of termms is 2

— 13 —

ta 3, and the average number of constant symbols to be superimposed is
1.5 to 2.5, therefore, by using a BSR of 30% to 40%, we can make the
BSR of the resultant 35509 about 50%, The maximum numbsr of oconstant
symbols to be superimposed is determined by the index length and
average mmber of arity. For exanpls, ln a2 22 bit S50W for a Z-arity
tavy, the maximm depth of the hesh=S value to be superimposed is 4.
Ev using the index lencth of terms =nd sverace number of arity, w= can
rrefict the maximim moohes of constent synbols ©o be superimposed and

czn pradict The best BSR.

in field separated hash, it seems that 2 BSR of 0% in M5F and & EER
af 108 in SF iz good, However, cogpared with uniformly distributed
hash, the difference hetwesn the tested HSR of the NSF and SF in field

separated hash is not very great.

{3y Bffect of variables in term sets on the FOR

Figure 4.3.1 shows the result of experiment 3 for uniformly
distributed hash and field separated hash. In experiment 3, uniformly
distributed hash is weak in terms with meny varisbles because of the
effect of variables in data terms.

Suppose that for an SSCW of "a(X,Y)" whose SR is 70%, 70% of the
hashed valus of "a" is masked by the hashed value of "X" and "Y", (See
Figure 4.3.2.% In uniformly distributed hash, the informaticn about
"a" is distributed uniformly in the SF and NSF. Howewver, in field
separated hash, mest of the information on "a" is concentrated in the
NSF. Thus even for terms with many variahles, informaticon on a functor

in the 250W is not masked significantly.

{4} Bffect of the size of terms on the FDR

Figure 4.4.1 shows the result of experiment 4 for uniformly
distributed hash and field separated hash. In experiment 4, field
separated hash shows better selectivity than uniformly distributed

hash. This is because of the effert of the wvariables explained in

— 14

4.(3). Next, we cbserve the result of wnlfordy distributed hash and
field separated hash independently. For uniformly distributed hash,
the FDR increases by the increment af the size of the term, because
reducing the hash field 2lso reduces the resclution capability of a
leaf node of a term, For fiald sepsvated hash, DR does not wary by
the effect of the size of terme.

For the resolution cepetiiity of & leaf npode of & temm, field
separated hash iz gioericr +o wmiformly distrituzed hesh, s the
wnlfommly digtriuted hash is more essily affected by the size of

terms than fiald sercsrsted hash,

(5) Bffect of the numbes of kinds of constant symbals in a term set
Figure 4.5.1 shows the result of experiment 5 for uniformly
distributed hash and field separated hash. In experiment 5, for tems
with only a few kinds of constant symbols, hash collision did not
cccur in either method, Therefore, by the effect of variables, field
separated hash shows better selectivity than unifermly distributed
hash. In terms with many kinds of oonstant symbols, field separated
hash shows a worse FOR. This is quite natural because the resolukion
capability of field separated hash is generally less than that of
uniformly distributed hash.

Az a result, we can conclude that for hash collision, uniformly
distributed hach is stronger than field separated hash. To deal with
term sets with many variables, field separated hash is superior to
uniformly distributed hash. The effect of variables on the FDR seems

to be greater than that of hash collision.

5. Comparison with Other Indexing Scheme

[Wisedd] proposes field encoded words (FEW) for the index to terms.
In this method, the hashed walue of each symbol in a term is
concatenated as illustrated in Figure 5.1. In FEW, the BESE of each

hashed value is uniformly S0%.

DSR of the NSE = 50% (FEW).

The test cases we used are as follows.

(2) Retrieval of a term set with only a few variables by a term set

with many variahlec

Le== t=rs =2t Cuary term set
Caze Tezm 11 Texrm 12
Case 2 Temm 11 Term 1B
Case 3 Term 12 Term 19
Case 4 Term 12 Feorm 18

Fiqure 5.4 shows the results of this experiment.

(2) Retrieval of a torm set with many variables by a term set with

only a few variables

Data term set Query term set
Case 5 Term 19 Term 11
Case 6 Term 19 Term 12
Cage 7 Term 14 Term 11
Case B Term 18 Term 12

Figure 5.5 shesis the results of this experiment.

Az is cbvious from Figures 5.4 and 5.5, FEW shows a larger FOR Lhan
the 550W with field separated hash for retrieving term sets with only
a few variables by term sets with many wvariables, while there is no
significant difference in retrieving term sets with many variables by

term sets with only a few varlables.

[Ramamchanaracg6] and [Ohmori87] report indexing methods for terms.
In both methods, temms to be indexed should be expanded first,
according to a provided template term, and the hashed values of a term
are synthesized by superimposing [Ramamchanarac86] or concatenating
[ClmoriA?] them.

The advantages of the above methods are efficient rescluticn

— 16 —

In FEW, the hashed value of variables in a data term can be expressed
as a sequence of 1, and those of a query term as a sequence aof . The
retrieval method of FEW is also D Q=0, where D is the index for data
terms and © is the index for guery terms. FEW is considersd to be one
special version of fisld ssperated hash of the S550W,

Figure 5.2 shows the field separasted hash of an SSCW where the BSR of
the 5F is 0% and the BSE of the N3F is 50%, Rs is obwious from this
figure, we can chbtzin FOW in the seme weF &5 constructing an SSCW.

Tn= ecventags of FEW (in othar words, the S804 of field ssparated
hash with = BESR of 50% to the N5F and & BER of 0% to the SF) is thsat
e hashad valua of a functer is net interfersd with by those of the
arguments, and vice versa.

We made additicnal experiments for the term set, where the number of
kinds of functors (they cannot be leaf nodes of tems) is fixed to
five and the punber of Xinds of leaf pode is 30, 50, or 100.

We made u-self-retrieval for these term sets by using the following two
indeving methods.

{1y 55CW field separated hash where the BSR of the SF = 10% and the
BESR of the NSF = 50%

{2) 55CW field separated hash where the BSR of the 5F = 0% and the
BSR of the NSF = 50% (FEW)

Figure 5.3 shows the result of this experiment. Because of the
non-interference of the hashed wvalue of the functor to the hashed
velue of arguments, (2) shows better performance than (1), if the
nurber of different kinds of leaf nodes of a term increases,

The disadvantage of FEW is that when applied to query terms with many
variables, there are many unused bits,

We retrieved a temm set with only a few variables by a term set with
many variables, and vice versa.

The indexing methods we used in this experiment are as follows.

{1} 55CW fiecld separated hash where the BSR of the SF - 10% and the
BSR of the NSF = 50%

{2) 850W field separated hash where the BSR of the 5F = 0% and the

capability of hashed values, and no interference of the hashed walues
of wariables to the hashed valuss of constants.

The disadventages are that thelr retrieval operation is rather
complicated. They nesed logicel cperation with the same number of
nedes as +ha template term. The FDR of such indexing methods is very
‘mich demendent on the figure of the t=mplate term, I the nodes of
tgemz guwossd —hs zize of the temslete term, Informetion on those nodss
iz izmor=s.

The edventags of the S504 is simple ret—isvel cpszetion. In bthe B50H,
g rnifiatle pelc of terms can be checksd by one logical oeeraticn
which iz providsd in almost all micro-processors.

The S3CW can also flewibly determine the hash bit field of all nodes

in the term, preventing nodes in a term set from being ignored.

6. Conclusion _

This paper introduced details of the S8CW and showed its
characteristics when applied to various kinds of term sets. This study
showed that the effect of variables in term sets is stronger than that
of the size of terms and hash collision in an SSCW. Howewver, using
field separated hash rather than uniformly distributed hash prevents
performance reduction by the variables in term sets,

In future, we will use this SSCW method in an experimental Imowledge
base machine [Shibayamaf7], and measure the perfomance of the index

to terms.

lB.

i0hmorisy]

[MoritaBoa]

[Moritag7]

[Roberts79]

Chmori, T, et al., An Algebraic Deductive Database Managing
a Mass of Pule Clauses, Proc. 5th Internaticnal Workshop on
Datebase Machine, 1987

Morita, Y. et 2l,, Retrievel-Bv-Unificetion Creration on a

galasiconal Knowledge Base, Proo. 12th VIDE, 1526

Mewdbs Voo al, Bbructurs Hecciswval vis the Method oFf
Suserisposad Jodes. ", Proc. 330h Aonuel Convention 195 Jasan,

€L-E, 198% (in Jersnosa)

Morite, Y. et al., A Fnowledsge Sase Machine with an MF2M(3) 2n
Indexing Scheme for Terms, Proc. 35th Annual Coorvsntieon IPS
Japan, 20-7, 1987, (in Japaness)

Roberts, C.5., Partiszl-Match Retrieval via Method of Superimposed

Codes, Proc. of IEEE, €7(12), pp.l62:4-1642, 1979

[Ramamochanaraods] Ramsmchanarao, K. and Shepherd, J., A Superisposed Codoword

Indeoding Scheme for Very Large Prolog Database, Proc. 3zd

Internaticnal Logic Programming Conference, 1988

[ShibayamaB7] Shibayama, 5. et al., An experimental Knowledge Base Machine

[Tsurds]

[Wizedd]

(Yokotats]

with Unification-based Retrieval Capability, Proo. 2nd
France—Japan AT and CS Conf., 1987

Tsur, 5. and Zaniclo, C., LDL: A Logic-Based Data-Tanguage,
Froc. 12th VLDB, 1286

Wize, M.J. and Powers, D.M.W., Indexing PROLOG Clauses via
Superimposed Code Words and Field Encoded Words, Froc. IECE
Conf. Logic Programming, Atlantic City, MJ, January 1984,
pp. 203-210

Yokota, H. and Itch, H., A Model and Architecture for a
Relational Knowledge Base, Froc. 13th International Symposium
on Computer Archltecture, 1988

af{b, cid)} (3

glb, c(f)) (2}
g (k(d), c(d)} (3}
a(k(f).c(7)) {4}

Figure 1.1 Example of a term et in 2 database which manipulates terms

| h(2) |
| h (b) |
| h(c) '
[h (d) |

OR

SCw of "al(b, c(d))”

Figure 1.2 Index of "a(b,c{d})” using SCW

procedure make_ scw(Term, Hashlen, Index)

var Fonet F rseqvelueafz funcior 5

Arglen /® haskh bitlengzihofen ergument ¥/

fny

Arg_n /% n-thergemant of the functar i
Argindex_n [~ S5E0WolfArg_n ¥/
if Term is a variable
Index is the hashed value of Term whose length is Hashlen;
return;
if Term is an atom
Tndexis the hashed value of Term whose length is Hashlen;
returmn;
else
Functis the hashed value of the funector of Term, whose length is Hashlen;
Arglen is the hash bit length of Index of each argument of the functor;
for all arguments of the functor
make__scw(Arg__nArglen Arginder__n);
superimpose the concatenation of all Arg-n onto Funet, and make it Index;
return;
}
MNotes:

1. The hash bit length of a functor should be longer than the sum of the hash bit
lengths of the SSCW of its arguments,

2. The hash bit field of each arpument of a functor should be the same length and
be concatenated using the order of arguments of the functor,

Figure 2.1.1 Sample algorithm te make an SSCW

— 21

] hia)]

" hib} i hic! |
LACI

oF
E SSCW of”a(b. c(d))" |

Figurz 2.1.2 Constructicn procass of the 880 of tzrz “aiz. cl{di}”

hia) ! Using one BSR
,--""'_--.-'_

{ nip) ~-T hic) —|

[h{d] -

S3CW of"a{b, c(d))"

QR

Figure 2.2.1 B3R for uniforaly distributed hash

BSR for the SF

l __ T I_F..; ok __.,_,._4_ e mreeds :_:h: t"+ a I }; P Y

[Z ki) *"'k“"«-f'fvi'}“fﬁl*‘#'-_l._
mﬁiﬁw
OR “‘u$x%x K ——) __BSR for the NSF

S8CW of"a(b, cid))"

Figure 2,2.2 BER for field separated hash

:0070010008C10101

1100010010001 |

P1111

Or

L 0010111111010101 |

Figure 2.4.1 Sample S3CW of “alb{X),c)" by uniformly distributed hash

[1010000100000010]

100100011001 |

OR

[1010101111011011|

Figure 2.4.2 Sample 35CH of "a{b{X),c)” by [ield separated hash

(1)

OR

l1001000100110000
001010100010

1111

I3

[1001001711717170010 |

Lio01To00100
001010
{1000

11000GC
111111

(3)

OR

100100111011 7111)

(1001000100710000C |
1111111001010 |

(0001

(4)

OR

(6)

OR

[1001111111111011{

[1001000100110000
[100010100010
0001 |

(100110011117 0010|

1001000100110000 1
[000011[111111]

H

1000 |

(el

OR

Mo01101111111111}

[7001000700110000]
[001010[000000 |

0001

(1001001111110000]

Figure 2.4.3 Process of making 35CHs

Term
Term
Term
Term
Term
Term
Term
Taerm
Term
Term
Term
Term
Term
Term
Term
Term

e QR [R [N [R (I S A T - I s |
L ol v = BRI o I & L IR SV O6 I

[T ST G L
[=R O N

[I
o =

LG N
O

Ratio of variables
in tern seis (%)

14, 8B
16. 0
0. G
5.3
71. 0
15. 8
22, ¢
3C. 5
J4. 5
38. 7
44,7
498. 9
26. 1
4. 9
14.9
16. 6
14. 6
16. 5 1
2.9
2.8
2.9
2.9
2.9

B - T BRI N ' 'S O o T ' P 7 15 T P N S S o1 T A

Size oi a term
(nodessrern)

PRI PR MO~ 0 O =~ PO~ M =t o

Figure 3 Details of term sets

— 85 -

Number of kinds
censtants

P G0 G Ly DO S A LD
2O D 0 O

30

FOR (%)

50

4G

36

100 % &0 i &l 50

Figure 4.1.1 Relationship between SR and FOR

FOR (%)

50

20

10

{in uniformly distritbuted hash)

100 90 80 70 80 50
SR (%)

Figare 4.1.2 Relationship between S8 and FOR
{in field separated hash)

hia)

EN f i 1

- i

OR —

L T T

Figure 4. 1.3 350W of "hiX.Y)" where SR-1007%

I hia) |
[hib) [hic)|

OR
[SSCW of _"a (b, c)” |

Figure 4.1.4 S‘Svg-l of "hi¥,¥}" where SRe50%

noRD
By

FOR (%)

1 20 a0 40 Ll B0
OSSR (%)

Figure 4.2.1 Resiaticnship belween BSH @nd SR
{in uniforaly distributed hash)

FOR (%)

Et} . sny rane g e et i e T

— BSR of NSF is 40%
--------- B5R of NSF is 453
—--. BSR of NSF is 503
wee= BSR of HSF i5 55%

10

0 10 20
BSR of §F (%)

Figure 4.2.2 Raslationship betwezn BSR and FOR
{in field separated hash)

- 28 -

FDR(%)

T0 [
60 oo o= -) B2CW wniformiy
| Felt dlsrrizued hash
an = .
] .
1
i—ﬂ - - tﬂ' _____
E20W Mold sspasaed
- 7 bash
20 = A)
. . e o -
0= ~
0 el : ' ' ' I Ratioof
ﬁ 10 EU SU Af 5[} vﬂriablEE{?ﬂ‘}

Figure 4.3.

1 Effect of the variables in a term set on the FOZ

i h(a) |
— ———— h (X}
[111., r RS .
oR -~ — h (Y]
[T RERE 11111 |
Figure 4.3.2 $5CH of "h({X.¥)"

2%

FDR{%)

FDR(%)
a0
20
10
0

i
[
ESCW uniformly
- digzrituied hash
- SECW Deld seperated
B " hasn
B . -
E‘. "-:_- . . - —
oS 0 1 g1 1y Aversgesizeofa

term {nodes/term)
] 2 4 i B 10 12

Figure 4.4.1 Effectofsize of a term an the FDR

s om =

S3CW uniformly
distributed hash
-
- - —= - s L@
. ", - - — i —
I " - .-
= SECW field :fplrlkd
! tea, hash
a fea,
- *
MNumber of kinds ol
r | R _l canstant -afmhn|:
0 100 200 300

Figere £5.1 Effect of the number of kinds of constant symbols in

a term set on the FDR

— 30

‘h(a) |h(b) [n(x) Thicr ;

Ficure 5.1 FEW of "alb{X),c)”

i n(a) 00000088 .
—— ——— .
nh{b) i00COCC | hic) |

[hixy |

SSCW of "a(b (X))~ |

Figure 5.2 S5CW of "a{b(X).c)” with 83R of $F-0% and BSR of NSF=50%

FDR{%)

CECW fsld separntied hnsh
with BSRof 5F=10% and
BER of HE5F=50%

" SSCW field seporated hash
. with BER af SF =0% and
1o - T Um0 BSR of NEF=50%

Wumber of kindsul
J constant symbels of leal
nodes.

0 50 100

Figure 5.3 Effect of the number of kinds of constant
symbols of leaf nodes to FDR

FOR (%)

BT BSCM field separated hash
50 with-BSR- ol 5F=108 2nd
BSR of NSF=50%
i) ! “wss S5CW Tield separated hash
L. L Eith BSR af 8C-0% anrd
i BSE of Nar=00%
|
' P 5
20 “/' ‘
1)
10 r,..%
e
A
;,’/
0 e
Cased Cased
Figure 5.4 fOR where @ term set with only & few variables
is retrieved by a term set with many variables
FDR (%)
Gz S8CW field separated hash
50 e iR SR e e with BSR.of. 5F=10%. and
BSR of NSF=50%
40 e 8S0W field separated hash
! .. with 858 of SF=0% and
ESR of NSF=50%
3“ e i
20
10
0 Rk it
Caseh
Figure 5.5 FOR where a term set with many variables

is retrieved by a term sef with only 3 few WI‘IEMES

