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Abstract

This paper defines a new semantics for Flat GHC programs, where
a model is a set of FGHC unit clauses. The semantics is first infor-
mally defined in operational terms. Then the model-theoretic and the
fixpoint semantics are given. Their definition relies on the definition
of most general guarded unifiers. The two semantics are proven to be
equivalent and the operational semantics is proved to be sound. Com-
pleteness, on the contrary, requires an operational semantics, which
avoids failures caused by deadlocks. Finally, a new unfolding trans-
formation is defined and proved correct with respect to the model-
thearetic semantics.

*Work done while the author was visiting ICOT, Tokyo, Japan



1 The language FGHC (Flat Guarded Horn
Clauses)

An FGHC program [Ueda 86|, [Ueda 87] is a finite set of clauses of the form
H: -Gy, ...,Gu|By,...,Ba.im,n 2 ()

where H (head), the G;’s (guard atoms) and the B;’s (body atoms) are
first order logic atomic formulas.

The language has one primitive predicate (=), which stands for unifi-
cation. Unification atoms can occur both in the guard and in the body.
Guard atoms can only be unification atoms. Empty, i.e. always satisfied,
guards and bodies are denoted by the atom true

In the following we assume, for a given FGHC program, D to be the
(finite) set of functors (with definite arity), denoted by a,b,¢,..., P to be
the (finite) set of predicates (with definite arity), denoted by p,q.r,.. ., and
V to be a denumerable set of variables, denoted by X, V., Z,...

A goal clause is a clause of the form

?—By,.royBm(m 2 1)

The FGHC computation rule can abstractly be described as a modifi-
cation of the pure Horn Clause Logic (HCL) rule. Given a program p and
a goal

G :?—Bt,.. .+B-|-,.

the execution of G is the (possibly parallel) reduction of G to the empty
goal true, using the clauses in p.

If A is the composition of the most general unifiers generated in the
derivation, then the substitution § = A|s (the restriction of A to the vari-
ables occurring in @), is the computed answer substitution.

The elementary reduction step is nondeterministic AND-parallel reso-
lution, with the following additional rules {Ueda 87]:

Rules of suspension
While trying the application of a clause H : =(|B to the goal A



i) the unification betwen A and G and the evaluation of & are not
allowed to instantiate variables in A,

ii) the evaluation of B is not allowed to instantiate variables in G or
A, until the clause is selected for commutment (see the rule of commitment
below).

Unification atoms are reduced using the clause X = X and their reduc-
tion is subject to conditions i) and ii).

A unification step which violates conditions i) or ii) is suspended and
can later be resumed only if the conditions are satisfied.

Rule of commitment

When some clause ¢ called by a goal A succeeds in solving its guard,
clause ¢ tries to be selected for the execution of A. To be selected, ¢ must
frst confirm that no other clauses have been gelected for A, If this is the
case, ¢ is selected and the execution of {7 commits to c.

A formal declarative semantics of FGHC programs could be obtained as
a special case of the construction given in [Levi 87], for a more general class
of logic concurrent languages. We will describe here a different approach,
directly related to the specific FGHC features. The resulting notion of
model is probably easier to understand, even if almost equivalent to the
previous one. However, most of the definitions and proofs turn out to be
much simpler.

2 (Constrained unification and commitment

The nature of the models which are needed to characterize FGHC programs
can better be understood by comparing 2 FGHC program p to the corre-
sponding pure Horn Clause Logic (HCL) program 7', obtained by interpret-
ing the commit operator (|) as conjunction and by ignoring the difference
between guard and body atoms.

As already noted, FGHC has two distinguishing features with respect
to HCL, i.e. a set of constraints on the admissibility of substitutions (con-
strained unification as defined by the suspension rules) and a nondetermin-
istic choice mechanism associated to the commit operator (as defined by

]



the rule of commitment). Both mechanisms are associated to the guard
concept, et they can be considered separately.

Let us first consider constrained unification only. This feature strongly
affects the semantics, i.e. the evaluation of a goal & in the FGHC program
p can fail, even if the same goal evaluated in the HCL program p’ succeeds.
Moreover, when both p and p’ succeed, the set of answer substitutions
computed by p can be “smaller” than the set computed by p’ (even without
commitment).

Example 1
pX,Y): =X =alY =0
pXY): =Y =¢c|X =a.

The goal 7 — p(X,Y). fails in FGHC and succeeds in HCL with the
computed answer substitutions (X = a,} = b) and (X = a,Y = ¢). The
goal T —pla, Z). succeeds in FGHC with one computed answer substitution
only, (Z = b), even without considering the commitment. The same goal

in HCL succeeds with two computed answer substitutions, (Z = b} and
(Z =¢).

There exists one important kind of failure, caused by constrained uni-
fication, i.e. deadlock. A deadlock occurs when a conjunctive goal fails
because it contains a set of suspended goals, each waiting for a partial data
structure to be computed by another goal in the set. For example, the goal
?—p(X,¥Y),q(Y,X). is a deadlock, when executed in the program

X, V): —X =a|¥ =b.
fdX,¥): -Y =bhX =a.

Let us now consider the commitment rule. Pure commitment {without
constrained unification) does not affect the success set semantics [Maher 87|,
[Takeuchi 37), [Falaschi 88b], provided that we assign it a different mean-
ing. In fact, any answer substitution, computed in the pure HCL program
p', is potentially computed in the FGHC program p. In FGHC, however,
we are not guaranteed that the substitution will always be computed, since



the program execution could commit to a different path in the execntion
tree. This is the reason why the commitment does instead strongly affect
the finite failure set, which can have a non-empty intersection with the
success set [Takeuchi 87|, [Falaschi 88b].

Example 2

p(X,Y): —truelg(X,Y).
pX.Y): =X =alY =b
pX,Y): =X =alY =c.

The goal 7 — pla, Z). succeeds in HCL, computing the answer substitu-
tions (Z = b) and (Z = ¢). The same goal in FGHC (without constrained
unification) can either fail or succeed. In the last case, it can compute either
(Z = b) or (Z = ¢). The set of potential computed answer substitutions is
therefore the same as the success set in the HCL case.

In conclusion, since we are only interested here in the definition of the
cuccess set semantics, we can ignore the commitment and take into consid-
eration constrained unification only.

3 The strong normal form

We will define the language declarative semantics for FGH C programs in
strong normal form.

Definition 1 A cleuse in strong normal form is o clouse of the form
A:=Il0 — B,

where A (the head), I (the input guard), O (the output guard) and B (the
body) satisfy the following conditions:

i) A is the application of a predicate symbol of arity k to k distinet
variables,

ii) I and O are conjunctions of unification atoms of the form vari-
able=term,

11} there are no unification atoms having the same variable as left term,



tv) the left terms of all the unification etoms in I are variables occurring
in the head,

n) the left terms of all the unification atoms in O are variables sccurring
in I orin A,

vi) vartables which are left terms of unification atoms in I cannot occur
in O and i B,

vii) varighles which are left terms of unification atoms in O cannot occur
in B.

Definition 2 A FGHC unit clause is a clause in strong normal form whose
body is empty. Unit clawses are represented by formulas hawving the form

A:—TI|0.

Any “reasonable” FGHC program can be transformed into an equivalent
program in strong normal form. Condition i) defines FGHC programs in
normal form [Furukawa 87). Any FGHC clause

is transformed into the clause in normal form
(X, X)) —Xi=t,. ... Xe=1t,GC1,....Cm|Br,..., B,

where X;,..., X, are distinct variables not occurring in the original clause.

Programs satisfying conditions i1} to vii) can be obtained by the nor-
malization procedure, which performs the following transformations:

a) If there exist atoms of the form t; = t;, where ¢; is not a variable,
perform the unification of t; and t;, which, If succeeding, results in a new
set of unification atoms, which replace the original one.

b) If the guard (the body) contains two atoms X =t; and X ={;, one
of the atoms is replaced, if it is possible, by the result of the unification of
tl El.ﬂd fg.

¢) If there are two atoms X = t; and X = ¢;, such that the first occurs
in the guard and the second occurs in the body, X = #; is replaced, if it is
possible, by the result of the unification of #; and 5.



d) If the guard contains an atom X =1y, such that X does not occur
in the head, and there exists at least another atom Y = t; in the guard.
such that X occurs in tp, then delete the atom X = t; and replace all the
occurrences of X by t.

e) If the body contains an atom X = t, such that X does not occur
neither in the head nor in the guard, then delete the atom X = ¢ and
replace all the occurrences of X by t.

f) If a non unification atom b in the body contains an oceurrence of a
variable X and there exists an atom X = t either in the guard or in the
body, the occurrences of X in b are replaced by t.

The transformation steps are executed in the specified order, When no
transformations are applicable, we obtain a clause in strong normal form

A:—Il0 — B.,

where I is the guard, O is the conjunction of the unification atoms in the
body and B is the conjunction of the remaining atoms in the body.

Clauses which cannot be transformed in strong normal form (because of
a unification failure in steps a), b) or ¢} or because step d} cannot be per-
formed) are clauses in which either the guard or the body would always fail.
These clauses can be disregarded when defining the success set semantics.

If we do not take the commitment rule into account, pure HCL pro-
grams can be viewed as a special class of FGHC programs, namely those
having empty input guards. This corresponds to the fact that HCL has no
constraints on the unification, and, therefore, no cansality relation between
input and output unification.

4 Towards a notion of model for FGHC pro-
grams

The first relevant step in the definition of the semantics is the choice of a
suitable interpretation structure. In the case of HCL, the semantics is usu-
ally based on Herbrand interpretations [vanEmden 76], [Lloyd 34]. We will
now show, by means of some examples, why this choice is not satisfactory
in the case of FGHC programs.



Let us first consider the program in Example 1 again, which is in strong
normal form. Its standard Minimal Herbrand Model semantics is

M = {p(a,b),p(a,c)}.

M seems to model correctly the behaviour of ground FGHC goals, In fact,
both the goals 7 — p(a, b). and 7 — p(a, ¢). are refutable in FGHC. However,
M does not allow us to predict the behaviour of non-ground FGHC goals.
For example, the goal 7 — p{ X, ¥}, has two instances in M, vet it 1s not
refutable. This example shows that. because of constrained unification,
non-ground completeness gets lost, i.e. it is not true any more that if a
non-ground atom F has an instance F, in the minimal model, then there
exists a refutation for 7 — F., which computes an answer substitution ¥,
such that o = A = 1.

It is worth noting that, in general, FGHC is not even ground complete,
if body atoms contain local variables, i.e. variables which do not ocecur in
the clause head or in the input guard.

Example 3
P(X): —X = alg(¥).
g(¥Y): =Y = bltrue.

The minimal Herbrand model is now {p(a), g(b)}. However, the ground
goal 7 — pla). is not refutable in FGHC.

We can now note that, in example 1, the incompleteness comes from the
fact that suitable values for either the first argument or the second argument
of p must be provided as inputs, in order to satisfv the suspension rules.
This extra-information must be represented in the model. In [Levi 85|,
[Levi 87] this information was represented by functor annotations. We will
use here the notion of guarded atoms, which are represented by an FGHC
syntax. Our first definition of guarded atom is the following. A guarded
atom is a formula

A:-IL

where 4 is a possibly non-ground atom and I (the input guard) is a con-
Jjunction of unification atoms, such that each variable oceurring in A is



bound to a ground term by one unification atom in J.
A model of the program in Example 1 can now be defined by the fol-
lowing set of guarded atoms:

(p(X.B): =X =a,pla,Y): =Y =}

This model allows us to predict that the goal 7 — p(X,Y"). will fail (since
none of the input guards is satisfied) and that the goal 7 —p(a,Y’). has one
potential computed answer substitution (since the input guard of one atom
in the model is satisfied).

The present notion of guarded atom does not allow to model FGHC
programs which receive a partially determined data structure and compute
some data structure component, as shown by the following program.

Example 4
g¥): =Y = fIX)|X =a.

A model like {g(¥) : =Y = f(a)} would not in fact be correct, since it
would have a too strong input guard.

We need therefore a more general notion of guarded atom, allowing
output guards as well. For the sake of simplicity, output guards will be
used to represent any data structure computation. A guarded atom is now
a formula

A =IO

where A is the application of a predicate symbol of arity k to k distinct
variables, I and O are conjunctions of unifications atoms, satisfving the fol-
lowing condition: each variable occurring in A is either bound to a ground
term by a unification atom in [ or in O, or is bound in I to a non-ground
term ¢, such that all the variables in t are bound to ground terms by unifi-
cation atoms in O.

According to the new definition, the model of the program in Example
4 is now {g(¥): =Y = f(X)|X = a}.

The current definition of guarded atom interpretations (guarded inter-
pretations) is the exact counterpart of the standard notion of Herbrand in-



terpretations in the HCL case. Models defined as Herbrand interpretations
do not allow a precise characterization of the set of answer substitutions
computed by a non-ground goal computation. The same problem arises in
FGHC, as shown by the following example.

Example 5
plX.Y): =X = a|true.
pX.Y): =X =3|Y =

The guarded atom model (guarded model) M1 is

(PX.Y): =X =a|Y =a,
(X, Y): —=X =alY =),
p(X,Y): =X =b|Y = b}.

This model could sugrest that the goal ? — p(a, X). has two potential
computed answer substitutions, i.e. (X = a) and (X = b), while this is not
the case, since the refutation does not compute any answer substitution.

As already noted, the same problem arises in HCL. This problem was
solved in HCL, by defining interpretations as sets of non-ground atoms
[Falaschi 88a]. The meaning of an atom like p(X,a) in the model is the
following. Declaratively, ¥X.p( X, a) is valid. Operationally, the goal 7 —
p(X,Y) has a refutation computing the answer substitution (Y = a).

The same solution can be adopted in our FGHC interpretations, leading
to the final definition of guarded atoms as FGHC unit clauses, as defined
in the previous Section.

The new guarded model of the program in Example 5 is now

M2={p(X.¥): -X =a.p(X.V): —X =b

Y = b}

From this model we can infer that the goal 7 — p(a, X'). will succeed with-
out computing any answer substitution and that the goal 7 — p(h. X). will
succeed computing the answer substitution (X = b).

It is worth noting that M1 is not actually a model of the program,
because the model-theoretic semantics will be defined so as to provide in-



terpretations which contain the “least instantiated information” derivable
from program executions.
Let us consider some more examples.

Example 6
XYV Y =X|X=a

This is an example of a non-left-linear program. These programs were
not modeled correctly by the semanties given in [Levi 87]. The guarded
model 1s now

[p(X,Y): =Y = X|X =a},

which shows that the goals 7 — p( X, V)., ? —p(a,Y). and 7 — p{X, a). will
fail, while the goal 7 — p(a, a). will succeed.

It is worth noting that, in all the previous examples, the model is exactly
the same as the original FGHC program. This corresponds to the fact that
the programs considered so far are all unit clauses, We will now consider
non-unit clauses.

Example 7

p(X}): =X =f(Y)|T =a

g( X)) : —truelX = f(Z).

rMX,Y): =X =alY =bh

s(X,Y,2Z): —trueltrue — p(X),q(X), r(Y, Z).

The first three clauses are unit clauses, hence their denotation in the
model is the same as the program. The denotation of s is the guarded atom

sIXNY.Z): -Y =a|X = f(a),Z =0

Example 8
plus(X,Y,Z): =X =0|Z =Y.
plus(X,Y,Z2): =X = X1+ 1|2 =2Z1+1 « plus(X1,Y, Z1).

This is an example of recursive program and the model contains infinite
guarded atoms.

_.'I_n_



{pfus{l’, }",E} =X =0Z=Y,
plus( X, Y, Z): -X =12 =Y +1,
plus(X,Y,2): =X =2Z=Y +2,...}

Example 9.1

pX,V): =X = [X1|V1]|true — (X1, YLY).
q(X,Y,Z) : =true|Z = [X|X1] — r(¥, X1).
n(X,V): —X = [X1[Y1]|¥ = [X1].

SX, V) X =[X1V1]]¥Y = [B|Y2].

HX,Y): —true|true — p([aj.X],Y), s(¥Y, X).

This program is taken from [Furukawa 87], where it is used to discuss

the correctness of unfolding transformations.
The denotation of g, p and ¢, which are defined by non-unit clauses are

g X, Y, 2): =Y = [X1|Y1]|Z = [X|X1],
p(X.V): =X = [X1, X2V1]|¥ = [X1]X2],
HX,Y): —truelY = [alb], X = [B]Y1],
respectively.

Example 9.2

1t is the same as the program in Example 9.1, apart from the clause for
g, which is replaced by the following clause:

o XY, 2): =Y = [X1|]Y1)|Z = [X|X1].

The denotation of p and q is the same we had in Example 9.1. The new
denotation of t is now

{HX.Y): =X = [X1{Y1)|]Y = [a|b], X1 = b,
HX,Y): =Y =[X1|X2|X1=a,X2=5X = [B|¥1]}

The semantics of t iz different, since the goal 7 — (X, Y)., with no input



values, fails because of 2 deadlock. It is worth noting that the denotation
of predicates p and s is the same in the two programs. However, ¢, which 1=
defined in terms of p and s, has a different semantics. This means that the
operational semantics is not compositional, i.e. the semantics of a predicate
cannot always be obtained as composition of the semantics of the predicates
which oceur in the bodies of the clauses which define it. These examples,
related to the deadlock, will be reconsidered later, when discussing the
completeness of the operational semantics and the correctaess of unfolding.

It is worth noting that the models we have defined are (possibly infinite)
sets of unit clauses, as is the case of models introduced in [Falaschi 88a] for
pure HCL programs. Due to the presence of variables in the interpretations,
nonrecursive programs have always a finite model, even if the interpretation
domain is infinite (i.e. if the program contains at least one functor whose
arity is = 1). Models of HCL programs can also be viewed as {possibly
infinite) sets of FGHC unit clauses with empty input guards.

5 The model theoretic semantics

As already mentioned, the interpretation domain is a set of possibly non-
ground atoms. If the language is defined by the triple < D, V, P > {funec-
tors, variables and predicates), Ty (the set of terms) is the free D-algebra
on V.

< is the preorder on terms, defined by t; < t; iff .4y, = &g, where ¢
is a substitution (i.e. a mapping from variables to terms). The symmetric
closure of < is an equivalence relation on terms, called variance (~).

Definition 3 Qur interpretation domain U is defined s Tpevy/a, t.e. the
quotient set of Tpvy with respect to the variance relation.

The standard Herbrand Universe is the subset of U/ containing ground
terms only. The preorder < on Tpy) induces a partial ordering relation on
Tpyvy~ (and therefore on U). For the sake of simplicity, the elements of v
will have the same representation of the elements of Tp(yy (the meaning of
F(X.9(Y)) € U is that the equivalence class of f(X,g(Y")) belongs to 7).
The partial order on U will also be denoted by <.

12 —



Definition 4 The interpretation base H is the set of all the guarded atomas
in strong normal form

o Xi, ... Xa): =10,

such that p € P, p has arity n, and [ and O are conjunctions of unification
atoms of the form v; = t,, satisfying the conditions given in the previous
Section, where v; € V', t, € U,

Definition 5 A guarded interpretation is any subset of H.

The set of all the guarded interpretations {J} is partially ordered by
set inclusion (C). ({J},Z) is a complete lattice, i.e. every set of interpre-
tations has a greatest lower bound and a least upper bound. % (the empty
interpretation) and H are the bottom and top element of the lattice.

Definition 6 A guarded model of an FGHC program w is & guarded in-
terpretation J, such that all the cleuses in w are true in J.

The definition of truth in a guarded interpretation is based on the notion
of most general guarded umifier (mgzu). We will first define the extension
of the standard most general unifier (mgu).

Definition T [Most General Unifier) A unit goal

q- F{th Tt ?tﬂ}

and o guarded atom

a:p(Xq,...,X.): =TO

are unifiable, iff the following conditions are satisfied. Let A be the substi-
tution {-YI =1,.. *?-X-n = tn}'

i) [y = u 15 a set of unification atoms which can be evaluaied fo true
without inatantiating any variable in g,

ti) the normalization of Oy, 13 a substitution 0.

If g and a ere uniflable, their most general unifier {mgu) is the subats-
tution .



For example,

- the goal g( f(W)) and the guarded atom
@Y): =Y =f(X}|[X =a

are unifiable and their mgu is (W = a).

- the goal p(a, W) and the (non left-linear) guarded atom
pX,Y): -V =X[X=a

are not unifiable (since the evaluation of Iy = (W, a) would bind a variable
in g).

The above definition of unification (and mgu) reflects FGHC constrained
unification. It is worth noting that, if the guarded atom has an empty input
guard (i.e. it is a HCL atom), the new definition reduces to the standard
one.

Definition 8 (Most General Guarded Unifier) A unit goal

g:plty,... ta)

end a guarded atom
a:p(Xy,.... X)) : =10

are guard-unifiable, iff the following conditions are satisfied. Let A\ be the
substitution (X =tq,...,Xa =1.).

i) the normalization of Iy cun be decomposed in o set of unification
atoms . which can be evaluated to true, without instantiating eny veriable
in g and a set of unification atoms (substituiion) p,

11} the normalization of Oy, 18 & substitution .

If g and a are guard-unifiable, their most general guarded unifier (magu)
is the pair of substitutions (j1, 7).

It is worth noting that if g and a are unifiable (with mgu J), then they
are also guard-unifiable (with mgzu (®,7}).



For example,

- the goal p(a, W) and the guarded atom
p(X.Y):-Y = XlX=a
are guard-unifiable and their mggu is the pair

(W =a), ®).

- the goal p(b, W) and the gnarded atom
plX,Y): -V =X|X=a

are not guard-unifiable (since b = a, in the output guard, fails).

The above definitions can be extended to the guard-unification of tuples.

Definition 9 {Most General Synchronous Unifier on tuples) An n-tuple af
goals

':gl!' "19'!1}

and an n-tuple of guarded atoms

{311 -v-1ﬂu}

are s-unifiable iff the following conditions are satisfied.
Let

,)'.1 = {#l-ﬂl)\ -......,:'l..-. = Iijhlﬂ.,ﬁﬂ}

be the mggu's computed for cach (g, a;).

If for each equational atom X = t;, which occurs in a i, there exists
an equational atom X = t;, osccurring in a ¥; (i # j/, then the unification
atom X = t; is removed frem p; and the atom &, = t; i3 composed with U;.

The most general synchronous unifier (mgsw) 1s the substitution obtained
by composing the resulting v;'s.



For example, the pair of goals (p(¥), ¢(W)) and the pair of gnarded
atoms

(p(X1): =X1 = fIX2)|X2 = a,q(Y1): —truelY'1 = f(Y2))
are guard-unifiable. The separate mggu's are

(W = f(X2)),(X2 =a}) and
(B, W = f(Y2)).

Hence the composed mgsu is (W = f(a)).

Definition 10 (Most General Guarded Unifier on tuples) An n-tuple of
gols

(g1s---18n)

and an n-tuple of guarded atoms
{ﬂl- L 1-"-111:'

are guard-unifiable iff the following algorithm teminates successfully.

1. Compute the composition A of the mgu's of all the pairs which are
unifiable and apply A to the remaining goals.

9. Compute the compesition u of the mgsu’s of all the pairs of tuples
which are s-unifiable and apply it to the remaining goals.

3. For cach permutation p of the remaining goals and guarded atoms

{91.--- N TYR

(@yyeens @)

let (97, a7) be the mygu of ¢; and a;, obtaned by applying the mggu’s of the
previous pairs in the permutation and let (97,07) be the normalization of
the composifions of the single magu’s.

The most general guarded unifier (mggu) is the set of pairs of substitu-
tions, obtained by normalizing (U7, A.p.a?) for each permutation p.



For example, the pair of goals (g(X),r(X)) and the pair of guarded
atoms

(r(Y1): =Y1= f(g(¥2))|Y2 =aq,
q(Z21): =21 = f(22)|22 = g(a))

are guard-unifiable and have two mggu's:

(X = f(2)),(Z = g(a)}) and ({X = flg(¥}}). (¥ = a)).

We can now give the definition of truth of a guarded clause in a guarded
interpretation.

Definition 11 (Truth of a guarded clause in a guarded interpretation)
Let ¢ be a guarded clause and J be a quarded interpretation.
i) if ¢ is @ unit clause, then ¢ is true in J iff c € J.
1) if ¢ has the form '

A: =10 — By,...,B,,

c is true in J iff
for every n-tuple (4],..., 4"} of guarded atoms in J, such that (By,...,B,)

and (A},..., ALY} are guard unifiable, then for each

(th,9;) = mggu((By,...,B.), (41,..., 45))

the normalization of

A —IT‘J.E],:,D,E?-;
belongs to J.

We will now give a set of theorems on guarded models, whose proofs
can easily be derived from the proofs of the corresponding theorems in

[Falaschi 38a].

Theorem 1 [Model intersection property) If L is a non-empty set of quarded
models of an FGHC program w, then L i3 a guarded model of w.



Theorem 2 The class of guarded models is a complete lattice.

Theorem 3 (Ezistence of the minimal model) For every FGHC pragram
w, there ezists o minimal model.

Definition 12 (Model-theoretic semaniics) The model-theoretic semantics
Mu(w) of an FGHC program w is its minimal model.

It is easy to show that the models of the previous Section, defined by
means of operational arguments, for the programs in Examples 5 to 9.1,
are indeed minimal guarded models. Unfortunately, the semantics given to
the program in Example 9.2 (where some goal execution results in a dead-
loek) is not the minimal model, which is instead identical to the minimal
model of the program in Example 9.1, The model-theoretic semantics is, in
fact, compositional and is forced to provide the same semantics to the two
programs. It is worth noting that the “operational model” of the program
in Example 9.2 is not even a model, since it does not contain the minimal
model.

6 Fixpoint semantics

In this Section we define a continuous transformation on guarded interpreta-
tions, whose least fixpoint is shown to be equivalent to the model-theoretic
semantics.

Definition 13 (Trunsformation on guarded interpretations) Let w be an
FGHC program. The mapping T on the set of guarded interpretations of w
i3 defined as follows.

T(J)={A:=I' 0 € H, such that

34 : =J|0 — By,...,B. inw,

34L,..., 4L €,

3(d,92) = magu((Bi,..., Ba), (A}, ..., AL

I' is the normalization of I.U,,

O is the normabization of O.92}.

The following theorems state relevant properties of T
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Theorem 4 T i3 monolonic and continuous.
Theorem 5 There exists the least fizpoint of T,

fp(T) = | JTH®) =T Tw
W

Definition 14 {Fizpoint semantics) The fixpoint semantics My(w) of an
FGHC program w is the least fizpoint of the transformation T associated to
w.

The following theorems state the equivalence between the model-theoretic
and the fixpoint semantics.

Theorem 6 A guarded interpretation J is a guarded model iff T(J) C J.

Theorem T {Equivalence of model-theoretic and fizpoint semantics) For
every FGHC program w, Mu(w) = M{w).

The above theorems allow us to incrementally compute the minimal
model by a bettom-up program execution. Let us consider a few examples.

Example 7

pX): =X = fiY)]Y =a.

g( X)) —truelX = f(2Z).

M, Y):=X=al¥ =bh

s(X,Y, Z) : —trueltrue « p(X), q(X), r(¥, Z).

TH®) =

{plX): =X = f(Y)IY =a,
o(X) : ~true|X = f(Z),
rnX.Y): -X =aj¥ = b}.

T &) =

{p(X): ~X = f(Y)Y = q,
g(X) = ~truelX = f(Z),
XY : =X =qalY =45



(XY, 2): =Y =a|X = fla),Z =h}.
T(®) = T*(®) = M.

Example 0.1

p(X,Y): =X = [X1j]¥1]|true — ¢(Y1,Y1,T).
g(X,Y,Z): —true|Z = [X|X1] — r(¥Y, X1}
rX,Y): X = [X1|V1]]Y = [X1].

s(X.Y): —X = [X1|YV1]|Y = [bj¥2].

HX,Y) s —trueltrue — p([a]X],¥). (¥, X).

TY®) =
(r(X,Y): =X = [X1|¥Y1]]Y = [X1],
s(X,¥): X = [X1¥1}]Y = [bl¥2]}.

TH®) =

(r(X,Y): =X = [X1Y1]Y = [X1],
s(X,Y): - X = [X1|¥1]lY = [0} 2],

ol X.Y,Z): =Y = [X1|¥1]|Z = [X[X1]}.

TH3) =

(MX,¥): —X = [X1|Y1|¥ = [X1],
S(XY) =X = [X1Y1)|¥Y = [8Y2],
dX,Y,Z): =Y = [X1|Y1]|Z = [X|X1],
X, V) —X = [X1,X2[Y1)|Y = [X1]Xx2]}.

T4(®) =

(r(X,Y) : =X = [X1j¥1]|Y = [X1],
S(X.¥): =X = [X1YLJY = b]y2],
o(X.Y.2): —Y = [X1¥1)|Z = [X|X1],
PX.¥): =X = [XLX2[V1]]Y = [X1]X2],
HX,Y) : —true|Y = [a|bl, X = [b]Y'1]].

TH®) = T(®) = M.



As already noted, the program in Example 9.2 has exactly the same
maodel.

Exampie 10

p(X,Y): =true|Y = h(X) ~ q(X),r(X).
g(X): =X = FIY ) |true — ¢(Y).

X)) : =X = flg(Y))|true — s(Y).

tY) : —truelY = g(a).

s(Y) : ~true|l = a.

TH®) = {
HY) : —true|¥ = g(a),
(YY) : —true|Y = a}.

(%) = {

(Y} : —iruelY = g(a),

s(Y): —truellY = a,
r(X):=X = flg(¥YNY =a,
d(X): =X = Y)Y = 9(a)}.

TH®) = {

t(Y) : —true|t” = g(a),

(YY) —true|t = a,

rMX): =X = flg(Y )Y = a,

g(X): =X = fiY)|Y = g(a),

pX,Y): =X = f(Z)|Z = g(a),Y = h({f(g(a)}),
P(X.¥): —X = f(g(Z))Z = a,Y = h(f(s(a)))}.

TY(®) = T &) = M.

It is worth noting that, because of step 3 in the definition of guarded
unification, the predicate p has two atoms in the minimal model even if
each predicate is defined by a single clause,
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7 Soundness and completeness properties

The following theorem shows that the operational semanties of FGHC is
sound with respect to the Model-theoretic semantics.

Theorem 8 (Soundness) Let w be an FGHC program, let G be a unit goal
and assume that 7 — G. has a refutation with computed answer substitution
9. Then there ezist a guarded atom

A -I0C
in Mau(w) end o substitution
A =mgu(G,A: =TI0),
such that Mg = d|a.

As aiready noted, the operational semantics is not complete, as shown
by the deadlock example. The incompleteness is, however, related to dead-
locks onlv. In fact, if the operaticnal semantics is changed so as to avoid
suspensions that would cause deadlocks, the following theorem holds.

Theorem 9 (Completeness) Let w be an FGHC program, let G be a unit
goal and assume there exist o guarded atom

A:-IO
in Mm(w) and a substitution
A=mgu{G,A: =10},

then 7 — (. has @ refutation with computed answer substitution ¥, such that
Alg = dle.

The complete operational semantics makes the implementation more
complex, since it requires a run-time deadlock detection. However, there
arc several arguments to support it.

The first argument is related to the declarative semantics. Tt is possible
to give a declarative semantics modeling the failure of deadlocks, following
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the construction sketched in [Levi 83]. However, the resulting semantics is
very complex and does not have any longer the structure of the standard
semantics of logic programs.

A second argument comes from the language features point of view,
since deadlock solution can be viewed as a synchronous communication
ATNOTE Processes.

The strongest argument, however, is related to program transformation,
and, in particular, to the unfolding rules. This issue will be discussed in
the next Section.

8 Unfolding

Unfolding is an elementary program transformation rule, which plays a
relevant role in any program transformation system. It corresponds to the
copy rule, which is sometimes used to define the operational semantics of
procedures in any programming language. According to the copy rule,
each occurrence of a procedure call can be replaced by an instance of the
procedure body, with the suitable parameter bindings.

Any language should then be equipped with a safe unfolding rule, i.e.
a rule which preserves the semantics.

A set of unfolding rules for FGHC was given in [Furukawa §7]. These
rules are quite similar to the rules we give in the following. The relation
between the two sets of rules will be discussed later in this Section. Our
risles are based on the concepts of mgu, msegu and mgru.

Definition 15 {Unfo[afing rules ) Given an FOHC non unif clonse
c:A: =IO~ Gy, ..., G

and en FGHC program w, the unfolding of ¢ in w is o set of clauses gen-
erated according to the following rules.

Rule 1 (unifiable goals). If w contains the clouses

A;: =L|0O; — Bi.(t £ n)
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such thet G, is unifiable with 4; : —L|O; with mgu 9;, then generate all the
clouses which are the normalizations of

A ‘_I|D1ﬁi =Gy, 1G_f—11nEi1Gj+11" oy G

Rule 2 {s-unifiable tuples of goals). For the sake of ssimplicity, we assume
that the goals in the body of ¢ are possibly reordered s0 as to make the rule
applicable fo the first m goals. For each tuple of clauses in w

{.-11 : —I1|G1 o E1.,“.1
cos A 1 =IL|0,, — B,.),(2<m <n)

such that the tuple of goals (Gy,...,Gxn) 13 s-untfieble with
E-‘il : —I;IGl,. v ,.'Lm : —Im]Dm}
with mgsu ¥, then generate wll the clauses which are the normalizations af

A M ""Il{jq.ﬂ t_Bl.‘...,‘Bm‘ Gm.'.'l,....,Gn.

Rule § (guard-unifiable tuples of goals) The rule is applicable only when
neither Rule I nor Rule 2 are applicable. For each tuple of clauses in w,

(.-lt M '-I1|G'| — B-].,...,
..1}1“ e ﬂlon — Bﬂ.],

such that the tuple of goals (G,,...,G,) i3 gquard-unifiable with

{."11 H ""I]iﬂ],gi-i L] 1&‘1n H "'Irl.lc}l'l.:“

let (pi. ;) be the mgsu of Gi and A : —L|0. Generate all the clauses

which are the normalizations of

A: ‘_I:Filgtﬂf == Gl1"- 1G1'-—11 Bf1G1'+1!“‘ !lG!'l'
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Rules 1. 2 and 3 clearly reflect the definition of mggu used in the declar-
ative semantics. The differences with the rules in [Furukawa 87] are the

following:
i) Our rule 2, which reflects synchronous unification of tuples, is not

used.
ii) Our rule 3 can only be applied if the output guard of the clause is
empty.

Before discussing the rationale for our extensions, let us give a few
examples.

Example 9.1 (partial)

o X,Y,Z) : —true|Z = [X|X1] = r(¥, X1).
r(X,¥): —X = [X1¥1]|Y = [X1].
s(X,7): =X =[X1Y1]|]Y = [5¥2].
HX,Y) : —true|true — q{a, X,Y), s(¥, X).

The clause for ! can be unfolded first at the call of ¢ (by rule 1), gener-
ating the clause

HX, V) : —truel¥ = [a: R4] — r(X, R4), s([al R4}, X ).,

which ran now be unfolded at the call of s (by rule 1), generating the
clause

HX,Y): —truel¥ = [a: R4], X = [bZ5] — r([blZ3], R4).,

which can now be unfolded at the call of r (by rule 1), generating the
unit clause

HX,Y) : —truell = [ald], X = [blZ35].

Note that if we start by unfolding the clause defining g, we obtain (by
rule 3) the unit clause
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W X.Y,Z): =¥ = [X1|¥V1)|Z = [X|X1].

The first unfolding (by rule 1} of the clause defining t cannot any longer
be executed. However, we can use rule 2 to unfold concurrently the calls of
q and s, obtaining the same unit clause we obtained for t in the previous
unfoldings sequence. It is worth noting that the second unfoldings sequence
would not be possible with the rules in [Furukawa 37], since the clause for
g would not be unfoldable.

Example 10 (partial)

p( XY} =true|Y = A{X) — g(X),r(X).
g{X): =X = f(YV)|true — ¢(Y).

r(X): =X = f(g(Y))|true « s(Y).

The clause for p cannot be unfolded by rules 1 and 2. We can then
apply rule 3. which generates the clauses

YY) : =X = f(Z)|Y = h(f(Z)) +~ r(f(Z))- and
p(XY): =X = flg(ZNY = h(f(9(Z))) — o(f(g(Z))).

Again, this unfolding would not be possible with the rulesin [Furukawa 87],
since the clause for p contains a non-empty output guard.

It is worth noting that if the FGHC program contains clauses, whose
input guards are always empty (i.e. it is a HCL program), rule 1 is always
applicable, and we obtain the standard HCL rule.

The unfolding of the program in Example 9.1 shows that our unfolding
rules are compositional, 1.e. we can safely use unfolded clauses in the un-
folding of other clauses. This property holds for any FGHC program, as
shown by the following theorem.

Theorem 10 {Compositionality of unfolding) Let w be any FGHC program

and let c.c1....,cn{m = 1) be clauses in w, such that one of the unfolding
rules allows to unfold ¢ using the clauses cy,...,tm, computing the set af
clauses {c*,...,c*}.



Then if any clause ¢; i3 unfolded to {c},... .,cf‘}, then ¢ can be unfolded
with the clauses

1 ki
ClyerssCimlsCipr--sCf 1Cidlas=nyComy
o 1 k
obiaining ezactly the clauses {c',...,c"}.

Our unfolding rules can always be applied to any non unit clause. In
fact. if no rules are applicable, the body of the clause will always fail and
the clause can be deleted. The (possibly infinite} application of unfolding
generates a (possibly infinite) set of unit clauses. This allows us to define
the semantics of any FGHC programs in terms of unfolding, as shown by
the following definition.

Definition 16 {Unfolding semantics) The unfolding semantics M,(w) of
an FGHC program w is the set of guarded atomas (unit clauses), which can
be obtained by unfolding the clouses in w.

It is easy to show that the bottom-up repeated application of the trans-
formation T is exactly an unfolding sequence. Hence the following theorem
holds.

Theorem 11 {Equivalence of firpoint and unfolding semantics) For any
FGHC program w,
Mul(w) = Mi{w).

The correctness and completeness of unfolding are a straigthforward
consequence of the above theorem. The rules in [Furnkawa 87) are therefore
also correct, while thev are certainly not comnplete, since they cannot always
be applied to obtain unit clauses only.

Let us now consider the problem of deadlocks again. As shown by our
Example 9.1, our unfolding rules can transform a deadlock-free program
into a program which canses a deadlock. The two programs are equiva-
lent from our semantics point of view, even if they are different from the
standard FGHC operational semantics viewpoint.

As we have noted several times, a good semantics (and a good unfolding
rule} should always be compositional (and the unfolding rule should be



complete). Hence programs such as those in Examples 9.1 and 9.2 cannot
be given a different semantics. Unfolding, however, allows us to look for an
alternative ta the modification of the FGHC semantics. In fact, we could
look for models, where the program in Example 9.1 has the semantics of
the program in Example 9.2. The program in Example 9.1 is a deadlock
reducible program, according to the following definition.

Definition 17 (Deadlock reducible programs) An FGHC program w s dead-
lock reducible iff there exists a sequence of unfoldings (using rules I and J
only), which reduces w to a program which couses deadlocks.

If deadlock reducible programs could statically be detected and ruled
out, we could then provide a different declarative semauntics (and unfolding
rule), which could make complete the standard operational semantics of
FGHC. This problem has still to be worked out. It seems, however, that a
very simple modification of the definition of mggu (inhibiting synchronous
unifications) is all we need. As a consequence, the unfolding rule 2 would
not be needed any longer. '

Let us finally note that our semantics does not model intermediate val-
ues computed by partial computations. Therefore, programs which have
the same input-output behavionr and compuie different intermediate val-
ues have exactly the same semantics. As a matter of fact, this is the
real difference between the programs in the Examples 9.1 and 9.2, Our
completeness results show that, from the operational semantics viewpoint,
intermediate partial values are only relevant to the case of deadlocks and
deadlock reducible programs.

9 Open problems

One relevant open problem is, of course, finding a solution to the dead-
lock problem and fixing the incompleteness associated to deadlocks. There
are, however, other problems which must be solved in order to obtain a
satisfactory semantic characterization of FGHC.

The first problem, as already mentioned, is the formal characterization
of the set of finite fallures. This would allow to model the commitment and
conld be useful in validating program transformation rules, which should



preserve both the success and the finite failure set. A solution can be
found by generalizing the construction in [Falaschi 88b] to the case of AND-
parallel computation rules.

The second problem is related to the semantics of logical perpetual pro-
cesses [Lloyd 84]. In fact, most interesting FGHC programs define nonter-
minating processes which produce and/or consume infinite data structures
(streams). Because of non-termination, the standard denotation of these
prograims is empty.

The semantics of perpetual processes was studied in the case of pure
HCL. There exists an elegant operational semantics, based on the notion
of atoms being computable at infinity (Lloyd $4]. There are also some pro-
posals for the declarative semantics [Lloyd 84], [Levi 86], which, however,
make the operational semantics either not complete or not sound.

The last interesting problem, not strictly related to FGHC, is trying to
apply guarded models to define the semantics of other concurrent logic lan-
guages, such as PARLOG [Clark 86] and Concurrent Prolog [Shapiro 86].
If this will result to be possible, as we strongly conjecture, the semantics of
all the major concurrent logic langnages would be expressed in terms of sets
of FGHC unit elauses. This could lead us to argue that the synchronization
mechaniem of FGHC is, on one side, flexible and easy to implement, and,
on the other side, more primitive and simple than those proposed for the
other languages.
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