ICOT Technical Report: TR-339

TR-339

An Axiomatic Verification Method for
Synchronizations of Guarded Horn
Clauses Programs
by
M.Murakami

Fehruary, 198§

©1988, ICOT

Mita Kokusai Bldg. 21F (03) 456-3191—5

I CDT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

in Axiomatic Verification Method for
Synehronizations of Guarded Horn Clauses Programs

Masakl Murakami

Institute for New Ceneration Computer Technrology.
Mita Xokusai Building. 21F.
4=24, Mita 1-Chome, Minato=Ku, Tokyo 108, Japan

ABSTRACT: Guarded Horn Clauses (GHC) Is a parallel programming [anguage based
on Horn logie. This paper proposes an axiomatic verification methed for
partial correctness of GHC program as Hoare logic. The system presented here
can prove properties of the GHC program which are satisfied by synchronization
mechanisms and cannot be proved by methods for pure Horn logie programs.

1. introduction

During the last few years, several parallel programming languages based on Horn logie,
such as PARLOG [Clark 86], Concurrent Prolog [Shapiro 86] and Guarded Horn Clauses (GHC)
[Ueda 85] have been investigated, These languages are designed to represent the notions
of processes and to provide mechanisms for communication and synchronization in a logic
programming framework. In these languages, Horn logic is extended to deseribe these
notions. [n the case of GHC, a program consists of a finite set of Horn clauses with a

commit operator., .
Thus verification methods for pure Horn logic programs such as [Kanamori 86] are not

enough to prove properties of prograas which econtain such synchromization operators. For
exanple, Takeuchi [Takeuchi 86] introduced an example of a GHC program top{K. Y). [t
satisfies the output condition Y = [a. a] for the input condition X = [al by the

control of synehronization mechanisms. [t is impossible to show that top satisfies

this specification by using verification methods for pure Hora logiec programs. Thus the
semantics of synchronizations are expected. Results on the formal semantics of parallel
languages base on Horn logiec have been reported in several sources [Ueda 86, Saraswatdf,
87, LaviB7, Takeuchids, Maherd7]. However. most of them are based on operational or
fixedpoint approach. It is too complicated to apply these semantics to prove properties
of given prograss.

This paper adopts the axiomatic approach to give a logical framework as a verification
method for the properties of GHC programs which are satisfied by synchronizations. A
Hoare-like axiomatic system for proving the partial eorrectness of programs is sedified
and extended for GHC programs.

In this paper., several restrictions are assumed to GHC programs for the proof of
properties. Most of them are for simplicity. Programs which do not satisfy the
restrictions can be verified by a straightforward extension of the method presented in

this paper. However some of the restrictions are essential. One of the essentlal
restriction is that the guards of clauses must be flat. However flat GAC is considered
to be enough useful., Thus it is considered that there no problem to restrict the target
of our verification method to flat GHC programs.

Another essential restriction is that data-dependencies in programs can be decided
obviously. Namely it is assumed that for every occurrence of variables in the execution
of the program, it can be decided whether it occuers as an input variable or an output,
and for any variable which is shared between more than two processes. which process
instanciats the variable can be decided uniquely. These conditions are assumed because
that the dependencies are refered In the applications the inference rules of the systeas
presented here. [t is considered that the system presented here can be extended for the
verification of programs that the dependencies of data cannot be decided obviously by
introducing some annotations which denotes the dependencies that the programmer is
conscious of implicitly. Thus it is considered that the method of verification presented
here is not so rigid as the appearance.

2. Partial Correctness of GHC Programs
This section briefly introduces GHC and defines partial correctness for GHC.
2.1 Guoarded Horn Clauses

Guarded Horn Clauses (GEC) is a parallel logic programming language. For a set of
predicate symbols, PRED, function sysbol, FUN, and variable syabol, VAR. a program of
GHC conzists of a finite set of guarded eclauses. A4 guarded clause has the form:

H :- Bl,»+, Bn | Al -+, Awn

whers H is the head of the clause, H, B1,-+, Bn is the guard, and Al, =, Am is the
body. Note that the clause head is included in the guard. Each Bi{t = 1 = n) has the
form “true or T = S, where T and S are in the set of terms, TERM, constructed
from FUN and VAR. Each Aj(l = j = m) takes the form p(T1,~+Tk) or T = 3, where
p € PRED and Ti(1S1 =k) € TERM. H takes the form p(T1, -~ Tk). The operator |’
is called the commitment operator. A goal clause takes the form of a body part and is
denoted:

Gl, =, Gh

where each Gi (1=1=h) is called a goal. For the computation rule of GHC programs,
see [Ueda 85]. The set of guarded clauses Dba in following defines one of the
programs which are called Brock-Ackermann's anomaly [Takeuchi 86].

Dba:
top{ln, Out) :- true | s(In, Mid, Out). plusl{Qut, Mid), ===———- (1)

s{ix. ly. Out) :- true | dup(lx, Ox), dep(ly. Oy).
merge(Ox, Oy, Oz}, popllz, Qut), =—-——-==(2)

pop{[A, BI_], 0) :- true | 0 = [4 B). = =——mmm—————- (3)
dup([AIT], 0) :- true | O = [4, Al — (4)

[A10ut], merze(lx, ly. Out). --{5}
[AlOut], merge{lx. Iy, Out). =-(&)

merge([AlIx]. Iy, 0} := true | O
serge(lx, [Ally]l, 0) := true | O

gerge(lx, []. 0) := true | Ix = 0. (1)
merge((], Iy, 0) := true | Iy =0. = smmemcme———— —(8)
plust{[AlIr], 0) :- true | Al = succ(d), 0 = [A1]. —————o- (9)

Consider the following goal 'top{[0], Out})” where O is an atom and Out is a
variable term. During the exeeution of this goal, the goal sueh as merge([0., 0], 0Oy,
0z) is invoked where Oy and 0z are variable teras. For this goal, the head part of (8)
does not match the goal, and (6) and (7) continue to suspend. Thus. only commitment to
{5} can make the execution proceed. Thus this program is controlled by the guard part.
Continuing the execution, only OQut = [0, O] is derived from top in spite of Out = [0,
s{0)] is also an answer in naive declarative sense.

2.2 Goal Forms and | Annotation

In the axiomatie approach to give semantics for conventional programming languages.
the partial correctness.of a program is represented in a formula like the following,

input condition {program} output condition

The partial correctness of GHC programs is represented in a similar way. Input
conditions and output conditions are predicates over the Herbrand universe comnstructed
from FUN. The semantics of these predicates are relations over the Herbrand universe. We
can use for example existentially quantified variables and negations to define the
predicates. Thus predicates for input/output conditions can be defined in more natural
and intelligible way than the definitions in GHC programs.

A expression representing a set of goal e¢lauses appears in the 'program’ part.

Def. | : goal form

Let D be a set of guarded clauses. The expression g : p(tl,--, tn) is said to be
a4 goal form where p is a n-ary predleate name which iz defined in D, tl, -, tn
are terms which are defined from FUN and VAR, and Var. "Var' is a set of neta variables
over TEEMS and Var M VAR = &.

In this paper. "variable means abstract variables appearing in goal forms. which
are denoted by lower case letters x, ¥, z, u, -~ which are not in VAR. Varlable

terms appearing during the execution of a program whieh are in VAR (and in TEEM) are

3._.

denoted by upper case letters U, ¥V, --. Elements of VAR appearing in clauses in D are
eonsidered as variables for convenience. In this paper, “term’ means an element of
TERM. A term containing an element of Var is called a "term form'. The set of term
forms constructed from Var, VAR and FUN is denoted as “Ternm'.

For a goal form g, an individual goal G is derived by applying a substitution X
¢ Yar — TERM. A goal form g can be considered to represent a set of goals 1gl as
follows.

lgl= {G|3T:Var —- TERM. G = Z g}

For example for g: merge{x. [y, ¥]. z) set of goals [g| is (merga(X, [Y.Y], I),
merge(l, [0.0]. W), merge(X. [0.0], [0,1,0]), merge((1], [0,0],[1).-] Mote that an
unsuccessful goal 1s Ineluded.

4 sequence of goal forms is called a goal clause form. A goal clause form represents

a set of goal clauses.
Partial correctness of a GHC program is represented by a formula which contains a2

top level goal clause between { and } .

Def. 2 : process form
Let DD be a set of guarded clauses, gl,-, gn be a top level goal clause form, then:

i) gl,, gn and each gi (l=i=n) are process forms.
ii) If g is a process fora and for some clause in D: H :- Al --, Am |
Bl, -, Bk, g can unify with H by the mgu &, then & BLl, . @ Bk

and esch & Bh (1=h=k) are process foras.
itiy If g is a process fors and for some g’ and I :Var — Term
ZEg =g, then g~ is a process form

In this paper, it is assumed that for any goal form at most one variable is
instantiated by the goal itself. The variable is called the output variable. It is enough
to consider that a goal form g represents a set of goals such that G = £ g and E
substitutes only a variable term to the output variable. Consider a top level xoal_c]ausa
form gl,», gn. For a variable x {not output) in gi which is instantiated by an
another process gj (i # j) during its exeecution, the process gj in which X appears
as an output variable is called the producer of x. In this paper, for every non-output
variable, its producer {s fixed and is not changed by L. For every clause in D: H:-
Al, =, Ak | B1, =, Bh and for any variable x which appears in B1, -, Bh and
does not appear in H, Al, --. Ak, the producer of X is [ixed in Bl. . Bh. Por a
goal form, g with output variable ¥ if g is wnifiable with H by mgu @ without
instantiating y. then ¥ is also said to be an output varfable of a goal clause form,

g Bl =, 8 Bh, These restrictions mean that data-dependencies in programs must be
decided obviously.

In the rest of this section } annotation is introduced. Consider the following

example. For a goal fora g. a set of all goal clauses which are deirved as sequences
of subgoals for some instance of g is not represented by a goal clause fora which is

—_— o -

derived by symbolle derivation of g on D in general. For example. in Broek-Ackermann's
anomaly, the subgoals of goals of the form top{x. o© ut) have the following form:

s{x, mid, out), plusl{out, mid). -———- ()

mid is never instantiated by the unification of the goal form and the head part
ginee it is instantiated during execution, and a goal with non-variable term does not
appear [n executlon of any goal in |top(x, out)l, in spite of the form of (#).

It is enough to consider that not only out but also mid is uninstantiated. In this
paper, a set of goal clauses which contains variables such as mid is represented by a
goal clause form with | annotation to such variables. The set of subgoals of top is
denoted as follows using .

s{x, midl, out), plusl{out, mid})

Wamely, for a goal (clause) form g which contains } annotated variables, | gl is
defined as follows.

gl = {Zg | 3L :Yar — TEBM such that for any |
annotated variable x, T x € VAR }

For a goal clause form gi, ==, gn which contains § annotated variables, |gl, -,
zni is defined similarly.

In this paper, it is assumed that svery goal form contains at most one |
annotated non output variable for simplicity.

Far a top level goal clause from gl, -, gn. if | annotated variables are contained
in gl. =+, gn then the same variables in the process form defined from gl. . &n
ean be !} annotated. Furthermore if ¥ is a variable which appears in # BLl, =, 8
Bk and appears in neither 8 H nor &AL --, 9Aa., then ¥ can be annotated, where

H :- A1, =, Aa [Bl, -, Bk is a clause in D such that a process fora defined
from gl, ---, gn and H can unify with a process form g by the mgu 2.

Def. § : Hoare' s formula for GIOC programs
For a set of guarded clauses D, top level goal clause gl, ---. En and assertion
language L for input/output conditions,

D iftd, ¥ € L then @ {gl, =, gnla ¥ is a top level formula.
) if gt',», ga" ig a process form defined by gl, =+, g&n, then

$ {gl',~,ga lo ¥ is a formuia.

D after } is abbreviated if there is no confusion. The semantics of the above formula
is defined in the following section.

2.3 Operational Semantics of GHC

This sectfon presents an outline of the operational semantiecs of GHC. The semantics
presented here ig based on “tree of computation™ [Takeuechi &6]. In this paper, the
purpose of introdueing the notion of the computation tree is to define the semantics of
foraulas which appear in the proof of partial correctness. so only successful
computations are discussed. The semantics of a GHC program is defined as a set of
successful computation trees determined from the set of guarded clauses and a goal
clause form.

The computation tree for individual goal is defined as the trace tree [Takeuchi 86].
Intuitively, each computation of the GHC program {5 a tuple of finite trees whose roots
are goals. A computation tree is an AND tree formed by a computation. Each node is a
goal instantiated by a substitution derived when the computation succeeds. Each child of
an internal node is a subgoal of its parent node which i{s derived when the parenmt
commitz to some clause.

The following is an example of computation tree for a geal, merge([0,0],[11.2)".

merge([0, 0], (11 00,0,10)

(0,0, 1]=[0,0, 1] mrﬁﬂ ,[11. [0, 11}
[0,1] = [0, 1] ner:;}i]. ﬁl]. [£1}

(1] = (1]

Since a GHC program may contain some nondeterminism in general. there are a number
of computation trees for a goal and a set of clauses. For 2 goal clause which consists
of several goals executed in parallel, a set of tuples of computation trees <tl,--,
tn» is defined similarly. The set of computations defined from a set of guarded
elauses D and a goal clause G1,-+, Gn is denoted as COMP{G L., Gn, D}.

Def. 4 :
For a top level goal clause form gl, =+, gn, the set of computation trees Comp{gl,
=+, gn, D) is defined as follaows:

Comp(gl., -, gn, D) = {<tl =, tn> | GL =, Gn € |gl, =, gnl,
<tl,—, tn» € COMP(G!., -, Gn. D} } .

[t is a little more complicated in the case of the non top level goal form.

In the example in Section 2, “merge’ is invoked with a variable ters Oy in the
second argument, and cannot commit to any clause except (5). Therefore, the goal commits
to clause (5) and instantiates its third argument in the form of [x|v]. After the
producer of the Oy receives [x |y], the it is instantiated. In this cass, | means
that it does not need to consider the computation that contains commits which require an
instantiated term in this variable before the output instantiation which makes the
producer active as a computation of this goal form. Thus, the set of computation trees
of a non top level process form such as "merge’ is determined by giving D and a set of
terms which is substituted for an output variable and activates the producer of the |

annotated varfable. Sueh set of teras can be represented using the terms which appear in
the guards of clauses which define the producer predicate.

In this paper, it is assumed that the set of such terms are represented in a unique
term fora for simplicity. In other words. the semanties of processes is given as 2
function from a term fors T to a set of computation trees Comp(gl.--, gna D1(7).

Def. 5
Comp[gl,, gn.D]{z) =
{t|t e coMP(Zgl.~~. 2 gn D), and the output variable of gl,, &n
can be instantiated more than t© by composing all unifications which
appear in t except subirees whose root is a goal which makes a non-
trivial commit about the term form substituted in the ¢ annotated
variable. }

vhere a commitment of goal p(t) to a clause C is said to be nen-trivial about t if
a goal p° which is derived by replacing t by a variable term cannot coamit to C.
When gl, -, gn s a top level goal fora:

Comp[gl, -, gn,D]{t) = Compl{gl, = gn D)

where t is a term form which represents a set of terms suoch that g1, -, gn cannot
output.

Def. 6 :

Let gl,=-. gn be a non top level goal clause form and I" be a set of formulas
which are the form & {(g} T where g is one of the process forms which are defined
from gl,+, gn. For gl,*, gn a set of hypotheses " and a term form 7 :

= ® {gl,~, gnt ¥
iff
for all <tl, ==, tn> € Complgl.--, gn, DJ]{c) such that <tl, -, tn> € COMP(Z g1,
w+, % gn, D) and the root of each ti (I=i=n) is cZ gl,*»+, ¢ Z gn, if all of T
is true as top level then E® => ¢ T V. A formula, © {g! T is said to be true
as top level when for all t = Comp{g. D) if the root of t iz o L g then £ 8
= oxLT.

Def. T :
A top level goal clause form gl.=-, n is partially correct wrt @ and W iff T
is an empty set and

|=® {gl,~, gn} T,

In other words, a top level goal clause form gl.+, gn is partially correct wrt @
and ¥ if and only of for all <tl. =-.tn> € Comp(g!,-~, gn, D)} 1if <tl, «, tn>
E COMP(Z gl.,-, X gn, D) and the root of each ti (l=i=n) is cEZgl.-~-. ¢ Z gn
then 2@ =» o Z W,

3. Axiom System

The axiom system presentad here is based on the following idea. The property of 2
goal clause form gl gn is derived from the property of each gi (1=i =n). The
property of each gi is derived from the properties of subgoals. An induction methad is
adopted for the proof of recursive predicates.

Inference rules

Substitution: ¢ (gl ¥
o [cg)l o

where ¢ does not instantiate any variable annotated with {.

Conzequence 1
P {gl, -, g} ¥ ¥ =17

@ {gl, -, gn T

Consequence 2
P = O D {gl, -, gnl T

2" {gl, -, gn ¥

Derivation 1
D A T=5S=T

D (T=5} T
Derivation 2
Pl, -, Ps
O (gt T
whera P11, -, P35 is the sequence of all Pj {1 & j & s5) defined as follows.
There i3 3 guarded clause : Hj := Bjl, =, Bj h, | Ajl =, Ajn,

in D for j {1 = i = s) such that Hj is unifiable with g (o,8 =

#,Hi), ¢, does not instantiate the variable annotated with

4 in the unification of a term form appearing in g. and Pj has the following
form:

Pj=, o,Bik A ¢, {g,Ajl, =~ o0, Ajn} ¢,T
k=L oy

where for each Bjk (k=1, h, }. there is a substitution A jk such that
A jkBjk is true and does not instantiate any variable in B jk annotated with {.

The inference using this rule with variables with | in its conclusion is called
degenerated {nference when the foraula which was obtained by deleting _I- from the
conclusion cannot be inferred from formulas which were obtained by deleting all | from
premises of this inference.

The rule, Parallel is introduced. This rule takes formulas for the properties of sach

process gi (l=i=n) as premises and takes a formula for the properties of gl.-, gn
as a conelusion. An inference using this rule is valid only if a certain condition is
satisfied on the sub proof schema P whose root is the result of application of the
Parallel rula. The notion of a sub proof schema Is defined as a subtree of a proof
schema defined below. Two propositions R (x. t.form{gl), f r P) and O(x, r,
fora{gi). { r, P) are defined where X is a variable, t is an element of Term, g1 is
s goal form which contains x as a non output variable, 2 1is a goal form which
contains X as an output variable, fora{g) 1is a2 formula which appears in P and takes
the fors @ (g} ¥, and fr 15 a conclusion of degenerated inference.

Rix,r.fora(gl), fr, P) =
if Tif form(g1) is the formof © (g1} T
then x = ¢ A 8 is squal to false. | then true
else if [there appears a producer p of x in P
then O(x. t. fora(p). fr., P}
else true

where p is the producer of x. Intuitively, R({x, t, form{gl), f r, P) means
that X cannot take the form of T when gl is invoked.

‘O{x. v, form{gl), fr, P) =
it [tr is formn{g?2)] then true
else if [g? contains a unification of X and a term form t] then
if [t and v are unifiable] then if [3 o:t= o t] then false
else ™ 0(xi, ¢xi, form{pi), tr, P)
i=1,h
where ¢ is a substitution such that ¢t = o v and
instantiates variables, xI,--, xh appears in t. and
pi is the producer of xi.]
alsa true
else
F >0 v R(yu okvu fora(g?). tr, P) Vv
1 =kZn l=u=w
O(x. t, form{qk(~.x)), tr. P))
where there exists a clause : Hk{=.v¥) = Bk [= k=, ¥), -
{l=K =n) such that for some substitution ¢k : okgl = o¢kHk o ¥
= X and ok instantiates variables ¥1,, ¥w appears in gl]

O(x, v, form{g?2), form{gr), P) means that g2 cannot make X the
form of ¢ without executing gr.

Parallel:

For a set of geal forms [g!.*, gn}., if gi contains a variable x with the }
annotation and there exists a producer of X, gj (I=j=n), then let gi be a
goal form deleting } from X otherwise gi® = gi.

— 8 -

[f for all degenerated inference contained in the sub proof schema of @i {gil Wi
(leisn):

AR(xj, tj, 83 {(hijl Tj, 8 {njl Tj, P) = true
l1=jSa

then:
@l {gl}l FL, -, On {gn} Tn

A Di {glt, e, g} oA T
i=L,n i=l,n

whers 8] {hjl Tj (l=jSm: m is the number of degenerated inference) is the
conclusion of sach degenerated inference, % j [5 the variable which makes the inference
degenerated, and v i is a term form which failed to unify with xj because of .

For a non top level process fora p{(x .-}, when a sub proof schema for
® {p (x4,-)} ¥ with degenerated inference for X is constructed, it means that
if x Is Instantiated with some time delay then the result of the computation
gatisfies @ for all input whieh satisfies T under some assumptions. Furthersmore, if
the Parallel inference rule can be applied to the sub proof schema of ® {p(x {.-}}
T and the sub proof schema of the producer of x, then it means that the time delays

where the producer cutputs % and which are considered for the sub proef schema of @
{p(xd,)} W are consistent.

Read:

VT
P T

D gl x,)
D {gl=- x4,)

where 4 is attached to all ocecurrences of X in g(-, x §,-).

In this system, all formulas which are true in the domain of the progras are

regarded as an axiom like the usual Hoare-like system. In addition., the followings are
introduced as the axioms.

Axionm

1) false {gl, =, gn} ¥
) ® {gtl, -, gn} true

In most Hoare-like proof systems, a proof schema is defined as a tree in which each
of the [eaves corresponds to an axiom and the root corresponds to the formula which

expresses partial correctness. In this system, in addition to axioms, "the hypothesis
of induction® can appear az a leaf.

— 10 —

Nel

faf, &:
For a top level goal clause form gl .-, gn. a proof schema of foraula @ {gl,

e« gn} ¥ is a tree such that:
1} The root of the tree corresponds to @ {gl. =, gn} ¥ .
2} For every node n, either a) or b) following is true.

a) For some infersnce rule (shown in Section 3}, n is an instance of a
conclusion and each child of n corresponds to a premise.

b) n is a leaf and one of the following is true:

(i) n is an axioa.

(ii) n is identical to one of its ancestors n’ , the Derivation 2)
rule is used at least once on the path form m’ to m and n does
not contain the § annotated variable as non output variable.

For a goal clause fora gl,—-, gn. if there exists a sub proof schema of @ {gl,—.
gnt ¥ for some ® and T with formulas f1, f2,-~ , [k which are not axioms
appearing as the leaves then :

l=® {gl.~.gnl ¥

for " = {¢1, 22, ,tk% and t, where v is the result of compositions of all
unifications for the output variable which appear in the sub proof schema and are not
children of any degenerated inference.

Especially for a top level goal clause form gl.--, gn. if there exists a proof
schema of ® {gl,~, gn} ¥ for some @ and ¥, then gl,:=, gn is partially cerrect
wrt @ and ¥.

Using this axiom system, the following property of Brock Ackermann anomaly can be
proved.

[al = in {top{in, out)} out = [a, a]

This property of top is made true by the guard/commit mechanism of GHC, and cannot
prove with a verification method for pure Horn logic programs.

5. Conclusion

This paper proposed an axiom system for proving the partial correctness of GHC
programs. In this system, the partial correctness of programs which are executed
deterministically by the guard/cosmit mechanisa can be proved for enough strong output
conditions.

In this paper. a number of restrictions to GHC programs vere assumed. However no
method that decides if a program satisfies the restriction condition or not is presented
here for the restrietions about cbvious data-dependency. Namely we expect some dynamic
anlysis method for deciding if the output variable of a program is fixed uniquely.
However such dynamie analysis method for GHC programs [s not Investigated enough yet, It
is one of the important topie for future research. We consider that verification method
of programs such that presented here are useful for the foundations of investigation of
analysis pethod of GHC programs.

Acknowledgment

[would like to thank Dr. K. Furukawa, and all the members of the First Laboratery
of 1COT for many useful discussions.

References:

[Broek 811 J. D. Broek., W. B. Ackermann. Scenarios: A Model of Yon- determinate
Computation, Lecture Notes in Computer Science, No. 107 Springer., 1381

[Clark 86] K. L. Clark and 3. Gregory, PARLOG: Parallel programming in logie, ACM
Trans. on Programming Language and Systems 86, 1986

[Eameyama 87] Y. Kameyama, Axiomatic System for Concurrent Logic Programming
Languages, Master's Thesis of the University of Tokyo. 1387

[Kanamori 86] T. Kanamori and H. Seki. Verification of Prolog Programs Using an
Extension of Execution, Lecture Notes in Comp. Sei., No. 225, 1986

[Levi 87] G. Levi and C. Palamidessi, An Approach to the Declarative Semantics of
Synchronization in Logic Language. Proec. of International Conf. on Logic Programming
87, 18a7

[Maher 87] M. J. Maher, Logiec Semantics for a Class of Commited-Choice Programs, Proc.
of International Conf. on Logic Programming 87, 1987

[(Murakami 87] M. Murakami, Proving Partial Correctness of Guarded Horn Clauses, The
Logic Programming Conference "87 1987

(Saraswat 85] V. A. Saraswat, Partial Correctness Semantics for CP [4., &], Lecture
Notes in Comp. Seci., No. 206, 1983 _

[Saraswat 87] V. A. Saraswat, The Concurrent logie programming CP: definition and
operational semantics, Proc. of ACM Symp. on Principles of Programming Lamguages, 1987

[Shapiro 86] E. Y. Shapire, Coneurrent Prolog: A progress report, Lecture Notes in
Comp. Seci. No. 232, 1988

[Takeuchi 86] A. Takeuchi, Towards a Semantic Model of GHC, Tech. Rep. of [ECE.
COMPRE-59. 1986

[Ueda 85] K. Ueda, Guarded Horn Clauses. Tec. Rep. of [COT. TR-103, 1985

(Ueda 86] K. Ueda, On Operational Semantics of Guarded Horn Clauses, Tech. Memo of
[COT, TM-0L60, 1986

