ICOT Technical Report: TR-337

TR-337

An Evaluation Method for Stratified
Programs under the Extended Closed
World Assumption

by
H. Seki & H. lich

Fet
©1988, ICOT
Mita Kokusai Bldg. 21F (33} 456-3191—5
|[:D [4-28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer xTechnology

An BEvaluation Method for Stratified Programs
under the Extended Closed World Assumption

Hirohisa SEKI and Hidenori ITOH
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, Japan

Abstract

This paper considers a semantics for stratified databases called the ECWAs (extended
closed world assumption for stratified databases), and proposes a query evaluation algorithm
which is shown to work as an interpreter under the ECWAs for a class of stratified databases.
The ECWAs is a natural extension of the closed world assumption (CWA) [Rei78] by intro-
ducing the notion of stratification. The semantics under the ECWAs is shown to be equivalent
to the minimal model defined by the fixpoint semantics (e.g., [ABW86], [LST88], [VG88]).
The proposed evaluation algerithm is based on OLD resolution with tabulation [TS86], and
its soundness and completeness is proved for a broader class of stratified programs than the

previously proposed one [ABW&6].

1 Introduction

Since Clark introduced the negation as failure rule [Cla78], the problem of dealing with negative informa-
tion in logic programs has been extensively studied by many researchers. Its importance is not confined
to logic programming, but has also been stressad in the field of deductive databases. Reiter’s closed world
assumption (CWA) [ReiT8] is one of the most natural and simple approaches from the database’s point
of view,

When applied to Horn databases, it is known that the CWA is consistent and works well. When a
database consists of non-Horn clauses, however, the CWA becomes inconsistent even for simple databases
(e-g., [SheB4]). To solve this problem, Minker proposed an extension of CWA called Generglized CWA
(GOWA) [Min82], and Gelfond et al. [GP2E), [GPPRE] gave its further modification called Exlended CWA
(ECWA). These formalizations deal with a set of universal first order formulas as a database. In this
paper, we confine ourselves to an important class called stratified programs® [ABWS6). For a stratified

program, we introduce ECWAs, which is a natural extension of Reiter's CWA and is also a special case

UIn this paper, we use Lhe berma programs and dadobeses interchangeably. From the lheml,i.;ﬂlp.uini of \’.'H!F. s database
is just & logic program [Llo&4).

of ECWA, by introducing the notion of stratification. Then, the semantics of a stratified program under
the FOWASs is shown to be equivalent to the minimal model defined by the fixpoint semantics [ABWSE],
[LST8e], [Lifss], [VGEE].

Although the ECWAs (or equivalently, the minimal model Mp in [ABWBS6]) seems to provide a
natural semantics for stratified databases, it does not immediately suggest a practical implementation of
its query evaluation algorithm. Several researchers have propesed its interpreter in a restricted case such
as function-free formulas [ABWS6], [GP86]. This paper proposes a simple query evaluation algorithm
which faithfully implements the ECWASs for stratified programs under reasonable assumptions. The
evaluation algorithm is based on QLD resolution with tabulation [T586], augmented with the negation as
failure rule. Its correctness is proved for a broader class of stratified databases than than the previously
proposed ones.

Section ¥ gives the definition of the ECWAs, and the equivalence to the minimal model defined by
the fixpoint semantics is shown. The relation to the light tree semantics [VG86] and its problems are alao
discussed. In section 3, after specifying a class of stratified programs copsidered in this paper, a query

evaluation algorithm is proposed. Its soundness and completeness are shown in section 4,

2 Extended CWA for Stratified Programs

2.1 Negation: From the Viewpoint of Recursive Query Processing

The closed world sssumption (CWA) proposed by Reiter [ReiT8] gives an inference rule to add negative
information to logic programs. According to this assumption, if a ground atom A is not a logical con-
sequence of a given program, then we infer —A. The CWA is often said to be 2 natural assumption
from the database’s viewpoint. In this subsection, we reconsider it frem the viewpoint of recursive query
processing.

Recently, recursive query processing is one of the most active research area in the field of deductive
databases (e.g., [BR86a),[BRB6b], [SZ87], and the references therein). There have been proposed many
optimization methods such as Magic Sets [BR36b], the Alexander Method [RLK86]. In these approaches,
when a program and a query are given, they are first transformed into a set of rules whose bottom-
up evaluation is devised to simulate its Prolog-like top-down behaviours. The bottom-up evaluation is
essentially the computation of the fixpoint of rules using a similar mapping Tp ([Lic&4], p. 30} from the
set of all Herbrand interpretations of transformed rules to itself. This bottom-up computation proceeds
until no new atoms are generated.

Suppose that a Horn database Py is given. Suppose further that, in Py, there is a recursively defined
clause of form: p +«— -+ p, which is the only clause of the definition of p. When a query « p is given, the
Alexander Method, for example, will repeatedly generate atoms corresponding to the call to the subgoal p
(i.e., call.p), and then will terminate without generating atoms corresponding to its solution (i.e., solp).
Thus, even when the corresponding SLD-resolution of «— p for Py falls into an infinite loop, the bottom-up

computation by Majic Sets/Alexander Method ferminates without generating its solutions. Hence, in

2

the above-mentioned query processing methods, there is no distinction between finite failure and falling
into an infinite loop, and they are both eonsidered to be false. This is exactly what the CWA infers.
Keeping this in mind, when we consider an extension of recursive query processing methods into
general logic programs, the problern arises what semantics we should assume for such a program. If
a database consists of non-Hora clauses, if is well known that the CWA becomes inconsistent even for
simple databases (e.g., [She84]). In the next subsection, we consider an extension of CWA for stratified
programs such that falling into a infinite loop is also considered to be false. An query evaluation algorithm

under its sernantics is given in section 3.

2.2 Semantics Based on Extended CWA

A general logic program {Llo24] is a set of rules which can contain both positive and negative goals in their
bodies. We introduce an important class of general logic programs called stratified programs[ARWSE].
We follow the definition by [LST84).

DEFINITION 2.1 {stratified program}

A general logic program P is siratified if its predicates can be partitioned into levels so that, in every
program clause p o Ly, ..., Ly, the level of every predicate in a positive literal is less than or equal to the
level of p and the level of every predicate in a negative literal is less than the level of p. o

It is convenient to suppose that the levels of a stratified program are 0, 1, ..., k for some integer k,
where k is the minimum number satisfying the above definition. This is assumed throughout this paper.
In this case, P is said to have the maximum level k and is dencted by P = Py + ... + Py, where P is
a seb of clauses whose head predicales have level . Note that Py is a set of Horn clauses. To make the
discussion simple, each predicate occurring in a program is assumed to have its definition.

We consider the following semantics for siratified programs. Gelfond [Gel87] proposed a similar
definition for propositional logic programs. The following is an extension to the first order stratified
programs,

DEFINITION 2.2 {ECWA for stratified programs (ECWAs))

Let I be a stratified program and P = F, + ... + Fs. Suppose that a sequence of the set of axioms

By, By, ECWASs is defined as follows:

Ey = PFyU{-L|Lis a pesitive ground literal of level 0 and F, ¥L}

£y = LgUFRu{~L]|Lisa positive ground literal of level 1 and £y U P, {1}

Ey = Ex1UFU{-L|L isapositive ground literal of level & and Eecy U P LY
ECWAs = Eg,

where T L means that L is a logical consequence of T, Then, the semanties of a stratified program P

under the ECWAs is defined by a pair of sets of ground atoms (55, F5) defined as follows (55 is intended

to be the success set of P while FS means the false set of F):

55
rs

{A| Ais a positive ground literal such that ECWAsk A}

{A|=A is & negative ground literal such that ECWAsF -4} a

The above definition gives a natural extension of Heiter's CWA [Rei78] in the following respects : (i)
if a program is Horn, then ECWAs coincides with CWA and (ii) function symbels are allowed. ECWAs
means ECWA for a strofified program. Gelfond et al. [GPP86] proposes ECWA for a general program,
in which no notion of stratification is introduced.

The fixpoint semantics of a stratified program is given by several researchers [LST86], [ABWEE],
[Lif86], [VGB6]. We will now review the fixpoint semantics and then show the equivalence of the semaanties
under the ECWAs and the fixpoint semantics.

DEFINITION 2.3 {mapping Tp,}

Let P be a stratified program and P = P+ ...+ Pi. For every i =0, ..., k, a mapping Tp, (M), where

M is a subset of the Herbrand base, is defined as follows:

o Tp (M) contains M.

« Foranyrule, A «— Ly A-- ALy in By, if there exists some substitution # of ground terms of variables
such that Ly8 A --- A L0 are true in M, then ground atom A# is in Te,(M).

o Tp,(M) contains no other atoms.

Let T}I:... be Tp, applied j times, and we define

T(M) = | Tr(M) o
I€w

Using the above mapping, the fixpoint semantics of a stratified program is defined as follows:
DEFINITION 2.4 {fixpoint semanties}
Lat F be a stratified program and F = Fy + ... + Fi. Then,

. 555? =Tg, (#). Note that Py is a set of Horn clauses :n_d SS{F is the least fixpoint of Tp,.

e Fori>0(i=1,..k},
SS{* = T3,(SSI%,).

The fixpoint semantics of P is defined by a pair of sets of ground atoms (S57F, F5/?) as follows:

_ Sgfr = & 3{!
F5f* = HB -55'F where HB is the Herbrand base of P. o

Following [ABW86], let denote S5/ by Mp. Proposition 2.1 shows that both the ECWAs and Mp

coincide with each other. Before that, we need the following lemma:

Lemma 2.1 Let P be a stralified program and P = Py+ ...+ Pe. For every [(0 <1< k),

(1) 55/% is an Herbrand model of Fi_y U Py

(%) Ei_,URF Le LeSsT,

where L 15 o positive ground atom of level | and E; is defined in DEFINITION 2.2, and let E_, be .
Froof: See Appendix. O

FProposition 2.1 Let P be a stradified program and P = Py-+...+ Py. Then, the semantics of g stratified
program P under the ECWAs &5 equivalent o its fizpoind semantics, e,

{55,F5) = (55/7 F5/F).
Froof: Obvious from Lemma 2.1,]

Example 2.1

In the above program, predicates g, r are of level 0 and predicate p is of level 1. 55 = {g,p} and
FS = {r}. Note that the meaning of a program is not its completion [Cla78). a

2.3 Relation to Tight Tree Semantics and Its Problems

Several important results relating to the semantics of stratified programs have been obtained recently
(e-g., [ABWSE), [GP8E], [GPP&8), [Lif86), [Prz86al, [LSTS6], [VGBE)!. Among them, we examine the
tight tree semantics proposed by Van Gelder [VGB6] in this subsection, since the notion of the bounded
term size property (defined below) introduced in [VG86] plays an important role also in this paper.

First, we give an informal explanation of the tight tree semantics (as for the strict definition, see
[VGB86]). In the definition of the tight tree semantics, derivations are considered at !ruuﬁd instance level,
namely, each ground goal is resolved using ground instantiated rules. Although negation is defined as
finite failure, proof attempts are limited to fight derivations, that is, derivations expressed by trees in
which no node has an identical ancestor. Those derivation trees are said to be tight NF-trees.

When there exist a tight NF-tree whose root is a positive atom A, then A is considered to be in the
success set §5°. Suppose that a positive atom A is in §5°. Then, any ground derivation tree in which
there is a node labelled with —A is considered to be failed, and is discarded. For any positive ground
atom [, if there is no ground derivation tree whose root matches I, -th:n L i3 considered to be in the
general failure set GF'. The tight tree semantics is defined by the pair (55, GFY.

Consider Example 2.1 again. Under the tight tree semantics, r is classified into G F' because of the
restriction of tightness, hence, in turn, p, is included in 557, which is equivalent to the semantics under

the ECWAs in this case. Generally, however, all atoms in the Herbrand base of a given stratified program

are not classified into either 55° or GF". For the purpose of completely claa-aifying. all the atoms, he
introduced a condition called the bounded term size property in [VG86]. To state its definition, one more
definition is required, which is intended to ensure the freeness from floundering [Cla78].

DEFINITION 2.5 {safe for negation}

Let 1 be a computation rule (for SLDNF-derivation) (e.g., [Llo84]) which always selects only positive
aloms in goals. A general logic program is said to be safe for negation if, for any R, every SLDNF-
derivation via R bas the property that any variable ina negative atom is also in some positive atom of
the same goal or in the top-level clanse. o

Let the size of ¢ term be the count of its functors, constants and variables.

DEFINITION 2.6 {bounded term size pmpe:t}'z}

Let f be a computation rule defined in the above definition. Then, a general logic program has the
bounded ferm size properiy if there exists a function f{n) such that, for any R, whenever the top level
goal has no argument whose term size exceeds n, then no subgoal in any SLDNF-derivation via R has an
argument whose term size exceeds f(n}, whether the derivation is successful or not. (Note that, in each
derivation, most general unifiers are used and only positive atomas are expanded.) o

As stated in [V(G86], the bounded term size property seems to be quite a natural condition, especially
for database applications, where no function symbols are usually introduced. It seems that programs
without this property are usually intended to be non-terminating (such as number generation programs)
or they might be buggy. Under the bounded term size property, it is claimed that stratified programs
which are safe for negation are completely classified by the tight tree semantics, i.e., every atom in the
Herbrand base is either in 55° or in GF®, and it is shown that it is equivalent to the semantics under
the minimal model defined by the fixpoints. The following simple example, however, showa that these

conditions are gtill insufficient.

Example 2.2

a(fla)) ~
plX,Y) = p(X, Z)

The above first clause is defined to only for the purpese of intraducing a constant and a function symbel
into the Herbrand universe. Then, a positive atom p(a, f(a)), for example, is nof classified either into S5
or GF', because there exists an infinite tree of form: p(a, f(a)) ~ pla, f(f(a))) ~— pla, F(F(f(a))) -

The reason why the above atom is unclassified is that the bounded term size property is defined by
SLDNF-derivation (using most general unifiers), while the tight tree semantics is defined in terms of
tight NF-trees, which are composed of ground instantiated rules. Hence, a tight NF-tree of a stratified
program is nof always finite even if it has the bounded term size property.

*Mote that the definition of the bounded term size property in this paper is different from that of [WGBE] in that (i)
we separate the condilion of safety for negation from the bounded term size property defined in [VG86), and (i) it is not
assumied thal the form of function f(n) is actually known.

On the contrary, the semantics under the ECWAs (and also the minimal model) classifies every ground
atom of form: p(¢;,f2) inte FS, since there is no finite proof of p(t1,12). One of the contributions of this
paper is to propose a practical algorithm which faithfully implements the semantics under the ECWAs
when a stratified program has the bounded term size property.

2.4 From Semantics to a Practical Algorithm

Although the semantics under the ECWAs (or equivalently, the minimal model Mp) is quite natural and
simple, the definition does not suggest a practical implementation of its evaluation algorithm. [ABWEG]
tried to give algorithms under the above mentioned semanties, and [GP26] proposes a query evaluation
procedure in a slightly different context. To our knowledge, their methods are confined to restricted
cases such as propositional logic formulas. Preymusinski [Prz86b] proposed a query answering algorithm
for circumscriptive and closed-world theories. Since his formalism treats a more general case such as
arbitrary clauses, the proposed algorithm becomes more complex and seems to have inefficiencies in a
general theorem prover such as subsumption checking.

It is obvious from Example 2.1 that the usual SLDNF-refutation is not sufficient. Some loop-trap
mechanism seems to be necessary to prevent computation from falling into infinite loops. As for ground
atoms, it would be clear that along any path on a proef tree, the same ground literal need not occur more
than once and such a path can be failed. The difficulty is that atoms in a goal usually contain variables.
When a new goal is a variant of its ancestor on some path on a proof tree, then we eannot fail that
branch, since it would lead to an unsound evaluation algorithm. Hence, to propose a practical algorithm
under the ECWAs (or Mp) is a research area in its own right. Our purpose is to give an algorithm which
faithfully implements the ECWAs, hopefully with a least modification of the usual SLDNF-refutation.

The next section describes such an algorithm and its correctness is proved in section 4.

3 An Evaluation Algorithm under Extended CWAs

3.1 A Class of Stratified Programs

In this subsection, we make clear what class of stratified programs is considered as a target of our eval-
uation algorithm under the ECWAs, At first, we employ OLDNFP-resclution as a basis of our evaluation
algorithm., OLDNF-resolution, which is a special case of SLDNF-resolution, uses a selection function
which always selects the leftmost atom in goals just as the conventional Prolog interpreter does. Now, we

introduce a notion ensuring floundering freeness via this selection rule by modifying DEFINITION 2.5.
DEFINITION 3.1 {OLD-safe for negation}

Consider a modification of SLDNF-resolution such that (i) when the leftmost atom of any goal is a
positive atom, then resolve that atom as SLDNF-resolution does, (ii) when the leftmost atom of any goal

is n negative atom (let the goal be of form «— —~L,a where & is possibly empty sequence}, then next try

~ o as its subgoal®. Let this computation rule be By, Then, a general logic program is called OLD-safe
Sfor negation (meaning “safe for negation via ordered linear derivation™) if every top-down derivation via
fp has the property that, whenever the leftmest atom of any goal is negative, then any variable (if any)
in that atom also appear in the top-level clause. m|

Suppose that a general logic program is OLD-safe for negation and the top-level clause is ground,
Then, it is clear from the definition that, whenever the lefimost atom of any subgoal is a negative atom,
it is instantiated into a ground term. In general, we intraduce the following definition.

DEFINITION 3.2 {OLD-floundering free}

Let P be a general logic program and By be a computation rule defined in the above definition. A
query € is said to be OLD-floundering free with respect to P when any derivation of the top-level goal @
via Ry has the property that, whenever the leftmost atom of any goal is negative, then every argument
of the atom is instantiated into a ground term.]

Intuitively, OLD-foundering freeness means that, if a query is given in “appropriately” instantiated
form, then, in any goals of SLDNF-resolution via a computation rule Ry, the leftrost negative atom
of each goal is instantiated into a ground term when that atemn is evaluated, hence, there is no danger
of falling inte floundering. For the practical peint of view, this condition can be considered natural,
since Prolog users are expected to use its “not-predicate” in such a manner, otherwise, its intended
semantics has changed. Furthermore, it seems to be possible that the recent work on mode inference by
abstract interpretation (e.g., [KKS7]) is applied (by slight modification) to decide whether a given query
is OLD-floundering free or not,

In summary, we consider the following class of stratified programs as a target of our evaluation
algorithem,

DEFINITION 3.3 {OLD-canonical program}

A stratified program is said to be OLD-caneonical if it has the bounded term size property and is

OLD-safe for nﬁation, a

3.2 An Evaluation Algorithm: OLDTNF Resolution

The evaluation algorithm that we propose here is called OLDTNF resolution, It is based on OLDT
resolution [TS86], augmented with negation as failure rule, just as usnal SLDNF-resclution is based on
SLD-resolution. OLDT resolution (OLD resolution with {abulation) was first proposed by Tamaki-Sato
[T586], and similar work have been given by several researchers ([Vie87)4, [Die87], [KKET]).

In the following, we use the terminology and definitions introduced in [1586] as much as possible.
Apart, from the treatment of negation, the deference between ours and that of [TS86] is in that (i) every
predicate is designated as the table predicate and (ii) term-depth abstraction is not introduced, since it
is nol necessary in our case.

¥The purpose of intraducing this computation rule is only for defining the freensss tram fsundering,. Hence, any leftmont
negative atom in & goal is simply skipped, since negation as failure mle is only a test and cannot make any bindings.
*Vieille's framework is moce general than OLDT resolution in that & mere Sexible selection function is n.'l_lu'ﬂd

The basic principles of OLDT-resolution is to prevent the interpreter from repeatedly trying to solve
the same goal and thus to cut off any infinite branch, by introducing the tabulation techniques into QLD
derivation. An informal explanation of the behaviour of OLDT resolution is as follows. When a goal is
the first one to be tried in a computation path, it is said to be a solfution node. All solutions obtained
from the solution node are stored in a table called the solution fable. On the other hand, when the same
goal appears in a computation path, it is said to be a lookup node. A lookup node is resolved only with
the atoms in the solution table, i.e., atoms stored in the solution table are used as lemmas. When there
is no solutions resolvable with a lookup node, then the computation of the lookup node suspends until
new resolvable solutions are registered in the solution table.

We first model our evaluation algorithm in terms of QLDNF resclution, sod then iotroduce the
tabulation technique into it.

DEFINITION 3.4 {OLDNF resolution, OLDNF tree, OLDNF refutation}

Let P be a stratified program which is OLD-canonical and & be an OLD-floundering free query.
Then, OLDNF resolution is a special case of SLDNF resolution [Llo84] such that the computation rule
always selects the leftmost atom in each goal, The OLDNF #ree is similarly defined as a special case of
the SLDNF-tree. An OLDNF tree of (7 is an OLDNF tree such that its reot is labelled with &, and its
nodes are labelled with QLDNF resalvents® and its edges are labelled with substitutions.

An OLDNE refutation of (7 is a path in an OLDNF tree of (7 from the root to a node labelled with
the null clause. Let &, ...,0, be the substitutions labelled to edges in the path. The subsfituiion of the
refutation is the composition § = #; 2.0 8,, and the selution of the refutation is GO, o
DEFINITION 3.5 {subrefutation}

Let G, Gy, ..., Gy be a sequence of labels of the nodes, and 8;, ..., 0, be the labels of the edges on a
path in an OLDNF tree. Let ' and A be sequences of atoms. The path iz called a subrefutation of T
when i} (g is of the form: “T', A" and ii) each G; (1 €1 € k= 1) has Afy o -+ 08 as its last sequence
and Gy is Af; o--- ey, and iii) the number of atoms in G; is greater than that of Gj.

A subrefutation is said to be a und! subrefutation if [' in the above ia an atom. The substitution and
the soluiion of a subrefutation is defined similarly as in the case of a refutation. n]

Now we give several definitions necessary for the tabulation.

DEFINITION 3.6 {solution table}

A selution fable is a set of entries. Each entry consists of a pair of a key and = list (called a solution
lisi), where the key is a positive atom and the sclution list is a list of atoms such that each atom in the
list is an instance of its key. o

Every node of the OLDTNF tree is classified as either a solution node, a lookup node, or a negative
node.

DEFINITION 3.7 {solution node, lockup node}
Let T'r be an OLDNF tree and T's a solution table. A node in T'r is said to be a lookup node when

the leftrost atom of the node is an instance of some key in Ts. When the leftmost atom of the node

#We sometimes use a node and a resplvent of its label interchangeably, when the meaning is clear from the context.

ig a negative atom, then the node is said to be a negative node. Otherwise, it is called a solufion node.
=]
DEFINITION 3.8 {lookup table, associated solution list}

Let Tr and T's be the same as in DEFINITION 3.7. A lockup fable T! of (T'r,T's) is a set of pointers
peinting from each lookup node in T'r into a solution list of some key X in T's such that the leftmost
atom of the lookup node is an instance of K. A tail list of a solution list pointed from a lookup node is
called an associaled solufion list of the lookup node. (]

Using the above-mentioned definitions, the basic structure of OLDTNF derivation is defined.
DEFINITION 3.9 {OLDTNF structure, initial OLDTNF structure}

An OLDTNF struciure is a triple (T'r, Ts, TI), where Tr is an OLDNT tree, T's is a solution tabls
and T1 is a lookup table of Tr and Ts.

The initial OLDTNF structure of a query G is the triple Ty = (Trg, T'so, Tly), where T'ry is 2 single
node v labelled with G, and T'sy is the solution table consisting of only one entry whose key is the
leftmost atom of G with an empty solution list, and Ty are empty. o
DEFINITION 3.10 {extension of an OLDTNF structure}

Let F be astratified program which is OLD-canonical, and T be an OLDTNF structuce (T, T's, TI).
Suppose further that the root of T'r is labelled with an OLD-floundering free query. An immediate
extension of T by P is the result of the following operations.

(1) Select a terminal node v, labelled with < 4, T, where A is a atom and T is a (passibly empty)

sequence of atoms.

* (OLD estension} When v is a solution node, let Cy, ..., Ci be all the clauses (if any) in
F such that each Cj is of the form : By «— M;, ..., M, and A and B; have the mgu &,
respectively. Then add k child nodes labelled with each Gy,...,Gy to v, where each G, is
— (M1, ..., My, T)#;, respectively. The edge from v to the node 3 is labelled with ;.

s (looksp extension) When v is a lookup node and its associated solution list is not empty,
let Biry, ..., Bimp be all the elements in that list such that A and B;n have the mgu #;,
and let G; be « I'6;, respectively. Then add k child nodes labelled with each Gy, ..., Gi
to v, The edge from v to the node &; is labelled with 4.

= (negation as failure) When A is a negative ground atem of form —Ag, then, an attempt

15 made to construct a finitely failed OLDTNF tree with « A4, at the root®. If — Ag

has succeeds (i.e., there exists any solution), then the subgoal +— A fails and so the goal

v also fails. If ~ Ag {ails finitely under a fair search strategy (see DEFINITION 3.12),

then the subgoal «— A succeeds and the node v has a unique child node @ of the form:

+ TI'. The edge from v to G is labelled with the identity substitution. _
®We create a new initial OLDTNF structure of «— Ag..where its solution table and lookup table are also newly crsated.
Far the conceplual simplicity, a new atructurs is treated separately from the one it's derived from, hence no solution table

is shared among different structures. Ssveral optimizations such as sharing solution tables should be jstroduced when
implemented,

10

(2) If the above lookup extension is performed to a node v, then replace the pointer from v to

the one pointing to the last of its associated solution list.

(3} After the above operations, a new node labelled with a non-oull clause is classified as a lookup
node if the leftmost atom of the new oode is an instaoce of some key in T's. Otherwise, it is

a solution (megative) node if the leftmost atom is positive (negative), respectively,

{4} For & new lockup node (if any), add a pointer from it to the head of the solution list of the

corresponding key.

{5) For a new solution node (if any), add 2 new entry whose key is the leftmost atom of the label
of the new node and whose sclution list is the empty list. When a new node is a lockup node,
add no entry. For each unit subrefutation of atom L (if any) starting from a solution node
and ending with some of the new nodes, add its solution LA to the last of the solution list of

Lin T, if L} iz not in the solution list.

An OLDTNF structure (T'r', Ts', TT') is said to be an erfension of OLDTNF structure (T, Ts, T1)
if (T, Ts', TV 1z obtained from (T'r,T's,T1) through successive application of immediate extensions.

0
DEFINITION 3.11 {OLDTNF refutation}

Let P be a stratified program which is OLD-canonical, and & be an OLD-floundering free query. An
(QLDTNF refutation of G by P is a path in some extension of the initial OLDTNF structure of G, from
the initial root to 2 node labelled with the null clanse. The substitution of the OLDTNF refutation and
the selution of the OLDTNF refutation are defined similarly as for the OLDNF refutation. a

As is stated in the definition of negation as failure rule in DEFINITION 3.10, we must specify an
appropriate class of search strategies.

DEFINITION 3.12 {fair search strategy}
A search strategy in the OLDTNF structure is said to be fair if, for every node N in the QLDTNF

structure, N is selected within a finite number of steps. o

4 The Correctness of the Evaluation Algorithm

In this section, we give the proof of the soundness and completeness of QLDTNF resclution. As its
preliminaries, the following lemma ensures that the OLDTNF structure for any ground query is finite

when a stratified program iz OLD-canonical.

Lemma 4.1 Assume that a siratified program P is OLD-canonical. Then, for any ground atom (3, the
search process for the OLDTNF refutation of — G i3 finite, whether the search is successful or not.

Proof: See Appendix. mi

Before proving the correctness of the evaluation algorithm, we need the following lemma.

11

Lemma 4.2 Assume that a stratified program P i3 OLD-canonical. Let Gy, ...,Gn be a (possibly empty)

sequence of atoms. Suppese further that there exists a positive atom Gy of the level ry such that the level

of each positive afom (if any) among {G1, ..., Ga) is less than or equal to ry and the level of every negative

alom (if any) among {G1, ..., G,) is less than ry.

(Soundness a) When — (Gy,..., G, kas an OLDTNF-subrefuialion with the substituiion §, then any
ground instance of (Gy, ..., Gn)f is true in (55, F5).

(Soundness b) If & ground afom Gy is in FS, an QLDTNF-refutation of Gy 3 finitely failed.

(Completeness) Suppose thet ground instance G, ..., G of Gy, ..., G i3 frue with respect 10 (55, FS).
LetT be an OLDTNF structure for a OLD-floundering free query and v is @ node in T. Suppose fur-
ther that v is labeled with — (G, ..., Gn) (m = n) where G, ..., G, is an instance of (Gy, ..., Gn)P.
Then, there exisis an exlension of T under a fair search strategy such that T contains an OLDTNF
subrefutation of « (G, ..., Ga)¥ which starts from v and whose solulion subsumes G4, ...,Gl.

Proof: See Appendix. o

The correctness of OLDTNF resolution is immediate from the above lemma.

Proposition 4.1 Assume that a stratified program P is OLD-canonical.

(Soundness) When an OLD-floundering free query — G has an OLDTNF-refutation with the substitn-
tion 8, then any ground instance of G# is true in (55, FS).

(Completeness) Suppose that a ground atom G’ is in 55. Then, for any OLD-floundering free query
+ G such that G’ 1 an instance of G, there is an OLDTNF-refutation tree of root G under a fair
search strategy such that G’ s an instance of the solution of the r:fnininn.]

5 Concluding Remarks

We have introduced a semantics for stratified databases called the ECWAs. The ECWAs is 2 natural
extension of the closed world assumption (CWA) [Rei78] , and is also a modification of both Generalized
CWA [Min82] and Extended CWA [GPP86] by introducing the notion of stratification. The semantics
under the ECWAs is shown to be equivalent to the minimal model Mp defined by the fixpoint semanties.

A query evaluation algorithm was also proposed, which is shown to work as an interpreter for the
ECWAs under reasonable assumptions. The class of stratified databases for which the evaluation algo-
rithm is shown to be correct is broader than the one given by [ABWAS6]. The proposed interpreter is
based on OLDT resclution, augmented with the negation as failure rule, just as SLDNF resolution is
based on SLD resolution, augmented with the negation as failure rule. Its characteristic is the simplicity
of the implementation.

We have imposed some conditions on stratified programs such as the bounded term size property
and OLD-safe for negation. Although we do not suppase that these conditions are too restrictive from
the practical point of view, especially for database applications, finding weak syntactical (sufficient)

12

canditions for stratified programs to ensure the correctness of the evaluation algorithm is a research area
in it own right.

Finally, for implementation issues, an interpreter based on OLDT-resolution has been already imple-
mented on DYEC-20 written in Prolog [KK&7]. Hence, it is quite straightforward to implement our eval-
uation algorithm simply by augmenting the negation as failure rule. Although the proposed evaluation
algorithm computes an answer to a given query in almost top-down manner, the bottom-up computation
methods like Magic Sets/Alexander Matheod is shown to be extended also to stratified programs [SI88].

Compared with previous work, the contributions of this paper could be summarized as follows :

1} The semantics under the ECWAs is introduced, and its relation with other formalisms such

a5 the minimal model and the tight tree semantics is examined.

2) An evaluation algorithm under the ECWAs is proposed, which iz quite a simple extension of

OLDT resclution, augmented only with negation as failure rule.

3) A class of stratified programs is specified, for which OLDTNF-resolution is shown to be sound
and complete. The class is broader than the previously proposed ones [ABWE6].

Acknowledgement

The authors wish to express their thanks to Kazuhiro Fuchi (Director of ICOT) for providing us with the
opportunity to pursue this research, and Koichi Furukawa (Vice Director of ICOT) for his advice and
encouragement. We would also like to thank Tadashi Kanameri (Mitsubishi Electric Corp.) and Allen

Van Gelder (Univ. of California, Santa Cruz) for valuable comments on our earlier draft.

References

[ABWEE] K.R. Apt, . Blair, and A. Walker. Towards A Theory of Declarative Knowledge. In J. Minker,
editor, Proe. of Workshop on Foundations of Deductive Databases and Logic Programming,
pages H46-623, 1986. Washington, DC.

[BR86a] T.Bancilhon and R. Ramakrishnan. An Amateur’s Introduction to Recursive Query Processing
Strategies. In Proc. of the ACM-STGMOD Conference, pages 16-52, 1986, Washington, DC.

[BR#6b] C. Deeri and R. Ramakrishnan. On the Power of Magic. In Proc. Fifth ACM Symposium on
Priciples of Database Systems, pages 269-284, 1956,

[ClaT8] K.L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Database,
pages 293-322, Plenum Press, 1978,

[Dieﬁ?] 5.W. Dietrich. Extension Tables: Memo Relations in Logic Programming, In Proc. 1987
Symposium on Logic Programming, pages 264-272, IEEE Computer Socicty, 1987,

13

[Gal87]

[Gel87]

[GP&S]

[GPPas]

[KKS7)

[LifS6]

[Llo84]

[LST86]

[Min82]

[PrzB6a)

[Prz86b)

[ReiT8]

[RLK86]

[She8d]

[S188)

H. Gallaire. Boosting Logic Programming. In Proceedings of the Fourth International Confer-
ence on Logic Programming, pages 862-988, Melbourne, 15987,

M. Gelfond. On Stratified Autoepistemic Theories. In Proc. AAAL-87, pages 207-211, 1987.

M. Gelfond and H. Przymusinska. Negation as Failure: Careful Closure Procedure. J. Artificial
Intelligence, 30:273-287, 1986,

M. Gelfond, H. Przymusinska, and T. Przymusinski, The Extanded Closed World Assumption
and Its Relationship to Parallel Circumscription. In Proc, Fifthk ACM Symposium on Principles
of Database Systems, pages 133-139, 1986.

T. Kanamori and T. Kawamura. Analyzing Success Patlerns of Logic Programs by Absirect
Hybrid Interpretation. ICOT Technical Report TR-279, 1ICOT, 1887,

V. Lifschitz. On the Declarative Semantics of Logic Programs with Negation. In J. Minker,
editor, Proc. of Workshop on Foundations of Deductive Dotabases and Logic Programming,
pages 420432, 1986. Washingion, DC.

J.W. Lloyd. Foundalions of Legic Programming. Springer, 1984.

J.W. Lioyd, E.A. Sonenberg, and R.W. Topor. Inlegrily Constraint Cheeking In Stratified
Databases. Technical Report 86/5, Dept. of Computer Science, Univ. of Meclbourne, 1986.

J. Minker. On indefinite data bases and the closed world assumption. In Proc. Sizth Conference
on Automated Deduction, pages 292-308, Lecture Notes in Computer Science 138, Springer,
Berlin, 1982.

T. C. Przymusinski. On the Semantics of Stratified Deductive Databases. In J. Minker, editor,
Proc. of Workshop on Foundations of Deductive Databases and Logie Programming, pages 433~
443, 1986, Washington, DC.

T. C. Praymusinski. Query Answering In Circumscriptive And Closed-World Theories. In
Proc. AAAI-86, pages 186-180, 1986.

R Reiter. On Closed World Data Bases. In H, Gallaire and J. Minker (Eds.), editors, Logic
and Database, pages 55-T6, Plenum Press, 1978

1. Rohmer, K. Lescouer, and J.M. Kerisit. The Alexander Method — A Technique for the Pro-
cessing of Recursive Axiomsa in Deductive Databases. New Generation Computing, 4(3):273-

285, 1986.

3.C. Shepherdson. Negation as Failure: A Comparison of Clark’s Completed Data Base and
Reiter's Closed World Assumption. J. Logic Programming, 1:51-79, 1984,

H. Seki and H. Itoh. On the Power of Conlinuation Passing: A Recursive Query Processing
Method for Stratified Databases. 10T Technical Report, ICOT, 1988. in preparation.

14

[5287) D. Sacca and C. Zaniolo. Tmplementation of Recursive Queries for a Data Language Based on
Fure Horn Logic, In Proceedings of the Fourth International Conference on Logic Programming,
pages 104-135, Melbourne, 1987,

[TS86] H. Tamaki and T. Sate. OLD Resclution with Tabulation. In Proceedings of the Third Inter-
national Conference on Logic Programmang, pages 84-98, London, 1986.

[VG88] A. Van Gelder. Negation as Failure Using Tight Derivations for General Logic Programs. In
Proc. 1986 Symposium on Logic Programming, pages 127-138, IEEE Computer Society, 1586.

[VieBT} L. Vieille. A Database-complete Proof Procedure Based on SLD-resolution. In Proceedings of
the Fourth International Conference on Logic Programming, pages T4-103, Melbourne, 1887,

Appendix: Proofs

Lemma 2.1

Proaf: The proof is by induction on . When [=0, it is clear, since Py is a set of Horn clauses (see
e.g., [L1o84]). Assume that the proposition helds for [=i (0 €4 < k— 1}, From the definition of £; and
the induction assumption, it is easily seen that 551‘-'_{1 is an Herbrand model of E;. From Proposition 1 of
[LST#8], 55;rf1 iz also a model of Fiyy. Hence, SS{_";t is an Herbrand model of E; U F;4y, which proves
the first part of the lemma. As for (ii) of the lemma, the only if-part is obvious, since .SJS‘:-r_if'1 is a model
of E; U Fisy1. The if-part can be also easily proved from the definition of SS{L. o

Lemma 4.1)

Proof: The proof is by induction on the stratified level of atom G. Su ppose that the level of & is 0.
From the bounded term size property, the length of a solution list is bounded by a constant. Hence, the
‘branching factor of cach lookup node is baunded by a constant. The length of a path is also bounded by
a constant, since the numimr of solution nodes is hounded by a constant and every lockup node in a path
decrease the number of atoms in the label by one. Thus, the size of the OLDTNF structure is bounded
by a constant. Next, suppese that the lemma helds for level § (0 € ¢ < k), where k is the maximum
level of stratification. Note that, like a lookup node, every negative node in a path decrease the number
of atoms in the label by one, and that each OLDTNF structure created by negation as failure rule of
the immediate extension for a negative node is finite from the induction assumption. Then, the proof is

similar to that of the base case. 3

In crder to prove Lemma 4.2, the following two definitions are introduced.
DEFINITION A-1 {size of a ground atorn, size of a sequence of ground atoms}

Suppose that a positive ground atom A is in 55 (the success sst). Since A is also in 5577, there
exists at least one tight NF-tree (defined in [VG88]) for A. Then, the size of a ground positive atom A is
the minimal number of the nodes of such tight NF-trees for 4, plus the total number of ita leaves (note

that, when a ground positive atom A has a unit clause «— L such that A is an instance of L, the size of

15

A is 2). I a ground positive atom A is in FS, then the size of ~A is defined to be 2. The size of a null
clause is defined to be 1.

The size of a sequence of ground atoms (4;,..., 4.)(n > 0) is defined to be the summation of each
size of A;. o
Lemma 4.2

Proof: (Sketch) We use induction on the level of an atom Gj. Suppose that the level of Gy s 0.
In this case, clauses used in OLDTNF-refutation are IHurn clauses. The proof of (Soundness a) and
{Completeness) is obvicus from the soundness and the completeness of OLDT-refutation [TS86] and
from the fact that 55; is equivalent to the least Herbrand model of programs of level). From Lemma
4.1, the proof of (Soundness b) is also obvipus.

Next, suppose that the lemma holds for any atom G of the level less than r. Let the level of an atom
o be (r +1). The proof of (Soundness a, b) are omitted, since they are not difficult. As for the proof
of {Cnmpletﬁness}, we use again induction on the triple (5,T,v), where S is the size of a sequence
of goals G, ...,G}, and T is an OLDTNF structure and v is a node in T. The well-founded ordering is

defined as follows:
(5,Tyv) precedes (5,77, v)

iff S<5 or

5= 5" and ¢ is a lookup node but v is not.
(Induction Basis) When L = 1, then the proposition is trivial, since a goal is a null clause, .

(Induction Step) When Gy is a negative atom, G1f in v is ground from the assumption of the OLD-
floundering free query. Let G4 be of the form : =4}, where A} is a ground atom. Since Al lsin F5 and
the level of Aj is less than r, the OLDTNF-tree for Aj is finitely failed from (Soundness b). Hence, v
has the immediate descendant node vy labelled with +— a6, ..., G, Then, The proposition is immediate
from the induction assumption.

Next, consider the case where (3 is a positive atom. We consider two cases depending on whether
the node v is a solution node or nat.
(case a): Suppose that v is a solution node. Since G| is in 55, there exists a tight NF-tree Try for
Gy. Let L, ..., L} be a sequence of ground atoms of all the children of 7] in Try. From the definition
of an NF-tree, there exists a clause € in P of the form: Ly ~ Ly,..., Ly such that &{ ~ L7,... L}
is an instance of Ly +— L;,..,Lg. Since (7} is also an instance of 1#, G1f and Ly are unifiable.
Hence, (18 and C are resolvable. Let my be the mgu of ;8 and Ly, and 9, be the child of v labelled
with — (Li,..., Li)m, (G2, ..., G) 0 7g. Since the size of (Lys-s L}y Ghy ey G) is less than that of
(G, G4, ..., GY), from the induction assumption, there exists an extension Ty of T such that T\ contains
an OLDTNF subrefutation = (Ly, ..., Li)70, (G2, ..., Gm)8 © 7y which starts from v and the solution of
which subsumes (L,...L}, G}, .., Gi). Hence, the proposition is immediate.
{zase b): Suppaose that v is a lookup node. Then, there is a corresponding solution node w, in T which
is of the form: «— G4, A where G} is an instance of Gy A and A is a (possibly empty) sequence of goals.
Since the size of G is less than or equal to the size of (GY,...., G,) and v, satisfies the condition of the

18

above lemma, it follows from the indection assumption that there exists an extension T” of T such that
contains a subrefutation of «— (1A which starts from v, and whose solution subsumes G]. When we
denote its solution by Gy, the solution list of Gy A in TY includes Gy ', Sinee G| is an instance of both
G418 and G\ X, hence a goal +— G4, ..., Gl and a unit clause ;A « are resolvable (lst its substitution
be 75), v has a child v; labelled with — (Gs,...,Gm)# o 7. Noting that the size of (G, .., G],) is
less than (G}, G5, ..., G}, again by induction hypothesis we have an extension TV which contains an
subrefutation s of — (Ga, ..., Ga)f o 7o which starts from v; and whose solution subsumes G5, ..., G,,. The
path in T starting from v and followed by the subrefutation # constitute the required subrefutation of
— (G, .-, Ga)d. o

17

