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— Parallel Object-Orieneted Language upon KL1 -

Kaoru Yoshida and Takashi Chikayama
Institute for New Generation Computer Techaology (ICOT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108 JAPAN

Absatract

This paper describes a parallel object-oriented programming language, A" LM .

- A'UM has been designed as a user’s language upon KL] which is the kernel language of the parallsl
inference machine, PIM, being developed at ICOT. The goal of A'LiM is to provide high description power
for ease of writing large-scale parallel systems and applications, including the operating system, PIMOS,
for PIM.

A'LM is characterized with its high level abstractions based on pure parallel abjects, of which most
characteristic are implicit stream merging, object-name association, macro expansion based grammer, and
modular programming support by class inheritance, that are deseribed in detail.



1 Introduction

In the fifth generation computer systems project at
ICOT, we have been designing and developing a paral-
el inference machine, PIM [5] and its operating system,
PIMOS,

In general, the larger a problem, the more difficult
to solve. For a large-scale problem such as an operat-
ing system, the entire function seems to be very com-
plicated, but in most cases, it is the result of piling up
many simple functions and basic concepts. The seccet to
develop a large-scale reliable system is to divide the sys-
tern into modules, each of which has 2 simple function,
and to make each module sound. The more information
and control fow is localized, the easier it is to design
and test.

For parallel systems, it is much harder to develon
than sequential systems. Most of the difficulties in de-
bugging » parallel program i3 to reconstruct the causal
chain from actually happening events, that is, to analyze
error reasons from phezomena when it results in failure.
Although events are due to a single causal chain, when
the whole events from root to leaf are actually bappen-
ing, they sesm to be happening independently at ran-
dom. Namely, flatness of avents makes analysis difficult.
Therefore, hierarchical and medular design and test are
indispensable to develop parallel large-scale systems.

For this purpose, the object-oriented paradigm is
most effective. We have developed an object-oriented
logic programming and operating system, STMPOS [2,
for the sequential inference machines, P51 and PSLII
[3,4]. SIMPOS is written in the language, ESP [1],
which introduced the notion of ohject-orientation, which
is to encapsulate data and operations, into 2 logic pro-
gramming language. Through this experience, we have
Jearned that the object-orientation contributes greatly
to both the design and test of such a large-scale system.

The notion of object-orientation is natural to model
a larze-scale systemn and represent the programmer’s in-
teptions. Designing a system is directly writing pro-
grams without any intermediate process. Mainly be-
cause of its uniform and dynamic contrel by method
call, and modularization support by multiple class in-
heritance and method combination, the entire system
is made simple and compact, that shortens the devel-
opment period at last. What ferwards shortening the
development period is not only the programming lan-
guage itself, but also its high level programming and
debugging eavironment.

As a result, for SIMPOS, it toak few years to develop
the entire system, though it is furnished with a rich set
of functions,

We would like to make good and best use of the ben-
efits, obtained by object-orientation, in parallel systems,
too.

This paper describes a parallel object-oriented lan
guage, AWM . A'UAM has been designed upon KL1,
which is the kernel language of the parallel inference
machine, PIM, for ease of writing large grale systems

and applications, mainly as a description language of
the operating system, PIMOS.

The arganization of the paper is as follows: Firstly,
the object-oriented programming style in KL1, which
griginated A'UM , is shown. Secondly, after the main
features of A' M are outlined, their detail are described
with some examples. In addition, the implementation
of A'LM onto KL1 are described. Finally, A'UM is
compared with ather related works.

2 Object-Oriented
Programming in KL1

2.1 GHC and KL1

The kernel language of PIM is a committed-choice par-
allel logic programming language, called KLL. KLl is
an extention of FOHC which is a subset of GHC [§]-

The committed-choice parallel logic programming
language family has been paid special attention. That
is mainly because of their simple and atomic mechanisi
far communication and synchronization. Since a parallel
construct is embedded at the atomic level, it is possible
to solve the entire problem yniformly from top to bot-
tom.

Abeve all, GHC [6] is simplest in this family.

A GHC procedure is a set of guarded Hora clavses
of the following form:

A= Glu---:cm | IIE‘::1.1"'!-'5-'1' [I‘.I"-I- > bn>0)

where H, G;'s and B;'s are atomic formulas. M is called
a elause head, Gi's guard goals and Bi's body goals re-
epectively. The operator '|" is called 2 commitment ap-
erator, the left part before the operator a guard and the
right part a body respectively.

Roughly speaking, the execution of 2 GHC procedare
is explained as follows: When a procedure is invoked, all
clauses defining the procedure can run in parallel, keep-
ing the following suspension and commitment rules:

Suspension

« Unification invoked directly or indirectly in the
guard of a clause C called by a goal & cannob
instantiate the goal 7.

o Unification invoked directly or indirectly in the
hody of a clause ' cannot instantiate the guard of
¢ until that clause is selected for commitment.

Commitment
If some of the clauses succeed in the execution of
the guard part, one and the only one of them is
nondeterministically selected. The selected clause
continues execution of the body.

GHC realizes synchronization only with the guard
construct, Unification in the guard is not allowed to
instantiate the inveking goal, so it requires no multiple



environments for its execution. Such & simple mecha-
nism of the guard is desirable for the architecture. It
mekes the practical implementation feasible, especially
considering its implementation in a distributed eaviron-
ment.

FGHC is further given a limitation that oaly system-
defined {or built-in) predicates can be invoked in the
guard but no user-defined predicates. Since FGHC does
not require nested guard contrel, it is simpler and more
suitable for the hardware implementation of PIM.

2.2 Object-Oriented
Style

The notion of object has been spread widely. Basically,
an ahject is an entity to encapsulate internal states and
a set of operations [11]. Objects which have only this
feature as capsules are called static obfects. In contrast,
by integrating the notion of process, which is an exe-
cution unit that can run in parallel, with that of cap-
sule, another kind of objects, called dynamic objects,
have been introduced. Each dynamic object has an
independent execution environment, and communicates
with athers by message passing via communication me-
dia such as message streams and message boxes. Several
languages 1o realize dynamic objects have been devel-
oped [12,13,14,15].

As mentioned earlier, the committed-choice paral-
lel logic programming language family, incudiog KLI1,
provides the basic framework for synchrorization and
communication at the base, which is required to realize

Programming

l:l:,'n:m:l.i.c uhjl:-q;:.s.

Shapiro and Takeuchi [8] thows that CP [7] supports
object-oriented programming style in the framework of
perpetual process using atream commumication, which
can be applied to GHC and KL1, too.

A perpetual process is a causal chain of tail-recursive
goals, regarding each goal as a process state at some
stage. A clause waits for some particular event to hold.
After commitment, it takes behaviors corresponding to
the event, such as sending messages or modifving its
internal states, and invokes an identical goal for the next
stage.

Communication is performed through a message
stream, which is recognized as an object from the out-
side. A message stream is represented using a list con-
struct, of which the car part means a message and the
cdr part a succeeding stream respectively.

For example, a stack is defined in the object-oriented
programming style in KL1 az follows:

Example 1 Stack in KL

staek(Stack) :- trus |
bottom{Dattom), stack{Stack, Bottoa),

atack( [push(X) 5], Top) :- true |

element{Elant, X, Top), atack(®, Elmnt).
stack([pep(X) 18], Top) :- true |

Top = [gat(X, Y11, stack(5, T).
gtack({read(X} (3], Top) := trua |

Top = [get(X, [0)ITopil], stack(S, Topll.
stack{[], Top)} :- true | Top = [].

elemanc{[get{X, YJI51, Data, Kext} :- trua |
I = Data, mergel(Y, Naxti, Naxt],
alement(5, Data, Wexti).

element({[], _, Next) :- trus | Next = [].

bottom([get (X, Y}IS])} :- truas |
X = "Sarror{end_of _stack)}?, bottom(3).
borteml[1) :- true | trua.

mergal[X|Xs], Ys, Z=) :- trua |

Z3 = [X|Zs1], merga(Xs, Y=, Zs1).
merga{Xs, [YIYs]l, Is) :- zrue |

Zs = [YIZs1], mergells, Ys, Zs1),
margal[d, Y=, Zs) :- true | Zs = Ys.
marga(Xs, [J, Za) :- trua | Is = Xa.

This program can be read as follows: A stack object
which holds a Yotton abject as the top element is cre-
ated first. At each stage, the stack may receive 2 mes-
sage, either push/1 or pop/1, until it is clozed with [1.
For message popf1, the stack sends 4 message, got/2,
to the top to get its data and next element, and recurs
with the next element as a pew top element. For mes-
sage push/1, it creates an element object that should
hold the given data and the current top, and recurs with
the new element as a top. When it is closed with [1, it
terminates closing the top with [J.

The top element is an internal state to the staclk,
apd the data and next element are those to the elemeat.
These internal states are represented using local vari-
ables; Top, Data and Mext, each of which appears in the
fixed position, and their new variables are carried by the
tail goal for the next stage. -

Another noticeable point is the way in which the
element object passes its next object in return to the
get/2 message: the next object is not passed directly,
but is merged with the output parameter, Y. Then, the
element object recurs with the output variable, Nexti,
of tha IETEer.

I comparison with other object-oriented languages
and their implementations, one of the most characteris-
tic features with this program is that the semantics of
updating infernal stafes is logically pure, that is, side-
effect-free. A chain of logical variables placed at the
same position is the history of an internal state.

As easily seen from such a small example, however,
even with this programming style, programs are too
primitive and verbose to develop a large-scale system,
since KL is positioned as the kernel language. As are-
sult, most of the deadlocks are brought by stream break-
ing attributing to tiny bugs such as misnaming and mus-
placing variables, rather than by algorithmic ones.



To represent the programmer's intention more di-
rectly and concisely and higher level abstraction, which
makes the program semantics vivid, is peeded. Also pro-
gramming and debugging environment should be pro-
vided at this level or higher.

3 Parallel Object-Oriented
Language A LM

We propose a paraliel object-oriented programumng lan-
guage, called Al T,

A'UA has been designed as & user's language which
is compiled into KL1, for ease of writing large-scale sys-
tems and applications. A'LM is independent of KLI,
and KL1 programs cannot be contained together in
A'LUAM programs.

This section summarizes major characteristic fea-
tures of A"LM .

Firstly, A’ LM objects are characterized as follows:

Fure Parallel Object A LiMis a pure parallel ebject-
oriented language.

Each A'lM object is a perpetual process which
belongs to some class: it repeats the cycle of
receiving & message, sending messages to itself
or other objects in response. Sending messages
to objects is the basic mechanism to execule an
A' LM pragram.

Wame Assoclation In 4'1A |, sach object i3 associ-
ated with a name. Updating an object is per-
formed in the side-effect-free foundation: a new
version of object is created and associated with
the same name.

Stream Merging The external interface to an object
is a directional stream. When an cbject is referred
to by more tharn one object, a merger is implicitly
inserted to split a stream to the referred object.

In addition, A’ LM provides the follewing syntactic
and modularization support:

Maero Expansion An AWM program is composed
of macro expressions, each of which is evalu-
ated to an object with a sequence of abstract
A'LAM instructions expanded. With this feature,
A'LM programs can be written compactly.

Class Inheritance An A'LM class can inherit multi-
ple classes. Class inheritance enly expands the
method space applicable to an instance, but does
not, bring forth any other instances of the super
classes.

The above stack example can be written in AWM as
followa:

LA LM s a Japanese word, detived from a Sanskrit “ahum”,
which eonsists of A and LA and implies the beginning and
the end, an open woice and a clase voice, and expiration and
inspiration.

Example 2 Stack in A"1IM

class stack.
alat top.
ripitiate =» #hottom :new{"H), !tep = B.
:push{“%) -» #alement :naw(“E},
itep = E raec(X, !topl.
feep :get(”X, "Y1, 'tep = Y.
ttop :get(TX, “Y).

:pupfl}l -
iraad{Xl) =»
and,

class element.
slet data, next.
st (TR, Y¥) =» idata = %, !mext = Y.
:gatildata, !mext) -» .
end.

class bottom.
rgat(*$arror! (and_oaf_stack), ¥) => .
end.

A stack is created by sending 2 message :new/1 as follows:

#ztack :new("30),
“51 = 50 :push{1) :read{"A) :pop("B)} :pep{~C)

4 Class and Object
4.1 Class

<class definition> =
elass <cless name>
< superciass definition>
< slot definition>
{ «method definition> }
end *."

< superciass definition> o=

super <superclass name> { ',' <superclass name> } '.'

< slot definition> ==
slot <slot name> { *," <slof neme> } '

Fach A'LM object is an instance which belongs to
some class.

A elass iz & module which defines a set of attributes
and functions of instance objects. Classes are treated as
immutable objects, which will be mentioned later, but
belongs to no other classes: there is no notion of meta
class,

Each class can inherit multiple classes. By inheriting
a class, a set of attributes and functions applicable for
an instance object is expanded, but no other instances
of super classes are created.

4.2 Object

Each A’ LA object iz a perpetual process which is rep-
resented with the following attributes:

Original Class which the object belongs to and is cre-
ated from.

Far an instance ohject, the original class is fixed
through life.



Current Class which defines a method which ia ap-
plied for each received message.

For an instance object, the current ¢lass is vari-
able depending on the received message. When a
method of some class is applied, the object is said
to be under the class. At initiation or every time
the object recurs, the current class is set to the
original class.

External Interface Streams through which

messages are sent to the object.

One or more interface streams can be offered,
each of which is assigned a different priority and
prierity-merged into the internal input stream.
From the outside, a given interface stream is re-
garded as the target object itself,

Internal Input Stream from which the object re-
ceives messages. The internal input stream is ac-
cessible with the name $self.

Slots each of which is associated with a slot name given
in the slet definition.

Any slot is visible only within the class which de-
fines it. Ewen if another slot is defined with the
same slot name in either super or inferior classes,
it i3 a different slot.

When an object is created, & global stream named
fsystem is given, through which messages are
raised to the underlying operating system. In
the conceptual model, this global stream may be
treated as one of the slots.

Supers which are the super classes that the original
class inherits directly and indirectly. The inhesi-
tance tree is constructed from the super definition
in the laft-first depth-fiest order.

For an instance object, the supers are fxed
throwgh its life.

Delegates which are super classes positioning later
than the current class on the inheritance tres.

A delegate class pext to the current class is acces-
sible with the name $super.

As well as the current class, the delegates are van-
able depending on the received message. At inifia-
tion or every time the object recurs, the delegates
are sct to the supers.

Example 3 Object Attributes

Given the following class definitions:

class c2i
auper cll, 12,
alot s.
ma =¥ '3 ‘ma.
and.

clags c3
super c2l, <22,
slot =.
mb => !5 :mb.
and.

An instance of class €3 is created, which some messages are
sent as follows:

#c3 mew("C3),
€3 ma :mb

1. For an instance of class 23, the original class iz 3,
and the supers are ¢21 — cil — 12 — c23, both of
which are fixed through life.

2, The slot s in class 21 (s independent of that in class
ed.

3. During execution, the current class and delegates are
transitional depending on received messagss,

When executing a method for message :mb, the cur-
rent class is ¢3, and the delegates are €21 — c11 —
cl2 — e,

‘When executing a method for message :ma, the cur-
rent class is 21, and the delegates are ¢11 = 12 —
e22,

4.3 Object Life
The life of an A"L{M object is drawn as follows:

Creation When a message mawf1 {or
inew_with_prisrity/Z) is sent to a class, an in-
stance object of the class is created, and a mes-
sage :initiate is sent to the object. An interface
stream (o1 2 set of interface streams) to the object,
which positions after the :initiate message, is
returned to the :new/1 message.

Initiation Whenever an instance is created, it is im-
plicitly sent 2 message :initiate. The program-
mer can overwrite the defauit method for the
rinitiate message which is predefined as follows:

rinitiate -> .

Generation Ineluding internal states such as $self,
slots and $systes, any object is associated with a
name. Updating an object is not giving any side
effect on it, but creating a version of object and
associating it with the name.

Fach version of object is called a generction, and
changing the name association is called generation
descending.

Cycle After receiving an external message, an object
behaves d:scmding ome gan-::a.t.iun to another. A
sequence of generations derived from receiving one
external message is called a eyele. A script of the
cycle for one external message is called a method.



Termination At the end of a cycle, the object either
recurs to the next cycle or terminates its life. The
former is syntactically specified with ", the latter
with *..".

When to terminate can be defined freely by the
programmer: it may be when the internal input
strear is closed, or at any time,

When the internal input stream is closed, the de-
fault closing method is defined to close all the slot
objects as follows:

. =» Sslots ::

The programmer can overwrite this closing
methed.

4.4 Mutable and Immutable Objects

A'2M objects are categorized into twe; mutable objects
and immubable objects, depending on whether they have
changeable internal states or not.

Class objects are immutable. Some primitive classes
such as true, false, integer, vecsor and siring, are
also immutable,

Both mutable and immutable objects are treated
uniformly in their message passing. For example, a stack
elemment has two slots, of which slot data is immuiable
and slot mext mutable. There is nothing different in
sending messages or making accesses to either of them.

5 Basic Notions

5.1 MNMame Assoclation

A'tdM objects are associated with names. Names are
categorized into two: femporary names and permanent
names, depending to their name scope, that is, their life
time.

Permanent Names The name scope of & permanent
name is cne generation,

Among permanent names are systerm-defined
names, such as $self, $system and $super, and
user-defined slot names.

Temporary Names The name scope of a temporary
name s one evele,

Among temporary names are variables, including
parameter variables which are carried in messages,
and temporary variables which are generated in
the cycle.

5.2 Stream Merging

Given a stream, if it aceepts any message applicable to
an object, the stream can be regarded as the object itzelf
from the outside.

As shown in Sectisn 2, when an identical object is
referred to by more than one object, it requires for a

stream to the referred object to be eplit into two, so that
each referring object can hold one stream through which
it can send messages independently. In other words,
branches are merged into the stem, that is, the internal
input stream of the target object.

In A'LM , noo-determinicity exists only in the
siream merger. Stream merging has no logicsl mean-
ing other than sending messages to the target object. A
stream merger i3 inserted in the following two cases:

» when more than one input terminal of a temporary
name (or varizble] nccurs,

» every Lime a permanent name except self ocours,

5.2.1 Variable Mode

Fach stream has & direction which is toward the target
object. To specify the stream direction, each variable
occurrence has its terminal mede, which is either input
or culpul,

s Varighles have only one occurrence with 7,

called an output terminal, and one or more oc-
currences without 77, called Input terminals.

» An object is somewhere ahead of the output ter-
minal.

« A stream is connected to the cutput terminel,
» Messages can be sent to the input terminals.

e The messages sent to the input terminals are
merged and zent to the target object ahead of the
output terminal.

Example 4 Variable Mode
seapsult{"4, "B, "C)} -2
A :try(X}, B :trylR). © :select("X).
Variahles &, B, C and two Xs are input terminals, while ~4,

“B, “C and X are output terminals. The two Is are merged
inte "X,

input tecminals
output

terminal X

O3

5.2.2 5Slot Access

Referring When a slot is referred to, it opens a sbream
to be returned and a new generation slot, both of
which are merged into the current generation slot.

ohject

merger X

Updating Slots are updated when they are specified as

the destination of stream connection and message
sending.
Updating & slot is changing the name associa-
tion in a side-effect-free manner: the specified new
value is associated with the slot name, and the old
value is closed,



5.3 DMacro Expansion

An A'UM program is composed of macro expressions,
each of which is evaluated to be an object with a se-
quence of abstract A'L{M instructions expanded. With
this feature, A’ LA pragrams can be written compactly
and cleacly.

For example, a message sending expression s evalu-
ated to a new abject after the message is sent.

Example § Muacro Ezpansion

;create(A0:initialize{~IL}, IL) ->»
Fa :new("A0).

is equivalent to:

sereatelk, IL) -2
fa soew("A0),
*A = KO0 :initialize(“TIL}.

6 Method

= method definition> 1=
< messages -2 <epele <ierminalors

£oyeles e
<generation> {

' < generation> }

A seript of the cycle for one external message is called
a method. One cycle consists of generations, for each
of which one of the following four behaviors can be de-
fined: stream connection, message sending, message del-
egation, and volatile object creation.

6.1 Stream Connection

< conneclion> =
< oulput ferminal> '=" <input terminal-

< gulput terminals> =
< outpat variebles | <sloi>

<input terminal> =
<inpui varishle> | < ezpression=

Through a siream, messages are sent from its input
terminal to its output terminal, that is, the input Ler-
minal is a message source, and the cutput terminal is a
destination.

An expression specified as the source, is evaluated
to be an input terminal with a sequence of abstract in-
structions expanded. The input terminal is connecied
to the output terminal specified as follows:

<ontput variable> Y = ltop
Slat top is referred to, to which output terminal ¥
is connected,

<slot>

An input terminal, ¥, is connected to the new gen-
eration of slat top, thal is, slot tep is updated with
T.

ftop = Y

Thus, the semantics of <slot> is different depending on
which side it appears: referring slot on the right and
updating slot on the left.

6.2 Message Sending

<message sending> o=
<input eniry> { <message> | <lusi

<inpul enlrys o=
{} | <input varigble> | <slotx> | < system>

<lasi> =
[ cmessage> | 2" }

A message sending expression is evaluated to be a
new generation object after the message is sent. By
repeating this evaluation, a sequence of message can be
sent to an identical object.

An message sending expression can be specified
wherever expressions are allowed, for example, as & pa-
rameter of another message or as the source of stream
connection.

The semantics of a message sending expression is
variable depending on the input enlry as follows:

{} (default) :m(F)

prepends & =(P) message to the current self, that
i3, inserts it before the pext external message.

<inpul variahle> E tset (X, !top)

appends a set (X, 'top) message to the input vari-
able E.

<alots Itop :getlX,Y)

appends a get ("X, "Y) message to the topslet and
updates the slot with a new stream following Lhe
message.

< sysfem $zysten m{X)

raises a m(X) message to the system stream,

6.3 Message Delegation

« message deleqation u=
<delegnte elusys "e=' { <message> | <lest>

< delegate class> 1=
<direct super> | <class>

When & class inherits one or more super classes, a
sequence of messages can be delegated to any of the super
classes,

In A'MAM, class is an index to categorize the method
space applicable for an instance with. Class inheritance
expands the method space applicable Lo an object, but
does not bring forth any other instances of super classes.
Therefore, delegating a message to some class is asking
the object itselfl to apply a method defined in the class,
that is, to receive the message under the class.



I\-[cﬁsaﬂ: d::]egatiﬂ:: is per&':rn:u:d by sending an indi-
rect message, which encloses the target message and the
delegate class which should receive the target message,
to the object itself. The delegate class is specified in the
following twe ways:

:m{*X} -> Ssuper <= :mm(X).

With $super specified, messages are delegated to
the direct super.

< direct super=

< ¢lass> im"X) -» fsome_super <- :mm(X).

Messages can be delegated to a certain class on
the inheritance tree by specifying its class name.

Whern an object receives a delegation message,
delegata(Class Message), il checks the delegate
elaze Class, 1 it is equal to the current class, the
object sends the target message Hessage under the
current class, Otherwise, the object further dele-
gates the delezation message to its direct super.

#.2.1 Default Meszage

rbdefanls -» fsuper <- :fdefaclt.

When 2 methad to the received message is not defined
in a clase, the raceived message is delegated to the direct
super.

6.4 Volatile Object Creation

< polatile object crealion> 1=
<valatile immutable object defimitions>
< volatile mutable object definitions

< volatile immutable object definition> n=
< ohjecl sources
"' { <method definition> } 7’

< volatile mutable object definition> =
< object sourcel
' <alot definitionz
{ ¢method definition> 1} "}

< object source> o=
<fmput ferminal> | <oufput terminal>

A'tiM introduces a notion of velatile object to realize
conditioning and looping in the same notion of object.

Firstly, ardinary object, whosze classes are defined as
mentioned earlier, are already condition bandlers: they
receive a particular set of messages and behave differ-
ently for each received message.

If a class is defined for each condition, many classes
will be required for one program. It will make the pro-
gram size unreasonably large, and loose the readability,
writability and maiantainability of programs.

In addition, such an condition handler abject should
have a short life, since it should terminate just after con-
ditioning. All the main ohject wishes to do is change its
hehaviors depending on the condition result. Therefore,

eondition handlers should be defined with the main ob-
ject.

Volatile objects are those which are defined in a
method, without any class name given. Applying this
notion, volatile cbjects can be nested.

Thus, volatile objects keep programs from fragmen-

tion and raise their modularity.

6.4.1 Basic

The abject source is an external interface to the volatile
ohject, from which messages are sent. This is the basic.

Output Terminal If an output terminal (with 7} is
specified as the object source, there must be one or more
input terminals which are merged into the output ter-
minal, Messages are flown from the input terminals to
the output terminal.

T [ :p(x, ¥) => P,
:qlll, v, W} -> Q.1
G.4.2

Extension

If an input terminal (without ~) or an expression which
is evaluated to be an input terminal is specified as the
ohject source, it implies there already exists some out-
pitt terminal into which messages should be flown. The
semantics is extended with a notion of refleciion,

Input Terminal If an input terminal (without -} is
specified, a primitive message :who_are_you(Whe) is
sent to the input terminal. An wvolatile object is ere-
ated so that it should take an output termina! “Whe as
its external input stream, For each message from Whe,
a method iz defined.

T[:p-)?.
g ~» 0. ]

is expanded to;

T :who_are_you{Who),
“Whe [ ip =* P.
:g => 0. ]

8.4.3 Applications

Pattern Matching Message :who_are_you(Wha)
transforms an immutable object to a message stream
which contains the frozen image of the object as a mes-
sage. Using this mechanism, patiern matching can be
represented.

M omed 3 [ :0 =» P1.
11 =>» P2,
2 =» B3, ]



If-then-else Clonstruct If a conditional expression,
which is evaluated to be either a true or a false object,
is specified in the volatile object field, it meanos the if-
then-#ize construct.

¥ == ¥ [ :troe -» Then.
:false -» Elzma. ]

6.4.4 Volatile Mutable Objects and Volatile Im-
mutable Objects

Volatile objects are categorized into two; volatile im-
mutable objects and volatile mutable objects.

Example 8 Number Generator

class nunbers.
slot max, h.
sdpdeializa(Il) =2
*IL { ¥ volatile mutable %
rget_maxi M) -> lmax = M.
gt _nl*N) =* In = N.
.
cda(~Hs) -»
(imax » 'n) [ ¥ volatile izzutable b
rtrue - 'n = I+ L,
:dof Ns:prime(!n) ).
:falsa -» terminate.
1.
rherminate <> ..
end.

$numbers :new( Nushera),
Wusbers :imisislize(~IL] :dalNsl,
TL :set_zmax(4) :set_n{d} ::

Volatile Immutable Object A volatile immutable
object may oeither have any internal state mor recur
after receiving one message, that is, it is supposed to
terminate at once after receiving the message.

The name scope in a volatile immutable cbject is the
same as that in the cutside object. Temporary names
such as parameter and temporary variables used in the
outside object are also visible in the volatile immutable
object.

In Example 6, when a message :do/1 is senl, an
immutable object is created for the the conditien of
{(imax » tn). The volatile object accepts a message,
:true or :falsa. When receiving :trua, the
volatile object sends a message :add/2 to slot n and
updates slot o with the computation result, sends a mes-
sage :do/1 to the numbers object and then terminates.
For message :false, the volatile object sends message
;terminate to the cutside object and then terminates.

either

Volatile Mutable Object A volatile mutable object
may have internal states and recur in the same way as
an ordinary mutable objects do.

The name scope in a volatile mutable object is one
level deeper than that in the outside object. Temporary
names used in the outside object are not visible in the
volatile mutable object.

In Example 6, when message :initialize/1 is sent,
a volatile mutable object is created for the output termi-
nel “IL. The volatile object accepis messages of either
tset_max/1 or :set_n/l, and sets the corresponding
slot and recurs until its input stream is closed.

7 Implementing A UM

KL1

onto

7.1 Message Sending

A'14M has been firstly designed on top of KLL, in which
a message stream is implemented as a list.
For example, the expression of message sending

“HewX = ¥ :add(Y, Z)
iz translated in KLL to:
¥ = [add(¥, Z)INewX]

As mentioned before, in A" LA |, both mutable and im-
mutable objects are treated uniformly in message pass-
ing.

7.2  Unification Failure Handling

T the above example, lot X be an integer 1 and ¥ be Z.
Then the following unification must be made true:

1 = [add{2, 23111

In order to realize it, some extensions have been infro-
duced inte KLL.

In the original KL1 language, such a unification nor-
mally foils. For a certain goal and all subgoals of the
goal, a predicate for bandling such failure caa be speci-
fied, which is called in stead of simple failure. It is called
the unification failure handler. The unification failure
handler receives two original arguments, of the unifica
tion. If the unification was betwesn two structures and
the unification failed for certain elements of them, then
these elements are passed as the argument of the unifi-
cation failure handler. The execution of the unification
handler takes place of the execution of the unification
itself.

If integers should understand add messages, the uni-
fication failure handler sheuld have clause such as the
following:

handler(Int, [add{Addend, Sum)|Rest]) :-
integer(Int), integer{Addend) |
add{Int, Addend, Sum}, Iant = Rest.

The unification failure handler mechanism is harm-
less to KL1. In the above, it is defined to be appropriate
for execution of A'LM . Users who prefer KL1 can de-
fine his/her own unification failure handler which simply
fails, keeping the criginal semaatics of KLL.



8 Related Works

In comparizon of A'MAM with other related works, Vul-
can [10] is one of the closest approaches. Vulcan is de-
signed as a preprocessor on top of CP and is based on
perpetual processes connected via streams. Vulcan sup-
ports a variety of functions as A'lM does, but both ace
different from each other as follows: Unlike in A'LM
name space is flat in Vulean. Temporary and parameter
variables are treated in the same way as those represent-
ing the interpal states, so it is hard for the programmer
to grasp the transition of each internal state. On the
way of class inheritance, they are also different. Vul-
can supports two ways of inheritance; method copy and
delegation, while A' LA does only delegation. For de-
veloping large systems, the amount of copied method
cannot be ignored. Basically, while Vulcan is a prepro-
cessor, JA'L{\ is an independent language rather than 2
preprocessor, and supports message sending as a primu-
tive instruction.

Mandala [0] was also designed on CP like Vulcan.
Mandala supports the association of objects with their
names, but names are managed globally by 2 name
server, which must bring a bottleneck in performanpce.
In A'I{M, the name assoctation is solved locally in exch
ghiect, 5o such a centralization problem is not brought.
Ancther difference is that message receiving in A’ 1M is
based on ons-at-a-time principle: no external message
is received until all the internal behaviors are taken to
the previous external message. Mandala aliows multiple
fnessages to be recejved, so it makes its implementation
difficult.

These languases explore to realize object-oriented
programming with clean semantics. As another ap-
proach toward object-oriented programming with clean
semantics based on side-effect free foundation, FOOPS
(18] should he listed even though it is a functional pro-
zramming language. FOOPS distinguishes objects from
abatract data types and the basic construct is much
mare restrictive and complicated.

9 Current and Future Works

We are asw implsmenting an experimental version of
A'tiM eompiler into KL1. We will write a variety of
sample programs to investigate the expressive power of
A' UM and start writing the operating system PIMOS
in this version,

In the future, we are planning to explore the better
implementation in which primitive abjects should work
more effectively. The development of programming and
debugging environment will be another work.
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