ICOT Technical Report: TR-332

TR-332
Handling Knowledge by its Representative

by
C. Sakama & H. Itoh

January, 1988

©1988, ICOT

Mita Kokusai Rldg, 21F (03} 456-3191~5

|GDT 4 28 Mita 1-Chome Telex ICOT]32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Handling Knowledge by its Representative
by

Chiaki Sakama and Hidenori Itoh
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

This paper presents a method of handling knowledge by its
representative under the equivalence relation hetween literals
in a Horn clause program. This method enables us to deal
uniformly with knowledge expressed differently and to utilize
knowledge dynamically in multiple worlds.

1 Introduction

When it is considered to represent knowledge by Horn logic such as deduc-
tive databases, knowledge is represented by a set of Horn clauses with literals.
A literal is composed of a list of arguments which denote entities, and a pred-
icate which denotes their relation or property. In such a case, individuals
with different names usually denote different entities (unigue name assump-
tion [Gal 84]), but different predicate names do not always mean different
relationships between entities. For example, the literals parent(john, mary),
of fspring(mary, john) and ehild(mary, john) denote the same relationship
between the entities, join and mary. This is because the predicate names
child and offspring have an identical relation and parent is in a counter rela-
tion to them.

To handle such equivalence relations, a simple way is to represent such
eguivalence relations explicitly by some clanses in a program such as

parent(X, Y) : =child(Y, X),
child(X,Y): —of fspring(X,Y) and
of fapring(X,Y) : —parent(Y, X).

However, this way needs at least as many clauses as that of the equivalent
literals, and they are somewhat meaningless for deduction. (They will cause
an infinite loop in a depth first search such as Prolog since they are mutually
recursive,)

[Yoko 86] used such relationships in a logic database by setting some base
predicates and defining higher-order-relations between those base predicates

and other predicates, then utilizing them in the context of analogical query
optimization.

In this paper, such equivalence relations are treated by equivalence classes
of literals. That is, for a given set of literals, there are defined some equiva-
lence classes for them and chosen a representative in each class. Ard then,
these representatives are used for the manipulation of Horn clause programs.

Section 2 represents the classification of literals and choice of their rep-
resentatives, section 3 describes the program transformation using such rep-
resentatives, and section 4 shows its application to query processing in a
knowledge base.

2 Classification of Literals

2.1 Eguivalence Relation between Literals

For the sake of brevity, function symbols in terms are omitted in the
following discussion, that is, function free literals are assumed. First, the
equivalence relation between literals is defined.

Definition 2.1 Suppose a set of literals A, the equivalence relations £;,....25
over A are called worlds. For 3A € A, the set

@? = {‘}‘k I Ak e -"“'H}'-ksur!"-}

is called an equivalence class of representative A in £,
In the world &;, A is partitioned into disjoint subsets of equivalence classes;
such partitioning is called elassification of A in &;. m]

Ezpecially, when

YA, A €A, if Apgid them Mg Ay
holds, ; is called stronger than £; (or &5 is weaker than &).
Ezample 2.1 When a set of literals

A = {parent(X,Y), child(X,Y), child_in Jaw(X,Y)}
is given, A is classified into the equivalence classes in the world, say, blood :

Pblood , = {parent(X,Y), child(Y, X)}
PRl i taw = {childin Jaw(X,Y)}

{Note that some appropriate renaming of variables are done in the equiv-
alence class, and the argnments are missed to denote the representative if
there is no ambigunity.)

While, in the world, say, family, A is classified as follows:

#lomey = {parent(X,Y), child(Y, X), child_in Jaw(Y, X)}
That is, the world blood is stronger than family. o

The equivalence relations are known to make a complete lattice under
such partial ordering over relations.

Suppose an equivalence class of literals which include some variables in a
world. In this case, if there exist some instances of those literals, then they
alzo make another equivalence class or a subset of some equivalence class in
the world. For example, by applying a substitution 8 = {john /X, mary/Y}
to the above class ®¥e2d ap instance

porend s

@;Ef;imﬂ‘ = {parent(john, mary), child{mary, john)}

also make an equivalence class with the representative, parent.

In this case, the representative of the instance equivalence class agree
with that of the original equivalence class. However, it is not such straight-
forward in general to choose a representative in an equivalence class so that
its instance class also has its instance representative.

Next, a criterion to choose such a representative from an equivalence class
is discussad.

2.2 Choice of Representative

In the following of this paper, when it is discussed in a single world, the
denotation of the world is often omitted, that is, P73 are simply denoted as
D, And P denotes the equivalence class whose representative is not still
chosen.

Suppose a set of equivalence classes E, then the representatives of each
class are chosen according to the following eriterion.

L. If an equivalence class $ € E has no unifiable elememt with any other
classes ¥ € E then choose one element ¢ € © as a representative of &.

2. Otherwise, choose one element ¢ € & which is unifiable with elements
of other classes.

According to this criterion, a representative of an equivalence class is to
be chosen so that its instance class also has the instance representative.

Erxample 2.2 Suppose the equivalence classes:

® = {gt(X,Y),it(Y,X)}
¥ = {gt(X,0), (0, X), positive(X)}

Here, gt(X, Y), [t(Y, X) means that X is greater than Y, ¥ is lower than
A, and positive(X) means that X is a positive number.

Now consider the substitutions #; = {1/X,0/Y} for & and & = {1/X}
for %, Then the instances of ® and ¥ with these substitutions are as follows.

80, = {.‘;'E{ITG}! 10, 1)}
Wiy = {gt(1,0),1(0,1), positive(1)}

f'.[k'..ﬂ]
(0, X)
pogitive (X}

ﬂ:={1a'1.w1r}\\ /ﬁ:-[ux}

positive (1) Ta,

Figure 1. Example 2.2

In this case, $4; is included in T8y which is an equivalence class for these
instances.

To choose a representative of ¥8; uniquely, according to the criterion, the
representatives of & and ¥ must be either ¢ = gt(X,Y) and ¥ = gt(X,0),
or ¢ = (Y, X) and ¢ = [t(0, X), but positive(X) cannot be chosen as
the representative of ¥. Then the representative of ¥#; becomes gt(1,0) or
1(0, 1) (Figure 1). o

Although this method requires to check the unifiability of each element
among the equivalence classes, the choice of representatives would be done
once for all in each class, and re-examination is needed only when there
happens some updation to the classes,

However, there is a case when a representative of an equivalence class
cannot be chosen uniquely by that criterion.

Ezample 2.3 Suppose the equivalence classes:

& = {add(X,Y, Z), minus(Z, X,Y)}
¥ = {maltiply(X,Y, Z), divide(Z, X, ¥)}
0 = {add(X, X,Y), multiply(X, 2,¥)}

Here, add(X, Y, 2), minus(X,Y, 2), multiply(X, Y, Z) and divide(X, Y, Z)
meansthat X +Y = Z, X =Y = Z, XY = Z and X/Y = Z, respectively.

In this case, as the representative of 1, add(X,X,Y) can be chosen as
a unifiable element with add(X,Y, Z) in 9, while multiply(X,2,Y) can also
be chosen as a unifiable element with multiply(X,Y,Z)in T. m

This happened because there is no element in (! which is unifiable with
both of the elements in & and ¥, so the rapresentative of {2 cannot be chosen
uniquely by the criterion.

There may be considered some method to treat such a case, but in the

following discussion it is assumed that when the representatives of some
equivalence classes cannot be chosen uniquely by the criterion, we define no
equivalence relations between those literals. That is, sach of those literals
are considered representatives for themselves.

In the above example, the egquivalence classes and representatives are:

B = {add{ X, Y, Z)}

B minus = {minus(X, Y, Z)}

P multiply = {_mu“ipl'y{}ﬂ', Y, Z]}
@d_"ﬂ;“ = {df‘lﬂdﬂ:x, Yf E]}

Thus they are treated independently as usual.

3 Program Transformation using Representatives

3.1 Representative Program

Suppose there is given a function free Horn clause program and some
equivalence classes and their representatives for the literals appearing in
the program, Then, replacing all of those literals in the program by their
representatives, the original program is transformed into a program which
only includes the representative for those literals. Such a transformation is
called a representative transformation and the transformed program is called
a representative program.

Ezample 8.1 Snppose the following program 5.

§ = { ancestor(X,Y) : ~parent(X, Y.
ancestor(X,Y) : —parent(X, Z), ancestor(Z,Y).
parent(john, mary).
child(lisa, mary). }

When equivalence classes ®,,ceutor and Pprpns are defined as:

B oincestar = {oncestor(X, V)}
I|i;w.l:r-"'ﬁ = {Fﬂ-rfﬂ:{:{, Y }, Chtid{}: X]]-

then § is transformed into the following representative program 5

§" = { ancestor(X, V) : —parent(X,Y).
ancestor(X,Y) : —parent(X, Z), encestor(Z,Y).
parent(john, mary).
parent(mary, lisa). } o

In the above example, ancestor(john,lisa) is deduced from §' but not
from 5. This means that by transforming the original program into the
representative program, the result of the deduction does not depend on the
predicate names but on their meanings in the original program.

Erample 8.2 Suppose the following programs 5; and S3.

51 = { ancestor(X,Y) : —parent(X,Y).
ancestor(X,Y) : —parent(X, Z),ancestor(Z,Y).
parent{ X, Y) : —child(Y, X).
child{mary, john).
child(lisa, mary). }

Sy = { descendant(X,Y) : —of fapring(X,Y).
descendant(X,Y): —of fspring(X, Z), descendant(£,Y).
of fapring(jack, lisa).
of fepring(liza, mary). }
When equivalence classes ®noepior a0d Ppgren: are defined as follows:

B incestor = {ancestor(X,Y), descendant(Y, X)}
Poarent = {parent(X,Y), child(Y,X),of fspring(Y, X)}

Sy and S5 are transformed into the following representative programs 5] and
5%, respectively.
51 = { ancestor(X,Y) : —parent(X,Y).
ancestor{X,Y) : —parent(X, Z), ancestor(Z,Y).
parent(X, Y) : —parent(X, V).
parent(john, mary).
parent(mary, lisa). }

55 = { ancestor(¥Y, X)) : —parent(¥, X).
ancestor(Y, X'} : —parent{(Z, X), ancestor(Y, Z).
parent(lisa, jack).
parent(mary, lisa).)

In this case, ancestor(john, jack) can be deduced from the union of the
programs 5] U 53 , but not from 5; U 5;. (Note that such a transformed
program has some redundant clauses. This problem is discussed later.)
o

This example shows that different programs which are written indepen-
dently can be treated uniformly by transforming them into representative
programs. In other words, the representatives are considered as a global ex-
pression for the local programs, and through such a transformation one local
program can utilize the knowledge represented in another local programs.
{Here, the same literals are assumed to have the same meaning between

different programs.)

3.2 Program Transformation in Multiple Worlds

In this subsection, the representative transformation of program is con-
sidered in multiple worlds.

Ezample 3.7 Suppose the following program 5.

S = { stranger(X) : — foreigner(X).
american|reagan).
japanese(nakasone). }

Assume the following equivalence classes in a world, japan :

@-:ff::sﬂ = {stranger(X}}
‘I,J'E‘Pﬂ“ - {fﬂrgignﬂ{:{']*amerfﬂdﬂ{.}:}}

J_‘afeigw
glopan {japﬂnﬁﬂ'ﬂ[ar}}

japaneae
In this case, § is transformed into §7°P*" such as:
giapan — [stranger(X): — foreigner(X).

foreigner(reagan).
japanese(nakasone). }

and stranger(reagan) is deduced from §79Pen,
While consider another equivalence classes in a world, usa :

'b:::nngcr = {Strﬂﬂg’ﬂr{x:l}
i::ﬂ'imn = {americun{X]}
Yoreigner = {foreigner(X), japanese(X)}

In this case, § is transformed into §%** such as:

Suss = { stranger(X): = foreigner(X).
american|reagan).
foreigner(nakasone). }

and stranger{nakasone) is deduced from 52, a

Erample 3.4 Suppose the following program 5.

S = { path(X,Y) : —edge(X,Y).
path(X,Y) : —path(X, Z2), path(Z2,Y).
edgeq(a. b).

- edgey (b, e).
edgeyal(b,d). }

This program states that there is a path if there are some edges between
the nodes, and edge,;(X,Y) means that there is an edge between X and ¥
im a state, &,

First, to find paths in the state s,, assume such equivalence classes:

®21 = {path(X,Y)}
Q:EII:II" = {!l'iﬂ'ﬁl:x1 Y}! Ed_!jﬂ,-ll:x., Y}}
‘I.:ﬂl‘.ﬁ'hz = {edge(X,Y)}

In this case, § is transformed into §*', such as:

5% = { path(X,Y) : —edge{ X, Y).
path(X,Y) : —path(X, Z), path(Z,Y).
edge(a, b).
edge(b, e).
edge,; (b, d). }

then path{a,b), path(b,c) and path{a,e¢) are deduced from 5°!.
Next, suppose to find paths in the state sy 4+ 37, and assume the weaker
equivalence classes as follows.

§41+42 = {]Jﬂi.hl:..r, Y}}

path

824+ = {edge(X,Y), edge,i(X, Y), edge o X, Y)}
In this case, 5 or §*! is transformed into §*1+*2 such as:

§o1+at = [path(X, Y) : —edge(X, Y).
path(X,Y) : —path{X, Z),path(Z,Y).
edge(a, b).
edge(b, ¢).
edge(b, d). }

then path(b,d) and path(a,d) are deduced from §*'%*? in addition to the
results of 571, o

As shown in the above examples, the same program can be interpreted in
different way, by changing the equivalence relations in a program according
to the world where the program is interpreted.

The multiple worlds {or possible worlds) mechanism in knowledge repre-
sentation is also disenssed in (Moo 77] and [Naka 84]. In these language, the
worlds are expressed in the axioms and provides the ability of conditional
reasoning.

Here, different equivalence relations are considered multiple worlds and
they are used for the program generation in each world. (Note that when
more than one program is processed, such as in Erample 5.2, they must be
transformed into the representative programs in the same world.)

3.3 Semantics of Representative Program

This subsection considers the declarative meaning of a representative pro-
gram. Suppose a Horn clause program §, a representative transformation
of literals in a world T', and the transformed representative program T(5).
Then the following proposition holds.

Froposition 3.1 If a proposition p is deducible from § then T(p) is deducible
from T(5).

Proof: The proof is by induction on the length of the deduction steps.

First, suppose that p is dedncible from § in O-step. In this case, p€ §
then T(p} € T(S), hence T{p) is deducible from T(5) in 0-step.

Next, assume that if p is deducible from S in n-step then T'(p) is also
deducible from T(S) in n-step. Now suppose p is deducible from 5 in n+ 1-
step as follows:

I‘1 W .f:'LJ, 1"1 W ""-‘jl‘}
J.-']J?'"-"II.WTEII

Here, ;8 v 28 = p, Iy, ['; denotes a disjunction of literals, 4&,;, A,
denotes a literal, and # is an mgu of A; and A; where 4,8 = Aqf.
From the assumption, there is a deduction from T'() in n-step, as follows.

T{Tyv Ay) T(TaV-da)

Now, T(T; v ﬂl} = T{Ft} W T{ﬂll} and T(Ta v —|.|':‘|.'1} = T(F'ﬂ W "'\T(ﬂrﬂ
holds, and T(A)8 = T(A;)8 is yielded by A6 = Asf. Then the following
deduction can be made at n 4+ Ll-step.

T(T,) vT(A) T(Ta) vV -T(Aq)
T(T,)8 v T(T4)0

Since T(Ty)8 v T(T7)8 = T(T18 v T18) = T(p) holds, T(p) is deduced
from T(5)} in n + l-step. a

MNote that the reverse of the above theorem does not hold, becanse A8 =
AP is not yielded by T(A)8 = T(A2)8 in general. (For example, consider
the case where A; = parent(X, V), Az = child(Y, X)and T(A,) = T{A;) =
parent(X,Y).)

Suppose the least Herbrand model of 5, M(5),and that of T 5), M(T{S5)).
Theoremn 3.1 denotes the following relationship.

T(M(S5)) € M(T(S)) (1)

Now suppose that T—1 is mapping from a representative to all of the
elements of its equivalence class, then from (1), the following relation holds.

M(S)C T (M(T(S))) (2)

{2) denotes the model, which is obtained by applying reverse representa-
tive transformation to the least model of a representative program, includes
the least model of the original program. That is, such a transformation may
geuerale some consequences which are not deduced from the original pro-
gram but are deducible after the transformation, as well as it preserves the
consequences of the original program.

3.4 Program Optimization

Generally, when a original program includes some literals which are in
equivalence relationships, the transformed representative program tends to
have some redundancy. Recall in Frample 3.2, the transformed representa-
tive program, 57 U 5%, included four redundant clauses:

parent(X.Y) : —parent{ X, Y.

parent(mary, lisa).

ancestor(Y, X'} : —parent(Y, X).
ancestor(Y, X)) : —parent(2, X), ancestor(Y, Z).

Redundant clauses in a representative program are those which are ex-
pressed differently in the original program, but become redundant after
transformation.

To optimize the representative program, it is desirable to remove redun-
dant clauses from the program. However, the optimization of logic programs
18 not straightforward, because the equivalence of logic programs is known to
be undecidable in general, except for assuming several conditions [Mah 86],
[Nau 86], and [Sag 87]. Here, the deletion strategy [Cha T3] is assumed for the
program optimization for its simplicity. The deletion strategy is as follows:

1. If a clause C includes the same literal both in the head and the body of
C, then ' is a tautelogy and is deleted.

2. If a clause €' subsumes another clause C', (i.e. for some substitution o,
Co € C") then C' is deleted.

Applying this strategy to the above example, the clause,
parent(X,Y) : —parent(X,Y).

is a tautology, hence it is deleted.
While the two clanses,

ancestor(Y, X)) : —parent(Y, X).
parent{mary, lisa).

are subsumed by the clauses,

ancestor{X,Y) : —parent(X,Y).
parent(mary, lisa).

respectively, hence they are deleted, too.
However, the equivalence of two clauses,

ancestor(.X, Y} : —parent(X, Z), ancestor(Z,Y).
ancestor{¥, X') : —parent(Z, X), ancestor(¥, Z).

will not come out of the strategy and remain in the transformed program.

Query Answer

)

[Query evaluaton)

: LT r. (Eguivalence Class) | atien)
A T -
|
| I !
! . Hepresesta-
1 Rapresentative 6=
I] P'a"ﬂl'l'im Hve Query
: Represeata-
I Hve Mﬂu
I
]
L
]

: LR -
¢ BEnowledge Base =
T mmr——— -H-o-----—----—\,'I 1

Figure 2. Query processing in knowledge base

(Such an equivalence of clauses will be shown by using induction, but it
beyonds the study in this paper.)

4 Query Processing in Representative Program

This section presents the application of the representative transformation
to the query processing in a knowledge base. A query which is composed of
representative literals is called a representative query and its answer tuples
are called representative answer,

Figure 2 shows query processing in a knowledge base. There are stored
Horn clause programs in the knowledge base, and the equivalence relations
are defined in the knowledge compiler.,

Firstly, the knowledge compiler transforms the object program into a
representative program using the equivalence relations and optimizes the
representative program using the deletion strategy.

Secondly, a query for the program is also transformed into a representa-
tive query by the compiler and evaluated in the representative program.

Thirdly, the representative answer, which is the result of the evaluation,
are transformed into the answer tuples for the given query by the compiler
again, and output. This process is shown by an example.

Suppose the object program in the knowledge base as follows.

kbt [(ancestor(X,¥):—parent(X,T))1).
Eb{[(ancestor(X,T):-parent(X,Z),.ancestor{I,¥))]}.
kb{[(descendant(X,¥):—offspring(X,¥})1).

kb([(descendant(X,¥):-affspring(X,Z),dascendant(Z,¥})]).
kb{[(pazent(X,¥):-child(¥,X))]).

kb{ [child{mary, john)]}.

kb{[child(lisa, mary)]}.

kb{ [cffspring{david, marv)]).

kb({[(offspring{cindy,bab)]}.
kb([child_4in_law(bob,john)l).

This program is transformed into a representative program by the knowl-
edge compiler as shown below,

k_compile(World,XB):— Knowledge=..[KB,Clausa],
bagof({Clause, Knowladga,Program),
transform{World, Program,R_Program),
optimize(R_Program,Optimized},

load{Optimized).
load([]).
lsad([Clause|Rast]}:— assaert(comp_kb{Clause}),
load(Rast).

transform{_.[],[])-

transform({World, [[Clause] |5], [[R_Clause] [RS]}):~
rewrite(World,Clause,R_Clausa),
transform(World,5,RS5).

rewrite(World, (P:-Q), (RP:—E{})):— equivalent(World,P, RP),
rewrita(World,Q,RQ).

rewrite(World, (P,Q), (RP,RQ)):— eguivalent(World,P,RP),
reavrite{World,Q,R0).

rewrite(World,P, RP }i:= equivalent(World,P RE).

where k_compile(World, I B) means to compile the knowledge, KBin the
World. That is, after collecting clauses in the program, trans form(Werld,
Program, R_Program) transforms them into a representative program, and
then optimize{ R_Program, Optimized) optimizes the transformed program
using the deletion strategy. (Since the process of optimize is a little long,
details are omitted here.)

Here, the eguivalence relation of literals and their representatives are
defined as:

eguivalant({blood,child{X,¥),parent(¥Y,X)).

equivalent(blocd,cffspring(X,Y),parent(¥,X}).
equivalant(blood, descendant(X,Y) ,ancestor(¥,X)).

equivalant(family,child(X,¥),parenc(T.X}}.
equivalent(family,cffspring(X, T} ,oazent(¥,X)).
equivalant{fanily,child_in_lawcx,?},pa:ent{t,x]}.
equiva.lant[fuily,descanéu:(:{,‘:}, apcestor(T,X)).

equivalent(World,Undefined, Undefined).

where equivalent(World, Literal, Representative) defines the equivalence
relation between the Literal and its Representative in the World Further,
equivalent(World, Unde fined, Unde fined) means that literals which have
no definition of equivalence relation are evaluated without transformation.
This means that the equivalence relationship of literals which appear in the
program need not necessarily to be defined.

Then, by the compilation in a world, blood:

?- k_compile({blood,kb).
the program is transformed into the following representative program.

comp_kb{ [(ancestor(a,B):-parent(A,B)})]1).

comp_kb{ [(ancestor(A,B):-parent(A,C) ,ancestor(C,B})]).
comp_kb([{ancestor{A,B):—parent{C,B),ancestar{A,C})]}.
comp_kb([parent(john,.mazry)l).

comp_kb([parent{mary,lisa}]}.

comp_kb((parent(mary,david)]).

comp_kb({ [parant{bob,cindy)]).

comp_kb{[child in law(beb,johm)];).

While, in a world, family:
?= k_compile({family,kb).
the transformed representative program is as follows:

comp_kb{ [{ancestor(i,3):—parent(A,3)}]).

comp_kb([(ancestor(A,B8) :—parent(A,C) ,ancestor(C,B)}]).
comp_kb([{ancestar(A,B):—parent(C,B) ,ancestor{id,C))]}.
comp_kb([parent(john,mazry)];.

comp_kb([parant{mary,lisa)]).

comp_kb({ [parent(mary,david)]}.

comp_kb{ [parant(beb,cindy)1)}.

comp_kb{ [parant(john,bob)]}.

As shown above, two different programs are generated here in each world.
Next, the process for query evaluation is as follows:

avaluata({Warld, Query):- rawrite(World,Quezy,RepQ),
demo (Repd) ,write{Quary),ol,fail.
avaluata{ .,

— 1.
demo{(P,Q)):= |,demo{?),dema(Q}.

dama{ P y:— ceomp_kb{[P]}.

demo({ P j:- comp_kb({[{P:-Q)]),dema{d).

whera evaluate{World, Query) means evaluation of the Query in the
World. That is, a query is transformed into a representative query in a
waorld, evaluated in the representative program, and output as the answer
tuples for the given query. Here, demo{Query) is a meta interpreter for the
Query.

Now suppose a query for the compiled knowledge in the world, blood:

?- evaluatas{bleood,descendant(X,¥) ¥.

the result of the evaluation is as follows.

descandant(mary,john)
descendant{lisa, mary)
descendant (david, mary)
dascendant{ecindy, bob)
descendant(lisa, john)
descendant(david, john}
*descendant{lisa,jchn)
*dascendant(david, jcha)

While suppose a query for the compiled knowledge in the world, family:
7= avaluate{family,descendant(X,¥}).

the result of the evaluation is as follows,

descendant(mary,jahn)
dascendant(lisa,mary)
descendant (david,mary)
descendant(cindy,bob;
descandant(bab,john)
dascendant(lisa,jochn)
descendant (david, john)
descendant{cindy, john)
*descendant({lisa, jehn)
#*Jdescendant (david, john)
*descendant (cindy, john)

As a result, different answer tuples are obtained in each world. Note that
some redundant tuples (marked with #) are deduced in the above because
they are beyond the deletion strategy.

In this way, when an equivalence relation and its representative for a
query and a program are given, a query can be evaluated by transforming
it into a representative query. As stated in the previous section, some an-
swer tuples for the query can be obtained only through the representative
transformation of the query and the program.

5 Concluding Remarks

This paper presented a method of handling knowledge by its representa-
tive in a knowledge base represented by Horn logic. It enables us to handle
equivalent knowledge uniformly, and then some local programs can commu-
nicate their knowledge with each other using the common representatives
in a world. Further, a program is transformed into some local programs
by changing equivalence relations in multiple worlds. When it is applied to
query processing in a knowledge base, a knowledge compiler plays a part in
the transformation and realizes a flexible question answering system.

In this paper, a function free Horn program is assumed as is usual in the
deductive database, but to extend it to non-Horn program such as stratified
database, further discussion is needed.

Acknowledgments

We would like to thank Kazumasa Yokota for suggesting several improve-
ments of the idea, and are grateful to Mikio Yoshida(IBM), Ko Sakai, Yuji
Matsumoto and other colleagues at ICOT for their helpful comments on an
earlier version of this paper.

References
[Cha 73] Chang,C.L. and Lee,C.T.L.: "Symbelic Logic and Mechanical The-
orem Proving™, Academic FPress, 1973

[Gal 84] Gallaire H., Minker,J. and Nicolas,J.M.: "Logic and Databases: A
Deductive Approach”, ACM Computing Surveys, Vol.16, No.2, pp.153-
185, 1984.

[Mah 86] Maher M.J.: "Equivalences of Logic Programs”, Proc. of 3rd ICLP,
pp.410-424, 1986.

[Moo 77] Moore,R.C.: "Reasoning Abont Knowledge and Action”, Proc. of
5th IJCAL pp.223-227, 1977.

[Naka 84] Nakashima,H.: "Knowledge Representation in Prolog/KR", Proc.
of SLP’'84, pp.126-130, 1984.

[Nau 86] Nanghton,J.F.: "Redundancy in Function-Free Recursive Rules”,
Proc. of SLP’86, pp.236-245, 1986.

[Sag 87] Sagiv,Y.: "Optimizing Datalog Programs”, Proc. of fth PODS,
pp.349-362, 1987,

[Yoko 86] Yokomori,T.: "On Analogical Query Processing in Logic Data-
base”, Proc. of 12th VLDE, pp.376-183, 1986.

