ICOT Technical Report: TR-328

TR-328

Proof Compiling Technique based on
Realizability and Proof Normalization

by
Y. Takayama

November, 987

D987, 1COT

Mita Kokusai Bldg. 21F (U3} 456-3191~3

|C DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokvo 108 Jagan

Institute for New Geﬁeration Computér Technology

Froof Compiling Technigue
based on

Realizability and Proof Normalization

Yukihide Takayama

Institute for Hew Ceneration Computer Technology
4-28, Mita l-chome, Minato-ku, Tockyo 10B Japan

takayamaldicot. jp

1. Intreduction

SESCERERE S I N .

Constructive proofs can be seen as a very high level description of
algorithm, as has been discussed by many computer scientists and
logicians in terms of the relationship between intuitionism and
computation, and programming systems such as the Nuprl system
[Constable 86] and the PX system [Hayashi 87] have been implemented.
These systems have the facility to extract executable codes from
constructive procfs, and are based on the notion of formulae—as-types
or realizability interpretation. However, there is still room for

refinement of the facility from a more practical point of view.

Generally speaking, compiler systems used in practical situations
should have the following functions:

1) correctness checking of programs

2) optimization of programs

3) incremental compilation
These problems can be approached in the following way from the point
of view of proofs as programs,
1) is performed by a proof checker system for mathematical reasoning.
This topie ie our of the range of this paper.
2) is performed at proof level by using the proof normalization method
[Prawitz 65].
3) is realized by regarding subroutine calls as references te

theorems already proven within proofs of other theorems.

In addition to the facilities listed above, description of
user-defined rules of inference and extraction of program schemes
corresponding to the rules can be realized by introducing
propositional variables and introduction and elimination rules for the

second order universal guantifier.

Section 2 gives our formalism of programs and logie and the algorithm
of proof compilation. Section 3 gives the method of user-defined rules
description and program scheme extraction. Section 4 shows the
extraction of a ged program by using user-defined course of value
induction rules, Section 5 outlines the operational semantics of the
extracted codes. Section 6 works on the optimization technique based
on normalization of proof trees, and introduces another powerful
optimization technigue, the modified \/=code. Section 7 deals with
the method of incremental compilation, and the conclusicon is given in

Section 8.

2, Proof Compiler

EEEEEEEEC =S aRE R

This section gives the formalization and the naive version of program
the extraction algorithm based on the notion of realizability. They
are based on a subset of the 1985 version of QJ [Sato 85], except for

the higher order features, propositional variable and second order

all-1/E rules.

2,1 Notational Preliminaries

{1} Type expressions
nat
Type expression of natural number,
2) prop
Type expression of proposition. P:prop means that P is a well
formed proposition.

3y Typel ->» Type2

The type of function from elements of type Typel to elements of
type Type?.
4) Typel X .. X Typen

Cartesian product type.

(2) Term expressions
'm=' is used to denote definitional egualities throughout the following
description.
iy o, 1, 2, ...
Elements of type 'nat'.
2) X, Y, 2
Individual variables are written in capital letters. All the
variables have types, and 'X:Type' is read as 'variable X has
type Type'. Type declarations are usually omitted in the
following descriptien.
3) lambda [X0,..,Xn]. A(X0,..,Xn) (0=<n)
Lambda abstraction.
4} if A then B alse C
A is a higher order equation or inequation defined in (3) 1).
5) left/right
Constants,
6) mu [Z0,..,Zn)l. A{Z0,...,Zn) {0=<n}
'mu' iz the fixed point operator,
7) a(bly{b2)...(bn)
Application. Associate to left.
8) X mod Y
Residue of fraction of X by Y.
9) (TERM1, .., TERMn) or simply TERM1,..,TERMn
Sequence of terms. If TERMi are of types Typei (0=<i=<n), then
the above terms are seen to be of the Cartesian product type:
Iypel X .. X Typen.
10} proj(i)
Projection function of type

Typel0 X ... X Typei X ... Typen ==} Typei {n¥0, 0=<i=<n)
-_3_

11y 1{SEQUENCE)
Length of the seguence, SEQUENCE.
12) any[H]
Sequence of arbitrary N codes. There is no notion of any([N]
in QJ, but it is introduced mainly for experimental use.
13) suce/pred
Successor/predecessor function on 'nat'.
{3} Formulae
1) TERM1 = TERM2, TERM1 =<¢ TERM2, TERM1 < TERM2
Higher order equation/inequaticn of terms.
2 Py Qv oo
Propositional variables. These are of type 'prop’.
3y weid
Contradiction. Note that ~A == A -> void.
4) P(X), {X),.
Propositions that have X as free variables.
P(X) is also denoted in an abstraction formula, Abs [X] P.
Substitution of a term, t, to X that occcurs free in P is
formulated as a kind of beta-reduction:
{abs [X] P)(t) =--> B(%)
5) Definition of formulae
1. Higher order egquation/inequation of terms are
{atomic) formulae,
2. void is a formula.
3. If P and O are formulae,
ay PG is a formula
by PA\/Q Lis a formula
e}y P - Q is a formula
dy P is a formula
4. If P(X) is a formula containing X as free,
d) all X:Typel. P{X) is a formula
e} exist X:Type2. P(X) is a formula
where Typel can be 'nat' or 'prop' and Type2 is 'nat’,

Fermulae are regarded as of type 'prop'.

{4) Proof trees

Proof trees are writtem in the ordinal mnatural deduction style.
Subtrees are often abbreviated as 'PI' or, when the free wvariable

or individuals in the subtree should be stressed, 'PI{X)'.

2.2 Inference Rules on Logical Constants and Equalities

The inference rules uszed are listed here,

a B N A\B
T {/\E) —====={/\E)
AAE 2 B
[a] (B]
A B AN/E c c
T T N O (NI T == (ZE)
A\/E AN/B c
(&)
B A A —F B
———————— (->I) mmm—mmm———ee (—}E)
A -» B B
[X:Type]
R{X) t:Type all X:Tvpe., A(X)
— (all-T) —————————— e == (5],] = E)
all X:Type. A(X) A{t)
[x, A(x)]
t:Type At} exist X:Type.A(X) C
e €+ = 1 i B (exist-E)
exist X:Type. A(X) C
[X:nat, A(X)]
A{0) B{succ{X})
T e — e ——— (mat—=ind)
all X:nat. A(X)
void
———====—{void-E)
A
t = s {(in Type} A(tL) t:Type t = 5 (in Type)
---------------------- {=1) el B et B
A=) t =t (in Type) s =+ (in Type)

P =4d (in Type) g = r {in Type)

P=r {(in Type)

QJ alse has rules of arithmetic, formation of terme and formulae, and

type inferences. However, these rules are not necessary as far as
program extraction is concerned. The names of these rules are

abbreviated to * in the following description.

The following additional rules are of higher order logic and are not
contained in original wversion of OJ.

[F:prop]

F(P)
---------------- {2nd Ord. all-I)
all P:prop. F(P)

F:prop all P:prop. F(P)
s meme== (2nd Ord. all-E)
F(P)

These two rules are allowed to use only in the following situation:

[P:prop]
F(P)
—==—=m==——=———=-=(2nd Ord. all-I)
Q:prep all P:prop. F(P}
——— e 2nd Ord. all-E)
F{Q)

2.3 Program Extraction Algorithm

The program extraction algorithm is given here. This algorithm
performs gq-realizability interpretation of J and the soundness of the

extracted code, realizer, is proved in [Salto 83].

{1y Notations for algorithm description

Ext (=—————m {Rule))

Top level procedure (function) of program extraction. It
iz often abbreviated to Ext({B) in the situation where 'A' and
'Rule’ are clear. When a conclusion, B, depends on a list of

formulae, Gamma, this procedure is denoted by Ext{Gamma|-B}.

Rv(A)

Realizing wvariable sequence. Realizing variables are
sequences of variables to which realizer codes for the formula

are assigned. Rv(A) is defined as follows:

1) Ev(A) == nil sequence, if A is atomic

—_fF —

2) Bv{AAR) ==

3) BV(AN/B) ==

Bv (R},

4) Rv(A=>B) == Rv(B)

3% Bw{all X:type.

concatenation

concatenation of Rv({A) and Rv(B)

of a new variable, Z,;

and Rv(B)

A(X)) == RV(A(X))

6) Ev{exist X:typa. A(X)}) == concatenation of a new

variabhle,

7)Y Bvw(P} == Rv({P{X}))}.

@

Substitution. {@ is defined as [X0 <= TO,

means to substitute Ti for Xi (0=<{i=<{n} that oocurs free in

expression. If A is a term,

as AQE.

pIL

z, and Rv({A)

if P has X as free wariahles.

.+ Xn €= Tn}, and this

a given

the application of [@ to A is denoted

Projection function on Cartesian product type.

pI: TYPE-0 X
where

pI{ad, .., aI, .., aM)} = aI
{(nil}

Dencotes empty code.

{2} Definition of Ext procedure

A B
Ext{-——- (/MI)) == Ext{hA), Ext{B)
F¥aY:
ARAD
Ext({-—————- {/AE)) == pO{A/\EB)
A
/B
Ext|—————- {AE)) == pL{AAEB)
B
A
Ext[——————— ("I)) == left, Ext(A)
ANSB
B
Ext({~~————— {(%I)} == right, Ext(B)
BN/B

. X TYPE-I X .

.. X TYPE-N --» TYPE-I

(O=d T m¢ N

[A] (8]

AN\/B c C
R e AV 23
c
== Ext(A|-C)[Rv({A) <= pl(Ext{A\/B))) ; 1f pO(ExXt(AN/B}) = left
Ext{B|=C){Rv({B) < pL{EXt{A\/B))] ; if pO(EXt(A\/B)} = right
if left = pO(Ext{ANSB}) ; otherwise

then Ext(A|-C)
else Ext(B|-C)

(Al
B
EXt (—===—=—" {(—»I)) == Ext(B) ;if Rv({A) = nil
B - B
lambda [Rv{A}].Ext(A|=B) jotherwise

A A->EB
EXt (=—————=======(=3}E)) == Ext{A->B)(Ext(A))
B

[(X:Typa]
A(X)
Ext(- ——= {all-I)} == lambda [X]. Ext(A(X))
all X:Type. A(X)

t:Type all X:Type. A{X)
Byt [———m=—m - (all-E}) == Ext({all X:Type. A(X)}(%t)
A(t)
t:Type Alt)
ExXt [====m————————————— (@xiEt=T1)) == t, Ext{A(t))

exist X:Type. A(X)

[x:Type, A{x)]

exist X:Type.h(X C
Ext(-———————- - Semsmm————— {exist-E))
C
== Ext({x:Type, A{x) |- C)@

where @ = [x <- pO(Ext(exist X:Type. A(X)}),
Rv{A(x)) ¢ pl(Ext{exist X:Type. A{X})]

[X:nat, A(X)]
A0} A{sucac(X))
Ext(- — —==({nat=ind})
all X:mat. A({X)

== lamhda [X]. if X=0 then Ext(A{0)) else Ext(X:nat,A(X)|-A({succ(X)))
if 2z does not occour in Ext(X:nat,A(X)|-a(succ(x)))

mu [2Z2]. lambda [X]. if X = 0 then Ext(A(0})
else Ext(X:nat, A(X) |- A(suca(X)))@

whare Z2 = Rv{A(X)), and @ = [22 <~ ZZ(pred(x)))
3..

octherwise
void
Ext{———=————(vold-E))
A
mw (nil) +1if Bv({A) is nil seguence

any [L{Rv{a)}] ; otherwise

t = g (in Type)} A(t)
o e —— (=)) == Ext(A(L))

t£: Tyvpe
EXt (=== ————= (=)}) == (nil)
t =t (in Type)

t =& (in Type)
Ext(———====———r=e===(x})] == (nil)
8§ = £t (in Type)

P =49 (in Type) g = r {im Type) :
Ext(=—————— e (=)} == (nil})

P = r (im Type)

Ext{-———— (*)) == (nil)

(3) The Ext procedure for second Order all-I/E rules will be discussed in

the next section.

3. Proof Schema Using Propositional Variables

3.1 Proof of Course of Value Induction

As is well known in mathematical legie, the course of value induction
schema
all P:prop.

all X:nat. {(all Y:nat. (Y<X -> P(Y}) -» P(X)) [COV-IND]

=~» all T:nat. P(E)
can be proven by mathematical induction. Any proof tree of the first
order theorem that uses the course of value induction rule can be
trapsformed into one that uses the mathematiecal induction rules as
follows. Let O be scme individual proposition. The proof of all X:nat,

all Y:nat., (Y<X -» Q(Y)) -> Q(X) will be referred to as course of

value proof in the following descriptions.

_g__._,

PI_1
all X:pnat, all Y:mat, (Y<X -2 Q(Y}) —¥ Q(X)

—————————— e ———— e ——— e m——————— ggUrse 0f value induction)
all Z:nat. Q(EZ)

==(Proof Transformation)==i%
COV-TREE:
PI_1
all X:pat. all Y:nat. (Y<X -» Q{Y)) - Q{X) SUB_TREE

————— - —-— -— — e (=) E)

all Z:nat. Q(Z)

SUB_TREE:

all F:prop.
all X:nat, (all Y:mat., (Y<X -3 P(Y)) =» F(X))
—-» all £:nmat. F(Z)

®

Q:prop COV-=IND

- - e e mm e 2nd Ord.

all x:nat. {all ¥:mat. (¥<X - Q(¥)} —% Q(X)}
—% all Z:nat. O(Z)

The complete proof of all Xrnat. (all Y:nat. (¥Y<X -» P(Y)) -3 P{X))}
- all Z:nat. P(Z) is shown in Appendix 1. This can be seen as a proot
schema; if the free variable, P, is instantiated t¢ some individual

proposition, a prococf in first order logic can be obtained.

3.2 Proof Compilation Algorithm for 2nd Ord. all-I/E Rules

The proposition variables and the second order all-I/E rules are used

to handle user-defined rules aof inference such as the course of value

induetion schema explained in 3.1,

The proof compilation algorithm for second order all-I/E rules is
based on the idea of realizability interpretation of second order
intuitionistic logic.

(P:prop)
F(P)

-------------------------------- - (2nd ord.

all-I}

all-E}

Ext(-(2nd Ord. all-I)) == LAMBDA RV(P). Ext(P/RV(P)|-F(P))

all P:prop. F(P)}

—10 —

REV(P} is a variable as long as P is a variable. If P is instantiated
to some particular propositien, RV(P) returns a value of Rv(P}. The
intentional meaning of LAMBDA is similar to ordinal lambda notation,
LAMBDA is only used to distinguish the above case. Ext(P/RV(P) |-
F(P)) means that if the realizer of P iz needed in the procedure of
procf compilation of F(P), meta-variable RV(P) should be used instead

of the realizer code.

:prop all P:prop. F(P)
m—mmmmmemmm e —— e~ (2nd Ord. all-E))
F{Q)

Ext(

== perform beta-reduction on

Ext(all P:prop. F(E)}(Rv(Q))

Ext{all P:prop. F(P))} must be of the form LAMEDA RV(P).Ext{P/RV(P) |-F(P)}.
After one beta-reduction of LAMBDA-expression, the above code is Ext(F(Q)).

This corresponds to the following normalization of second order logic:

[P:prop]
FI{F)
F(F)
———————————————{2nd Ord. all=I})
Q:prop. all P:prop. F(F)
——— —— - {2nd Ord. all-E)
F{Q}

By applying the normalization of proofs in second order legie [Prawitz 653],

the following proof can be cbtained:

[al
FI(Q)
F(Q)

3.3 Proof Compilation of Course of Value Schema

The following code is generated from the proof of COV-IND given in 3.1
by the proof compilation algorithm given in 2.3 and 3.2,
LAMBDA RV(P{X}).

lambda RV{P(X)).lambda [Z]. RV{P(X))(Z)(AO(Z}) [COV-CODE]

where

—_11 —

A0 == mu RV{P(¥Y}).
lambda [X].
if X = 0 then lambda [Y]. any[l(Rv{P({Y}))]
else lambda [Y].
if left=RA(X}(Y)} then RV{P(Y)}(pred(X)3i(Y)
else RV(P(X))(X)(RV(P(Y))(pred(X)))
AR == mu [z]. lambda [X].
if X=0 then
lambda [Y]. if Y=0 then right else any(1]
else
lambda [Y].
if left = CODE1(Y) then left
else if left = Z{pred(X))(pred{(¥Y)) then left
else right

CODEl1l == lambda [P]. if P=0 then left else right

The code 'left = AA(X)(Y)' in A0 is the conditional eguation which is
legically eguivalent to Y<{X,

The meta-variable, RV(P(X)), denoctes the realizing variables of

all X:nat, {all Y:nat., (¥Y<X -* P(Y)) -»* P{X)). The proof of this part
must be given in course of value induction proofs, and the proof
contains the computational meaning of how te construct the
justification of P(X) by using the justifiecations of P(Y)

{for all Y s.t. Y < X).

EV(P{Y)) denotes the realizing variables of all Y:nat. (¥<X —-» P(Y}).

4. 5imple Example: GCD Program

The GCD program is taken as a simple example which usas COV-IND,

4.1 GCD Proof

The specification of GCD program is defined as follows:

all NM:pat, all M:nat. exist D:nat. (D|NAD|M)

where for P:nat and Q:nat, P]G == gxigt R:nat, Q=R*P.

The specification and procf that the constructed natural number is
actually a maximal one which satisfies the specification is omitted here
for simplicity, but the natural number which satisfies this condition

is constructed in the proof given below. The proof is called proot

of GCD program or GCD procf in the following description.

The course of value proof of this specification is shown in Appendix 2.

4.2 Proof Compilation of GCD Proof

{1y The proof trees in Appendix 1 and 2 give COV-TREE for the ged program.
The following code iz obtained by proof compilation.

£0{g)

where

£0 == COV_CODE(RY(0))

g == lambda [N]. lambda [20, Z1, 22]. if left = CODEL(N)} then CODE2 else CODE3

CODE2 == lambda [M]. M, (lambda ([Q].0) (M), {(lambda [R].1) (M)}
CODE3I{N} == lambda [M]. (Z0(M mod M} (N).

Z1{M mod N} (M),

Z21(M mod My(H)

+ {Z1(M mod M) (N})*(M-(M mod K)/H))

Here, Q == ABS [X]. all M:nat. exist D:nat., D[X /N D|M.
Let Rv(Q(X}) == (WO, W1, W2y, and Rv(Q{Y¥Y)) = {(ZZ0,%Z1,222).
Consequently, by beta-reductien of LAMBDA-expression, f0 can be reduced
to the following form:
f == lambda [W0, W1, W2). lambda [Z]. (W0, W1, W23(Z)(AL{Z)}
whera
Al == mu [EZZ0,Z2Z1, ZE2).
lambda [X].
if X = 0 then lambda ([Y]. any([3]
else lambda [¥].

if left = AA(X)(Y) then (220, ZZ1l, Z22)(pred(X))(Y)
else (WO, Wl, W2)(X)}((2%20, 2zl, 222)(pred{(X)))

The obtained program is ged0 = flg).

5, Execution of the Extracted Coades

Timy Quty is a subset of (Quty [Sato B7]. Tiny Quty is non-typed

sequential functional language to describe executable codes extracted
from constructive proofs. The syntax of Tiny Quty is given in Section
2 as the definition of term expressions. For simplicity, Lhe language
presented here has no syntax for list structure. The chief difference

from erdinal functional languages is Lhat it allows sequences of

— 13

variables as parameters of the fixed point operator, mu, i.e.,
multi—valued funection can be written. Another difference is that a
funetion can be applied not only to first order objects such as atoms

and integer but alse te functions.

The interpreter of Tiny Quty is basically the call-by-wvalue evaluator

of lambda-expressions. However, the fellowing features should be noted.

(1) £ == mua [20,..,Zn]. Exp(E0,..,En) is regarded as a sequence of single
valued functions £f0,..,fn, and fi (0=<{i=<n) is defined as proj(i}(f)
The following reduction can be performed on f:

ma [RD,..,En]. Exp{Z0,..,En) === Exp(f0,..,fn)

{2) lambda [X0,..,¥Xn] . Exp is regarded as another description of

lambda [(%0]. .. , lambda [Xn]. EBxp.
(3) {(lambda [XO, ...,%En)]. Expl(X0,..,¥n})){Exp2) can be reduced to
Expl{&0, .., An) where (A0,..,An}) = split{Exp2). The definition

wf the functicon, split, is as follows:
1) split{ lambda [X]. Exp)) = (lambda [X].a0, .. , lambda [X].,An)
where (A0, .. ,An) = split(Exp)
2y split({if A then B sl=ze C)
= {(if A then BO else CO, ... , if A then Bn else Cn)
if (BO,..,Bn) = split(B) and (CO,..,Cn} = split{C)
(if A then B else C0, if AR then B else Cn)
if split(B) = B
and (CO, .. ,Cn) = split(C)
{if 2 then BO else C, ... , LI & then EBn else C)
if (BO,..,Bn) = split(B),
and split(C) = C
3) split(A(B}) = (&0, .., An}(B)
where (A0, .. , An) = split(a)
4) =split(mu [Z0,,.,EZn)., ExXp(E0,...Zn)) = (£f0, .. , fn)
where £ = mu [T0, .., Zn]. Exp{Z0,..:8n).
and fi = proj(i)(f) (O0=<i=<n})

%} otherwise split(Exp) = Exp, i.e., Exp cannot be split.

14 —

{4) Ho reduction is performed on any([N] term. any[N](Term) is reduced to

Term,

5,2 Ewvaluation of the GCD Code

The code extracted in Section 4 is a program that takes two natural
numbers as inputs and returns the triplet of three natural numbers.
The first elemeant of the pair is the ged of the inputs, and the other
two elements are wverifiecation information that can be seen as the
decoded proof to show that the first element of the pair is actually
the goed. If one is interested in only the value of god, the extracted

code should be properly transformed into a single vailued function.

6. Optimization Technigue

In the PX system [Hayashi 87), the optimization of extracted codes
proceeds as follows: if the code of the form (lambda [X]. A)}(B) is
extracted in the process of proof compilation, then perform
beta-reduction of the code immediately. The cptimization technigue of

proof compilation can be presented more systematically.

6.1 Proof Normalization and Partial Evaluation of Programs

Normalization of proofs corresponds te partial evaluation of extracted
codegs from the proofs through realizability interpretation. The

following are the normalization rules given in [Prawitz 65].

{1} all-normalization

PI{a}
P(a)
—————————————— (all-I}
all X. P(X} =3 PI{t)
m————m—————==({all-E} P(t)
P{t)

{2) => normalization (cut elimination)

[A]
FI® PL
B (]
PI ——————= (=31} PT'
A A-»B ==) mmee-
——————————— e (=3 F) B
B

— 15

There are other rules of normalization such as exist, M\,
‘/-normalization rules, but they are not effective for the
optimization in proof compilation as can be seepn by the definition of
the Ext procedure. Rules (1) and (2) correspond to beta-reduction of

lambda expressions.

Note that in terms of proof compilation, the following diagram

comnmutes:

Proof 1~ —-——— (normalizatien)-—-----=3 Procf 2
f I
| !

(proof compilation) (proct compilation})
|

I |

AV AV

FRealizer Code 1 ==—==(partial eval.)—? Realizer Code 2

(reduction}

Following this diagram, optimization faecilities can be realized in either
of two ways:
1) By implementing a procf normalizer

Froofs are normalized first, and then compiled.
2) By implementing a partial evaluator built in the proof compiler

Proocfs are compiled first, then the partial evaluation

method of the funectional programming language is applied

to the extracted codes,
From the aesthetic peoint of wview, both proofs and codes should be
transformed simultanecusly to maintain a clear correspondence

between proofs and programs in terms of realizability.

The order of applying the normalization rules can be arbitrary. If the
normalization rules are applied from the leaves of proof trees, this
corresponds to call-by-value evaluation of the programs extracted from
the proof treaes. 1f they are applied from the bottom of proof trees, it
means call-by-name evaluation. The operational semantics given in 3.

1 defines call-by-value avgluaticn. However, this is just for

efficiency of runtime evaluation.

6.2 Example of Proof Normalization

For the GCD proof given in 4.1, first, the all-normalization rule can

be applied to the proof of M|0 and M|[M in TREE_1, as follows.

et

0:nat [P:nat]

———={*} (*)
O:nat O=0+*p —)
—— ——(exist-T) O0:nat [Minat]
exist D':nat. O0=D'»p ———=— {*) =——mm———————= {*)
-------------------- {all-I) O:nat Q0w
[M:nat] all P:nat. P|O ' mmm} ——— {exist-TI)
——————————————————————————— {all-E) M|o
Mo
Note: M|0 == exist D:nat,
0 = Dxp
_____ {‘}
l:nat [Q:nat]
——={*y (=}
l:nat Q=1 g mm——- [wy
— = {exist-I) l:nat [Q:nat]
exist D" :pat.g=p"*@ ————- (=) ————————————— [%}
- - (all-I} l:nat Mm] wh
[M:nat] all GQ:nat.q|gQ) e e {exist—1)
————— -—- ~-=(all-E) MM
MM

By this normalization, CODEZ is translated teo the CODE22:

C(}DE?Z . lmb’d'.- {M]’I Mj u;l

Az the (=»E) rule is used in the course of value induction schema

given at the end of Section 3, the -» normalization rule can be

applied:
Proof of course of value schema
hy mathematical induction:
Course of wvalue proof: [all X. (all Y.(¥<X)}=2P(Y)} - P(X}])
| 2
PI all Z. P(Z)
e ————————— e e (3]] D) ——m e - [(=2T)
all X. (all ¥.(Y<X)-2P(Y)) -2 B(X) all X. (all Y.{Y<X}=3>B{Y)}} -3 P{X}
== all Z. P(X) —— all Z. P({I)
__ (=3I}
all Z. P(Z}
==}
PI
- ——— - (mll-1)

all X. (all Y. (Y<X-P({Y)) =% P(X)
=» all 2. P(X)
PI'
all Z. P(%)

By this transformation, beta reduction of f{g) is performed, and

17 —

the all-normalization rule can also be applied to Gammal and Gamma2l
in Section 3 combined with the course of wvalue proof given in

4.1, then the code i=s as follows:

godl == lambda [Z].
(lambda [220, ZZ1, Z32].
if left = CODE1({Z) then CODE22 else CODE3[Z]
Y(R2(Z))

where
A2 == RI1[
(WO, W1, W2)
{..-
lambda [2Z0, ZZl, 2Z2].
if left = CODEl(X) then CODE22 else CODE3I([X]

6.3 Modified \/ Code

For left = (lambda [P]. if P=0 then left else right) (N} in code

BA, it correspeonds to the proof of H=0\/N»0. However, nocne of the
normalization rules in 6.1 can be applied, although this code can be
partially evaluated to left = (if N=0 then left else right). As is
known from the example given in 5.2, most of the execution of the ged
program is that of AA, the code extracted from the proof of

Yex+l |- Yex N/ ¥=2, and is logically equivalent teo Y<X, as explained

in 4.2.

On the other hand, as given in 4.1, N=0\/N>0 (N:nat) and Y<X+1 |= Yexn/y=x
are proved by mathematical induection. However, in practical situations, it
is not efficient if we must always prove well known properties of

natural number of this kind strietly by using induction. For this reason,

the following modification is introduced in proof compilation:

[A] [B]
A\/B c c
Ext{——————————————— = (% /E)) == if A then Ext(A|-C) else Ext(B[-C)
[

when A and B are eguations or

inequations of natural numbers

In this case, the proof of A\/B can be cmitted by declaring this formula

as an axiom.

By this optimization, the god code obtained in 6.2 is changed as follows:

gcd2 == lambda [Z].
(lambda (220, 221, 2I2].
if Z=0 then CODEZ2 else CODE3{Z}

VWA3I(D))
where
A3 = mu [ZE0,221, 2Z2].lambda [X].
if X = 0 then lambda [Y]. any([3]
else lambda [Y¥].
if ¥ ¢ X then (220, 221, ZZ2){pred(X))(Y)
else {lambda [ZZ0, ZEZ1, ZZ2].
if X=0
then CODE22
else CODE3I(X]}
Y((ZZ0, ZT1, ZEZ2)(pred(X)})

7. Incremental Compilation of Proofs

7.1 Referring Theorems Already Proven

Theorems already proven should be stored in a library accompanied by
the code extracted from the proof. They can be referred to within
procfs of theorems. The proof compiler system also refers to theorems
in the library when it must extract the codes corresponding the the
theorems, In this case, the compiler uses the code stored in the
library. For thecrems of the form all X. A(X) and A —> B, the code
must be of the forms lambda [X]. T{(X} and lambda [Rv(A)].T{(Ev(A)).
These theorems are typically used in the following situations, and

correspond to the subroutine call in ordinal programming.

Theorem: Theorem:
t all X. A(X) A A->B
- (all-E) ——————————— e ——— =2 E)
A(t) B

Then, the extracted ceodes, {lambda [X].T(X)){(t} and

lambda [Rv({A)).T(Rv(A))(Ext(A)), can be partially evaluated teo T(t)
and T(Ext(A}). This procedure has the same effect on the extracted
codes as that when complete proofs (procfs that do not refer to any
theorems already proven) are compiled and optimized with proof

normalization.

7.2 Example of Incremental Compilation

— lq._

—— FRRm— ————— P

The procfs given in 3.1 and 4.1 use three simple thecrems on
arithmetic, thecrems 1, 2 and 3. Thiz kind of theorem 1s used
fregquently in the programming of proofs as programs; so it should be
stored in the library system in the following forms:

Theorem l: Statement =3 all K:nat., E=0\ /K0,
Extracted Code => lambda ([K]. if K=0 then left else right

Theorem 2: Statement => all P:nat, P|0
Extracted Coda =3» lambda [P). 0

Theorem 3: Statement =3> all {:nat. q|ﬂ
Extracted Code =) lambda [0]. 1

Then, the programmer simply declares the names of the theorems in the
proof of the gecd program. The code, gedl, is extracted through the
proof compilation and optimization by proof normalization:

gcdl is obtained from gedl by replacing CODEl in the identifier

{Code of thecrem 1%, CODEZZ into

{lambda [M]. M, <Code of theorem 2} (M), <Code of theorem 33(M)).
Then, attach the 'Extracted Code' in the library to identifiers

<{Code of theorem i> (i = 1,2,3) part, and perform the following

partial evaluation:

i
s
L=

{lambda [P].0) (M)

(lambda [Q].1) (M)

¥ 1
Note that this partial evaluation corresponds to all-normalizationm
illustrated at the beginning of 6.2.

Then, the cbtained code becomes the same as gedl.

8. Conclusion

This paper presented a proof compilation technigue baszed en the notisn
of realizability and proof normalization. A higher order feature was
introduced to handle the description of user-defined rules of
inference. Optimization and incremental compilation can be handled
quite naturally with the notion of proof normalization., Modified
“-code was alsc introduced as a powerful technique of optimization,
The extracted codes can be executed as functional style programs.

The syntax and the interpreter system of the language were alsc

presented.
Acknowledgment

Thanks must go to Dr, Aiba, Dr. Murakami, and Mr. Sakai of ICOT, and
to Mr. Kameyama and Professor Satp at Tohoku University, who gave me

many useful suggestions.

References
[Constable 86] Constable, R, L, =t al.,
"Implementing Mathematics with the Nuprl Proof Development System”,
Prentice-Hall, 198&
[Hayashi 87] Hayashi, S. and Nakano, H., "PX: A Computational Logic®,
RIMS5-573, Research Institute for Mathematical Sciences,
Kyote University, 1987
{Prawitz 65] Prawitz, D., "Hatural Deduction”, Almgvist & Wiksell,
1965
[Sato 85] Sato, M., "Typed Logical Calcoculus”, TR-85-13, Department of
Computer Science, University of Tokyo, 13853
[Sato 87] Sato, M., "Quty: A Concurrent Langquage Based on Logic and
Function®", Proceedings of the Fourth Internaticnal Conference

on Logic Programming, Melbourne, 1987

— 21

appendix 1: Proof Tree of COV-IND:

TREE-1 TREE-2

e ———— = (pat~ 1 0d)

[Z:nat] all X:nat.{all ¥:nat. (¥Y<X => P{Y)}))

all Y:nat. (¥<Z —» F{¥}} Gammal
--- {=>E)

B({Z}

={all-I}

all Z:nat. P{Z)
-- (—2I)
all X:mat. (all Y:nat. {¥Y<X ->» P(Y)) —-» B(X})
-» all Z:nat, F(Z)

Gammal:
(Z:nat] [all X:nat.(all ¥:nat, (Y<X => P(Y)) => P(X))]
Sl (all-E)
all ¥Y:nat, (¥<Z =-» P{¥)) —-> P(2}
TREE-1:
[€:nat]
—————— ti}
[y¢0] TYen)
—mmmmmmmmmemmee— (=3 E)
volid
m—————(yoid=E}
B(Y}
———————————— (-»T)
YO =% B(Y)
e LU R B
all Y:nat.{Y<0 => B(Y))
TREE 2:
[¥:nat] [HYF] [HYP] Cammal
-------------- (all-E) -— {=»E)
[T4X] YX =-» P(Y) [¥=X] P(X]})
mmmmemeemceeo o (-)E) mmmme———— —wmmme (==E)
TREE-2-1 B{Y) P(Y)
——— ("-E}
P(Y)
e Gab B &)

Yisuce{X) - P{Y)
et - 1 B Bl
all Y:nat.{Y<{succ{X) =} P{Y))

HYE == all Y:nat, K (Y<X -> P(Y))
Gamma
[X:nat] [all H:nat.{all Y:pat. (¥<X > B{¥)}) =* P(X))]

e - R USSR -1 § L o)

all Y:nat. (¥<X =» P(Y})} -» P{X)

TREF-2-1: X:nat, Y:nat, Y<suecc(X) |- ¥Y<X %/ ¥=X

——=(*)

0
——={=}
0=0 [0<1]
——==—=(/\I) [¥+1<1]
b=0 === (")
FAVAD" Y40 [¥:nat]
=== ({/MN\E} T {*)
Q=0 wvoid
== (NI) e (void-E)
Q<o Y+l 0
N/ 0=0 N/ Y+1=0
mmm—em(=)I) ==m=——=—(=31) TREE-2-2° TREE-2-3 TREE-2-4
0<1 => Y+1<41 => e {(\E)
o<0 Y+140 YTLX+L NS ¥=X+1
\/0=0 N OYFl=0 oemmsmmeee e (—>1)
m——mmmm——————————(pnat—ind) YER42Z —» YIHHL N/ Y=X+1
all Y:nat.] £ S B R §
(¥4l => all ¥Y:nat,
Y40 N ¥=0) (Y<X+2 —>» Y4X+1 N/ ¥=X+1)
e {nat-ind)
[X:nat] all X:nat, all ¥Y:nat. (¥ ¢ X+1 =3 ¥Y<X 3/ ¥=X)
————————————————— S ——(all-E)
[Y¥:nat] all ¥Y:nat. (¥ ¢ X+1 —> ¥{X N/ Y=X)
——————————————————————————————————————— - --(all-E)
[Y<x+1] Y € X+l - YN W/ Y=X
e —————— (= } E))
YLX NS Y=X
TREE=-2-2:
[¥:nat] Theorem—1
smm=sssmmmmr=r=————==—== 3 L1 =E}
¥=0 % ¥>0
TREE-2-3:
[X:nat]
- (*)
[¥=0] 0 < X+1
——————————————————— (=-E)
¥ o< X+1
e — VS
¥ < X+1 N/ ¥ = X+1
TREE-2-4:
[Y>0]
i Sl
Y-1:nat [HYE"]
———m—————————(a11=E} [YT=1{X] [Y=1=X]
[yex+2) Y-14<X+1 -3 ———— %) e %)
—-———-=(*) Y-1<X Y4X+1 Ye=X+1
T-14¥+1 s ¥Y-1=X ———————\fI) (\/I)
————————————————— {—*E) TEH+L ¥LX+L
¥-14X \/ ¥-1 =X \/ ¥eX+1 \/ ¥=R+1
—— (\/E)

Y ¢ X+l N/ Y = X+1

where HYP" = all Y:pat., (¥<X+1 -) ¥Y<X “/ ¥Y=X)

Theorem-1 is a simple theorem of number theory that states 'any natural
number is equal to 0 or larger than 0'. This can be proved by mathematical

induction as followsa:

E+l=1 1x0

—_———————————— (&)

==={™)
0 [E=0%/K>0] E+130
———{:'} ____________________________
0=0 F+130
————————— (VI) ———========== (/1)
O=0% /020 E+1=0%/K+1>0
(nat—-ind)

all K:nat. K=0%/K0

[K>0]

il b Bl b |

K+1>1 10

e ——————— 3 }

K+1>0

Appendix 2: The course of value proof of the GCD Proof

Let Q(X) == all M:pat. exist D:pat. D|X/\D|M.

{N:nat] Theorem 1

—————————————————— (all-E)
N=0\/N3>0 TREE 1 TREE 2
-————-———--——————-—-—————----———-—————u--————-——————————__---———u—-———{V—E}
Q(H)
——————————————————————— - (=>1)
all L:nat. (L ¢ N =% Q{L)} —* Q(MN)
——————————————————————————————————— (all-I)
all N:pmat. (all L:pnat, (L < N - Q{L}} =» Q(N)})
TREE_1: Proof of N=0 |- Q(M)
[M:nat] Theorem 2 [M:pat] Theorem 3
———————————————————————— (all-g)y --=-——-——————-—————=-==(all-E)
Mo MM
s AN
[M:nat] Mo M
—————————— —— -———{exist-1}
exist D:nat. D|o/D|[M
—————————————————————— (all-I)
[M=0] (o)
—————————————————————————————————————— {=E}
Q(N)
Theorem 2 and 3 is simple thecrems of number theory:
Theorem 2: Theorem 3:
------ (*) ———==(*)
O:nat [P:nat] l:nat [Q:nat]
cmmm W) e (*} e e T {*}
O:nat Q=0*p l:nat Q=1%
- ——= —————{exist-I) ——————mm——me——————— {exist-TI)
exist D':nat. 0=D'"#*P exist D":nat.Q=D"=Q
-------------------- {all=I) ——— e (41 1 = 1)
all P:rnat. B[O all Q:nat.Q|Q
TREE_2: Proof of N0 |- Q(N)
[H20] [M:nat]
————————————{ i'"
{M mod N):nat [HYP]
[N>0] [M:nat] =————————————————a {all-E) [d| (M mod N}]
S e -(*) (M mod N) ¢ N [A\d|H)
(M mod N)<N = (M mod HN) = =mmem—————— { /\E)
————————————————————————— (—>E) d|n TREE_2_sub
[N:nat) Q(M mod N) e e AR §
————————————————————— (all-E) [d:nat] dluAd|M
exist D:nat e s ——————————— (g 5L-T }
D| (M mod N)AD|M exist D:nat. D|N/D|M
e e e e e e e e e e e e e e e e et e e e e — (exist—E)

exis=t D:nat. D|NA DM

where HYP == all Linat. (LN =% (L)}

TREE_2 sub: Proof of d:nat, d|(M mod N)/Md|N, Minat,M:inat |- d|M
[M:nat] [H:nat] [Minat] [MN:nat]
it S e
{M={H mod M)} inat M=H#*((M~-(M mod N}} N} + (M mod H)
e e e e e e e e e ————— ay i b=T)
exist dlinat,
M=H%d0 + (M4 mod N} TREE_Z_ subsub
——— - ——={@Xlst~E)
dlm

TREE_2_ subsub: Proof of

d|tAdl (M mod W), Minat, H:inat, do:pat, M=N+d0 + (M mod W) |- d|M
[H=dA3%d]
[dO:nat]
[dﬂ:nﬂ.t] rd.'l‘-l'l-nt-I
[d3:nmat) e ——— | %)
[df(M mod N)] ——————-—v (*) N=do [d1l:nat] [N*d0=d2+d]
[/ dlw] disdp:nat =disd0sd [42:nat] [(M mod N)=d1=d]

{f\\E} iexist—n ————{*} ————————————————————————— (")
d|w d|w+do dl+d2 Hedl+({M mod Hy={dl+d2}*d
- T3 £ -2 i) e % I3 i

[dlundl (M med N 4| n=*do d| N0+ {M mod M)
e VA Y D -=—{exist-E}
dl (M mod K) d|H*d0+{M mod W)
—————— - {exist-E)
[M=l+*do+ (M mod 53] d|H*d0+ (M mod H)
(= Plim)
dimn

wherea
d| (M mod M) == exist(di:nat. (M mod H] = dil=d)
d|H*dd == pxist({d2:nat. N=d0 = d2+d4}
d|W == exist{di:nat. N=di=d)

— 26

