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Abstract

The Parallel Inference Machine (PIM) is now being developed at ICOT. PIM
consists of a dozen or more clusters, cach of which is a tightly-coupled multiprocessor
(comprised of about 8 processing elements) with shared global memory and a common
bus. KL1, a parallel logic programming language based on GHC, is executed using a
shared heap model on each PIM cluster.

This paper describes a locally parallel cache and hardware lock mechanism to
enable quick and exclusive accesses to the shared global memory. The most important
issue is how to reduce common bus traffic. A write-back cache protocol having five
cache states designed for KL 1 execution on each PIM cluster is described. A hardware
lock mechanism is attached to the cache on each processor. This lock mechanism
enables efficient word by word locking, reducing common bus traffic by using the
cache states. Finally, locally parallel cache and hardware lock mechanisms, and
memory access characteristics of KL1 are evaluated with measurements obtained by
software simulation.

1. Introduction

TCOT is promoting the research and development of the parallel inference machine PIM[Goto).
PIM has a hierarchical structure with a dozen or more clusters (Figure 1), Each cluster consists of
eight or more processing elements (PE) which communicate through shared global memory (GM)
over a common bus. A parallel logic programming language KL1 (Kernel Language 1[Kimu])
which is based on GHC (Guarded Horn Clauses[Ucda]), is the target language of PIM.

Focusing en KL1 parallel execution in each cluster, quick and exclusive accesses to shared
data is one of the key issues. We introduced a locally parallel cache mechanism to quickly access
shared dala. Several cache protocols have been  proposed in  the
literature[ Arch,Bita,Good, Katz,Papa,Swea]. Each protocol aims to solve the so-called cache

coherency problem and reduce commeon bhus traffic.
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Figure 1. Configuration of Parallel Inference Machine {PIM)

Several multiprocessor systems are commercially available. Some of them, e.g. Balance
£000/21000(Sequ], have shared global memory with coherent cache, and aim to increase
performance under the multi-user UNIX environment. However, the parallel processing ina FIM
cluster differs from these general-purpose multiprocessors. The parallel processing granularity in
Balance system is very large, e.g. UNIX processes. On the other hand, parallel processes in PIM
are one or more goal reductions as mentioned in section 2.2. The kernel language KL1 based on
GHC[Ueda] is the system programming langnage in PIM instead of the conventional language,
e.g. C. The single-assignment manner of KL1 causes the different memory access characterisncs
from programs written in conventional languages. Therefore, we should clarify what kind of cache
protocol is most suitable for KL1 parallel execunon.

Cache design and evaluation is done as follows. First, all memory access histories are
retrieved from a psendo parallel KL1 simulator, and stored as an address trace file. Next, the
memory access histories are inpur into a cache memory simulator. Then the memory access
characteristics of KL1 sample programs are evaluated from various viewpoints. Finally, the KL1
language processor as well as the cache protocols are redesigned.

The next section describes paralle] processing in a PIM cluster and clarifies the memory access
cluiweicristics. Then the key issues of the paraliel cache and lock mechanisms for a PIM cluster are
discussed followed by the detail of cache and lock protocols. Finally, the memory access

characteristics of K11 are evaluated by a KL1 language simulator and cache memory simulator.



2. Parallel Processing in a PIM Cluster
2.1 Data structures in KL1 execution

KL1 is a logic programming language enabling parallel programming. Clauses in KL1
programs are selected in a patiern-driven manner as in Prolog, however, unification of logical
variables are performed in a single assignment manner{Ueda]. Parallel processing is deseribed in
KL! programs as follows: programmers can describe various processes of flexible size in KL1,
communications among such processes are realized using logical variables, and KL1 has simple
language principles for parallel process synchronization.

The following data structures are used in KL1 goal reduction. Parallel goals are represented
by goal records and their environments. Goal records includes atomnic goal arguments or pointers
to their environments consisting of logical variable cells or structures. The reducible goal records
are stored as a ready-queue. Some gozls are v aiting for the instantiated values of variable cells in
order to synchronize with other parallel goals. Such goal records are bind-hooked with the variahle
cells by suspension records[Sato]. The meta-call records form a tree-like structure, whose leaves

are the goal records, to manage their logical results (success/failure).

2.2 Shared heap model

In the PIM cluster, a KL1 program is executed using the following shared heap model[Sato).
Each processing element has its own ready queue. From the logical viewpoint, goal records are not
shared even if they are stored in the physical shared global memory. On the other hand, goal
environments, meta-call records, and suspension records are shared among processing elements.
Clauses in KL1 programs are compiled into WAM[Warr] like machine instructions, called
KLIB[Kimu]. Each processing element dequeues a goal record from its ready queue, then
performs goal reductions by executing the corresponding instructions, accessing to the goal

environment in the shared global memory.

2.3 Memory access characteristics and requirements for cache

Paraliel goals are distributed in a PIM cluster. Then each processing element executes goal
reductions. There are many different features in memory accesses from multiprocessor systems
like Balance system|Sequ|. First, because parallel goals share logical variables, the processing

elements communicate more often with each other through the logical variables than the usual
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parallel processing on Balance system. Therefore it is important for locally parallel cache to have
an efficient cache-to-cache data transfer mechanism as well as to work as a cache of shared global
memory. Next, there are many exclusive accesses 10 communicate through shared logical
variables[Sato]. Table 5 shows memory access characteristics of a benchmark program. It shows
about 3.5% of total memory accesses are the read operations with locks. However, we can expect
that the exclusive memory accesses seldom conflict with cach other[Sato]. Therefore we should
design a lock mechanism which works efficiently, at least when lock does not conflict with other
locks. Finally, because of the single-assignment feature of KL I, data write frequency is higher
than conventional languages[Smit]. For example, Table 5 shows the data write frequency is almost
comparable to the read data frequency. So, it is necessary to decrease to write back from cache to

shared global memory.

3. Locally Parallel Cache Design for PIM
3.1 Key issues in write back cache design

In a shared glohal memory architecture, reducing common bus traffic is a more important
design factor than miss ratioGood]. KL1 needs more write accesses than conventional languages
as described later. Tt is clear that a write-back protocol can reduce common bus traffic more than a

write-through protocol[Good,Arch]. Write-back protocols are classified into four groups as shown

in Table 1{Arch,Bita,Papal.
Table 1. Classification of write back protocols
Invalidation Broadcast write
No write-back in case of BERKELEY[Bita] DRAGONTATh]
wansferring a dirty block 5 srates model
Write-back in case of ILLINOIS[Papa) FIREFRY [Arch]
transferring a dirty block

The horizontal classification is: in the case of writing to a shared cache block, invalidating
cache blocks of other processing elements (invalidation method), or broadcasting the written data to
aher processing elements simultaneously (broadcast-writing method). The invalidation method
Jowers comman bus traffic in the case when latency of shared block write-accesses is low. On the
other hand, the broadeast-writing method is betier in the case when many processing elements
frequently write data in the same shared block[Arch,Bita). Considering the single assignment

feature of KL1, most logical variables are shared by two KL goals. In other words, most inter-



processing element commumnications are one-to-one with relation to heap and goal records accesses.
It means the broadcasting is not necessary in most of KL1 parallel processing. On the other hand,
all processing elements often read meta-call records to check logical results (e.g. success/failure) of
parallel goals. However, the memory accesses to meta-call records are few as in Table 5.
Therefore, the invalidation method is suitable for PIM cache.,

The vertical classification of Table 1 i5: in the case of transferring modified blocks between
processing elements, no writing back to shared global memory, or writing-back to shared global
memory. It is obvious that no writing-back to shared global memory can lower the busy ratio of
shared global memory modules. On the other hand, writing back to shared global memory can
decrease modified cache blocks. As mentioned in section 2.3, not only write frequency is higher
than conventional languages, but also cache-to-cache data transfer often occurs in the parallel
processing of KLL1. Therefore, the no-writing back to shared global memory protocol is suitable

for PIM cache.

3.2 Optimization for KL1

In normal write operations, a fetch-on-write strategy is used. i.e., a cache block is allocated in
the cache on both read and write misses. In the parallel processing of KL1, new data structures are
created dynamically by using heap area monotonously|Kimu,Sato]. Therefore, it is not necessary
to fetch-on-write when new cache block is allocated for a new data structure, i.e. processing
element can write data in a cache block without fetching the contents of shared global memory. We
call this kind of write operation as "direct write!". Although the "direct write” operation should be
used with the restrictions (see section 4.1), it 1s effective for the parallel processing of KL1 {see
section 5.8).

When KL1 goals are distributed for load balance of processing elements, a processing element
sends goal records to another processing element using a communication buffer . A one-write-one-
read rule is strictly kept for the communication buffer by two processing elements. In this case, the
contents of buffer both in sender's cache and in receiver's cache arc useless after the receiver

processing element reads the contents. In other words, by invalidating the sender's cache block

L This kind of write cormmands is used in a sequential inference machine PSI[Taki].



after cache-to-cache transfer and by purging the receiver’s cache block after the receiver processing
element finishes reading, meaningless swap-out and swap-in can be avoided. To accomplish this,
we provide a new CPU command called "exclusive read (see section 4.1)" This "exclusive read”
command is used with the "direct write" command. For example, the sender processing element
creates a goal record in communication buffer area by "direct write” commands without fetching
contents of shared global memory. Then the receiver processing element reads in the contents of
buffer by "exclusive read”. Although the "exclusive read” should be used carcfully not to confuse
cache coherency (see section 4.1), it can reduce commeon bus traffic by avoiding useless swap-in

and swap-our.

3.3 Key issues in lock operations of KL1

Lock operations are essential in shared global memory architectures. The KL1 language
processor uses lock operations for heap area and meta-call record area accesses[Sato]. Although
actual lock conflicts seldom occur, the lock latency of a shared environment is high as described in
section 2.3. Therefore it is necessary to introduce a hardware lock mechanism.

The lock operation, in general, needs more bus cycles to exclusively control among the
processing elements like a write operation. Then we decided 1o use busy-wait locking, because the
busy-wait locking scheme allows locking and unlocking to occur in zero time[Bita). The busy-wait
locking can decrease bus cycles by two cache states: exclusive and lock-waiter] Bita]. However, if
the lock information is held in the cache directory (cache-state locking[Bita]), there are some
concerns. For example, it is difficult to simultaneously lock more than the number of cache sets
and to distinguish every locked word in the same cache block, Therefore we introduced a lock

directory in addition to the cache directory. The lock directory contains a locked address and states.

4 Locally parallel cache and lock mechanisms for PIM cluster
4.1 CPU commands fer memory operations

The following five memory operation commands are prepared (excluding lock related
operations which are discussed in the next section).

(1)R(address): Read
Read data from a specified address of shared global memory.

— f —



(2)W(address): Write
Write data to a specified address of shared global memory.

(3DW(address): Direct Write

A direct-write command (D'W) writes data to unused memory area without fetching a cache
block to avoid swap-in overhead. DW must be used keeping the following restriction. DW can be
applied only when a cache block entry never exists in a cluster. When a processing element
allocates a new data structure in heap or creates a new goal record, it writes data by DW into
unused memory area incrementally. Then the cache controller interprets the DW commands as the
following two ways: When the memory address is just a cache block boundary and then cache-
miss occurs, & new cache block is allocated and the dara 1s written into the block without fetching
from global memory. Tn this case, it must be clear that other processing elements in a cluster does
not have the corresponding cache block. This restriction is necessary to guarantee the cache
coherency. On the other hand, when the memory address is not a cache block boundary, or when
the address hits the cache, the DW command is automatcally replaced with a usual write command
by the cache controller,

{4)ER: Exclusive Read

Exclusive Read (ER) command is used when the contents of a cache block are not necessary
after the processing element reads it in registers, e.g. when the processing element reads one-write-
one-read communication buffers or goal records,

ER acts three different ways according to the relative position of a cache block as follows:
When the target address is not the last word of a cache block and a cache misses, a cache-to-cache
ransfer from a supplier processing element occurs. In this case, the supplier cache block is
invalidated after the data block transfer. When the target address hits and it is the last word, after
the last word of a cache block 1s read, the cache block in the receiver cache is forcibly purged as the
same way as read purge (RP) described below. In other cases, ER is automatically replaced with a
usual read operation.

(3)RP: Read Purge

The RP command is used when a cache block cannot be purged by ER. That is when word

number of reading arca is not multiples of cache block word size. In this case the last word of

reading area is read by RP.



4.2 CPU commands for lock operation
We prepared an explicit unlock (U) operation in addition to lock and read (LR} and write and
unlock (IW) operations proposed by [Bita].

(1)LR(Address): Lock and Read
Read data from a specified address of shared global memory with lock eperation.

{2)UW({Address): Write and Unlock
Write data to a specified address of shared global memory with unlock operation.

(31U{Address): Unlock
Unlock a specified address.

4.3 Five cache states
On a sequential machine, (i)Valid/Invalid and (ii)Clean/Modified states are required to

implement a write-back protocol[ITwan]. In the case of the locally parallel cache for PIM, we
added a third field (iii)Exclusive/Shared to guarantee coherency and reduce commeon bus waffic as
previously proposed protocols] Arch,Bita,Katz Papa,Sweal. We distinguish between the following

five cache states:

(1EM: Valid, Exclusive, Modified
The block is exclusive and modified. It is necessary to swap-out.

(2HEC: Valid, Exclusive, Clean
The block is exclusive and clean (unmodified). It is not necessary to swap-out.

(3)SM: Valid, Shared, Modified
The block is modified and maybe shared. It is necessary to swap-out.

(435: Valid, Shared
The block is mavbe shared. It is not necessary 1o swap-ont.

{5)I; Invalid
The block is invalid or unused.

4.4 1laree lock states

We distinguish between the following L and LW states proposed by [Bita]. In addition, an E

state 15 used in a lock directory:

(1)L Leck
The address is locked by this processing element.



(2)L'W: Lock-Waiter
The address is locked by this processing element. In addition, one or more processing
elements are waiting for unlock.

(3)E: Not Locked (Empty)
Unused entry.

4.5 Bus commands and a response for memory operations

There are three bus commands and one response to implement a locally parallel cache
mechanism having five cache states. There is no additional bus command and response for DW,
ER and RP.

{1)F(address): Fetch
A request to fetch a cache block from other processing elements or shared global memory.

(2)Fl{address): Fetch and Invalidate
A request to fetch a cache block from other processing elements or shared global memory, and
to invalidate cache blocks of all other processing elements including the supplier processing element
of a cache-to-cache wransfer.

(3)I(address): Invalidate
A request to invalidate cache blocks of all other processing elements.

(4)H: Hit
A hit response for F and FI requests.

4.6 Bus commands and a response for lock eperations

Twa bus commands and one response are necessary to implement busy-wait locking[Bita] in
addition to above bus commands and a response.
(DLK(address): Lock

This is a bus command to lock a specified address. 1f a cache starte is exclusive (EM or EC), in
oitier words there is no copy of the block in other processing elements, the LK bus command is not
broadcast[Bita).
{2)UL{address): Unlock

This is a bus command to unlock a specified address. If the locked address is notina LW
state, in other words another processing element does not refer to the address, the UL bus

command is not broadcast| Bita.



Table 2. State tansition table of 5 states model {CPU commands)

State
Y, ™M EC SM S I Remark
CpuCmd
Ria) -EM -EC -ISM /5 SO.Fiay/ Read
Hid)-=5 Other Cache Hit
GM(d)->EC Swap-in from GM
Wia) -EM +EM IfayEM 1(a)/EM SO, Fia)y Write
H{d}-=EM Onher Cache Hit
GM(d)-=EM Swap-in from GM
[DWia) MOCHK MCHK MCHK MOCHE SOVEM Direct Write
Rlia) -/EM -/EC MCHEK MCHK SOEL Yy Read invalidate
H{d}-=EM Oitber Cache Hit
GM(d)-=EC Swap-in from GM
RIa) /1 i'] MCHEK MCHK SOLFliawl Read Purge
L.E{a) -/EM -EC LK. lia)/ LK. I{a)/ |SO,LK,FI(al/ Lock Eead
EM EM Hi(d)-=EM Chther Cache Hit
GM(d)-=EC Swap-in from GM
UWia) [(ULVYEM [(ULVEM MCHE MCHE BOGULLFIGaY | Unlock Write
EM Swap-in from GM
Uta)y [(ULVEM [ULYEM | MCHK MCHR (UL Unlock
Abbreviations:

KXXYYY: issuing a XXX bus command and transits o a YY'Y state
Fia),Fl{a),I(a): issuing F,FLI bus commands with block address, a

Hid)->YYY: receiving a cache block data through a cache-to-cache twansfer because 1t hits o
an other processing element cache. The cache state transits toa YY'Y state

GM(d)->YYY: receiving a cache block through a swap-in from Shared Global Memory
{GM) and transits to a YY'Y state

MOCHEK: machine check (This state is detected as a hardware error.)

S0 if a cache entry which should be used is in a modified state, swap-out o Shared Glohal
Memory will occar

(UL): if a cache entry which should be used is in a lock-waiter (LW) state, an unlock (UL)
bus command will be issued.

Table 3. State transition table of 5 states model (BUS commands)

Siate
5, EM EC SM ] I Remark
BusCmd
Fia) Hid)y/SM | Hidys Hidy/SM Hidys -1 Fetch
Flia) P/l LIid 1 Ei{d /1 a1 =fl Fetch Invalidare
LI{a) Tl 1 A il / Invahdate

Abbreviations;
AXX/YYY: issuing a XXX response and transits o YY'Y state
H{d}: sending a cache hlock data through a cache-to-cache transfer because it hits in another
cache.

(3LH: Lock Hit

+ response to the F, FI, a “ bus cooomands. T LU response shows that the
referred address is locked. The requesting processing element which received the LH response
starts busy-waitung. The requesting processing clement retries a memory reference after it receives

the UL bus command. The common bus 15 never used during busy-waiting cycles[Bita].



4.7 Features of the locally parallel cache and lock mechanisms
A state transition table for CPU commands is shown in Table 2, and a table for bus commands

is shown in Table 3. The features of our protocol are summarized as follows:
(1) invalidate other caches in the case of writing to shared blocks
(2) no writing-back to shared global memory in the case when a dirty block is transferred on
the common bus
{3) any cache block can become the supplier of a cache-to-cache transfer
{4) the modified (M) field does not move to a destination cache block, in the case of the
cache-to-cache transfer of normai read operations. But the modified field is transferred in

the case of the write or read lock operations
(5) busy-wait locking.

5. Evaluation of KL1 memory access characteristics
5.1 Evalualion methodology

We have developed a pseudo parallel KL1 simulator on a sequential machine. Accuracy of the
simulator is at the reduction! level. This pseudo parallel KL1 simulator executes one reduction of a
processor, then switches to a next processor. We think that the accuracy of the simulator is
sufficient to compare cache protocols specified for KL1 execution. In the future, however we plan
to make & machine cycle level simulator for further evaluation.

Evaluation was done in the following steps. First, we added probes to collect all memory
aceess histories in the reduction level KL1 simulator. A record for one memory access consists of
processing element number, access mode (such as read/write/lock), area name (We distinguished
following six areas: heap, instruction, goal record, suspension record, meta-call record,
communication butfer), and address. Next, the simulator executed a benchmark program and
generated memory access histories to a trace file. Finally we input memory access histories of a
benchmark program Lo a cache memory simulator and evaluated memory access characteristics from
various viewpoints. We assumed that all memory areas were stored in one shared global memory.

We did not assume a local memory in this simulation.

5.2 Configuration of locally parallel cache

Cache memory capacity for each processing element was assumed to be 4 kilowords. The

1 See section 2.



standard configuration for each cache memory 1s 4 sets, 256 columns, with 4 word blocks. We
believe this size 18 a realistic value for a PIM processing element. The number of processing
elements was assumed to be eight, which is the rarget number of processing elements in a cluster.
A common bus is used for swap-in from shared global memory, swap-out to shared global
memory, cache-to-cache transfer hetween processing elements, and invalidation.  Major

assumptions of hardware parameter are as follows:

{1) width of the common bus is a word (a word consists of tag and data part). An address
bus and a data bus are not distinguished. Therefore it is assumed that an address cannot be
sent with data during the same cycle.

(2) it takes eight cycles to access shared global memory, However the swap-out write
operation to shared global memory 1s hidden by a subsequent memory operation.,

(3) the common bus is not freed until one memory operation is completed.

We assumed the following six common bus access patterns:
(1) swap-in from shared global memory with swap-out takes 13 cycles
{2) swap-in from shared global memory without swap-out takes 13 cycles
(3) cache-to-cache transfer with swap-out takes 10 cycles
(4) cache-to-cache transfer without swap-oul takes 7 cycles
(5) only swap-out takes 5 cycles (This access pattern appears only in DW )
(6) invalidation of other processing elements’ cache blocks takes 2 cycles.

The nominal bus usage ratio is an estimate of the common bus busy ratio:

common bus usage time
eXecunon ome

Nominal bus usage ratio =

Common bus usage time was calculated multiplyving bus cvcles (described above) by bus cyele time
(assumed 50 nanosecond). Execution time was calculated dividing reduction counts by target
performance (assumed 200K [RPS: Reduction Per Second]). Therefore nominal bus usage ratio
means bus usage ratio excluding bus waiting time because of bus contention.  Although the
nominal bus usage ratio is a rough estimate, it 15 sufficiently accurate to evaluate the design

paramerers.

5.3 Characteristics of a benchmark program

We selected a simple BUP (Bottom Up Parser) program as a benchmark . The BUP program
generates parse trees by analyzing natural language sentences. We think that this kind of program
will become one of the PIM application programs. General characteristics of the BUP program are

shown in Table 4. We plan to increase the varieties of benchmark programs in the future,
—12



Table 4. Characteristics of a benchmark program

Benchmark program ~ BUP

Static

Line number of the source program 3.2K

Number of static KL1B* instructions 33K
Dynamic

KLIB* instruction words executed more than once L.9K

Executed KLL1B instuctons 545 4K

Number of total reductions 35.8K

Number of suspensions 1.6K
Number of total memory references 1,312 9K

* KL1 Base: Machine instructuion of KL1

Table 5. Memory access characterisuics
area Write Read Read Total
operation operation with lock
Environment (Heap) T.5% d4. 3% 2.9% 14.7%
KLI1B instruction { 40.5% 1] 48.5%
Goal record 13.9% 13.8% 0 27. 7%
Suspension record efc 1.1% 1.1% 0 2.2%
Meta-call record etc {1.6% 2.7% 0.6% 3.9%
Communication buffer 1.0%% _1.0% {0 2.0%
Total 24.1% 72.4% 3.5% 100.0%

The Table 5 shows memory access characteristics of the BUP program. About 50% of the
memory references are used for fetching instructions. This value is high because our simulator
does not use clause indexing[Warr]. Data write frequency is 50%. This value is almost the same
as in Prolog execution[Tick]; however, it is higher than conventional languages(Smit]. Access

frequency to the shared heap area is about 15% of all memory accesses.

5.4 Nominal bus usage ratio and cache miss ratio

Figure 2 shows the relation between the nominal bus usage ratio and cache miss ratio, in the
case when the capacity of a cache data array is the same. Four sets, 512 columns with 2 word
blocks is the best configuration in Figure 2 from a viewpoint of nominal bus usage which is more
important than miss ratio. However 2 word blocks use about twice the size of cache address array
as compared to 4 word blocks, Moreover the difference in nominal bus usage ratio between 2 and
4 word blocks 1s relatively small. Therefore we selected 4 word blocks. 1In the case when word
length of a cache block is fixed at 4 words, the number of bus cvcles are compared in the following
two configurations. The first configuration is 4 sets, 256 columns, and the second configuration is
2 sets, 512 columns. The number of used bus cycles of the 2 sets configuration is about 16% more

than the 4 sets configuration. Therefore the 4 sets configuration 15 most effective.



Fig 2. Cache miss ratio and nominal bus usage rabo
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5.5 Cache capacity and nominal bus usage ratio

Figure 3 shows the bus usage ratio as a function of cache capacity. There are two kinds of
memories in the cache. One is an address array that contains a cache directory . The other memory
is a dara array that contains cache data. To reduce machine cycle time, the address array should be
on an LSI chip. In this situation it is important to reduce the chip size of the address array. The
desired way is tw fix the capacity of the address array and increase the capacity of data array.
However if the sive of a cache block is more than § words, the nominal bus usage ratio becomes
Jarger in spite of the increase in the capacity of the data array. Therefore the best size of a cache

block is 4 words.

Figd. Cache capacity and nominzal bus usage ratio
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Fig. 4 Memory access characteristics of cach arca
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5.6 Memory access characteristics of each area

We distinguished between the following six areas in the KL1 simulator: heap ares, instruction
area, goal record area, suspension record area, and communication buffer area. Figure 4 shows
area size, number of references, number of bus cycles, and contents of cache memory snapshol
afier execution of each area.

Heap area occupies about 85% of dynamic memory space. However, the number of heap
memory accesses is only about 15% of all memory aceesses. Therefore access charactenistics of
the heap area have lower locality compared to other arcas. Actually nearly 40% of bus cycles are
used to access the heap area. On the other hand, instruction area occupies about 2.6% of memory
space. However about a half of memory accesses are instruction reads. Goal record area occupies
28% of dynamic memory accesses. This is because a goal record includes its argument list, e.g.
atomic arguments or pointers to structures in heap, However, goal record area occupies only 4.5%
of dynamic memory space. In addition, goal records are reused again and again by free-lists
managing of its own processing €lement. Then goal record area occupies only about 5% of bus
cycles.

Memory access characteristics of the heap area has a large effect on KL1 language processing
hecause address space of the heap area is very large and access locality is very low. We examined
more precise characteristics of the heap area as shown in Table 6, Table 6 shows each heap word
is accessed three times in average. The number of write accesses and read accesses 1s almost the
saime. In addition, about 40% of read accesses were read with lock operations. Therefore it is
confirmed that a high speed lock mechanism using hardware support is necessary.
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Table 6. Dynamic access characteristics of the heap area

Program (BUP) Total Heap words per
Number of reductions=33,752 words a reduction
Number of dynamically used heap arca 62.8K 1.5 [word]
Number of references o heap 192,8K 5.4
Number of writing to heap U1K 2.7
Number of reading from heap 94.6K 2.6
Reading with lock operation 38.0K 1.1
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5.7 Effect of the number of processing elements

Figure 3 shows the relationship between the number of processing elements and the number of
bus cycles. It also shows the relationship between the number of processing elements and the
nominal bus usage ratio. In the case of increasing the number of processing elements, the rising
ratio of the nominal bus usage rato is higher than the nising ratio of the number of bus cyeles. This
is because execution speed 1s assumed to simply become n times faster if the same program is
executed by n processing elements, There is a prospect of a connection of about four to eight high
performance processing elements for one current specification common bus.

The capaciry of a cache memory is assumed as 4K words for each processor. Then, if the
number of processing elements increases, otal capacity of cache memory alse increases. Figure 5
shows the bus traffic caused by accessing heap area and suspension area increases as the number of
processing elements increases, even if total capacity of cache memories increases. It means that
inter processing elements communication is a dominant factor in the parallel processing by more
than four or eight processing elements. For example, in case a BUP program is executed by eight
processing elements, about 10% accesses of heap memory are accesses to heap arca allocated by

other processing elements.



Fig. 6 Effect of DW/ER commands
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5.8 Effect of the DW, ER and RP commands

Direct write (DW), exclusive read (ER) and read purge (RP) commands are used to manage
goal records area and communication buffer area as mentioned in section 3.2. Figure 6 shows the

DW, RP and ER commands are effective. If DW, RP and ER commands are replaced by simple

write and read commands, nominal bus usage ratio increases about 11%.

5.9 Analysis of cache states snapshot of after execution

Figure 7 shows cache states snapshot and the number of processing elements which shared the
same cache block after execution was finished. The number of invalid cache block entries comes
up to about 12%. Invalidated entries are made when another processor writes data into shared

blocks or reads shared data by LR, ER or RP commands. Although these invalid cache block

entries seem to be useless, invalid entries can be reused without swap-out overhead.
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We examined the number of copied blocks after execution, and found that exclusively used
blocks by one processing clement was about 36%. On the other hand, about 223% blocks is shared
by all eight processing elements. This is because instruction area is shared by many processing

elements,

6. Conclusions

The paper describes the parallel inference machine (PIM) being developed at ICOT. PIM
has a hierarchical structure using the cluster concept. Each cluster has a shared global memory. In
PIM, we have found that the most important design factor is reducing common bus traffic. In our
cxpericnees, a write-back protocol is necessary because KL 1 has many write accesses. We
evaluated memory access characteristics of a KL1 benchmark program by simulations. In KLI
execution, the data write frequency is about 50%. Although this value is almost the same as Prolog
execution[Tick], it is higher than conventional languages[Smit]. Access characteristics of the heap
area have lower locality compared to other areas and each heap word is accessed only three times in
average. On the other hand, instruction and goal record area have more locality.

In normal write operations, a feich-on-write strategy 1s used. In the parallel processing of
KL.1, new data structures are created dynamically by using heap area monotonously[Kimu,Sato].
Therefore, it is not necessary to fetch the content of shared global memory when new cache block is
allocated for a new data structure. We call this kind of write operation as "direct write". Although
the "direct write” operation must be used with restrictions, it is effective for the parallel processing
of KL.1. When KL.1 goals are distributed, a processing element sends goul records to another
processing element using a communication buffer. Tn this case, by invalidating the sender's cache
block after a cache-to-cache transfer and by purging the receiver's cache block after the receiver
finishes reading, meaningless swap-out and swap-in can be avoided. To accomplish this, we
provide a new CPU command called "exclusive read”. This "exclusive read" command is used
with the "direct write” command. For example, the sender creates a goal record in a communication
buffer by "dircet write” commands without fetching the contents of shared global memory. Then
the receiver reads in the buffer contents by "exclusive read". This can reduce common bus traffie
by avoiding useless swap-in and swap-out. If "direct write” and "exclusive read"” are replaced by

simple write and read commands, the number of bus cycles increases about 11%.
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Lock operations are essential in shared global memory architectures. The KL1 language
processor uses lock operations for heap area and meta-call record area accesses[Sato]. In a
benchmark execution, about 409% of the heap read accesses are read with lock operations. Although
actual lock conflicts seldom occur, the lock latency of shared environments is high. Therefore 1t is
necessary to introduce a hardware lock mechanism and we decided to use busy-wait locking,
because the busy-wait locking scheme allows locking and unlocking to occur in zero time|Bita].

According to the above discussions, we designed a write-back locally parallel cache
mechanism having five cache sates and a busy-wait locking mechanism with a lock directory. We
examined the relationship between the number of processing elements and bus cycles. As we
assume a high performance processing element, the capacity of the common bus becomes a
bottleneck. In the simulations, the nominal bus usage is saturated when the number of processing
elements is between eight and twelve. However, to reduce bus-waiting time and get good response
time, we should keep the nominal bus usage ratio less than 50%. Therefore there is a prospect of &
connection of about four to eight processing elements for one current specification common bus.

In future work, we plan to increase the variety of the benchmark programs and make more

precise measurements.
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